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ABSTRACT

In this paper, we study the problem of identifying influen-
tial users in mobile social networks. Traditional approaches
find these users through centralized algorithms on either
friendship or social-contact graphs of all users. However,
the computational complexity of these algorithms is known
to be very high, making them unsuitable for large-scale net-
works. We propose a lightweight and distributed protocol,
iWander, to identify influential users through fixed-length
random walks. To the best of our knowledge, we are the first
to design a distributed protocol on smartphones that lever-
ages random walks for identifying influential mobile users,
although this technique has been used in other areas.

The most attractive feature of iWander is its extremely

low message overhead, which lends itself well to mobile ap-
plications. We evaluate the performance of iWander for
two applications, targeted immunization of infectious dis-
eases and target-set selection for information dissemination.
Through extensive simulation studies using a real-world mo-
bility trace, we demonstrate that targeted immunization
using iWander achieves a comparable performance with a
degree-based immunization policy that vaccinates users with
large number of contacts first, while consuming only less
than 1% of this policy’s message overhead. We also show
that target-set selection based on iWander outperforms the
random and degree-based target-set selections for informa-
tion dissemination in several scenarios.

Categories and Subject Descriptors

C.2.1 [Computer Communication Network]: Network
Architecture and Design—Wireless communication

General Terms

Design, Performance
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1. INTRODUCTION
Mobile social networks, under the merging of social net-

works that link humans and Internet that connects com-
puters [18], have emerged as a new frontier in the mobile
computing research community. Mobile social networking is
social networking where mobile users interact, communicate
and connect with each other using their wireless devices.
There have been several novel mobile social applications de-
veloped recently (e.g., Micro-Blog [14], PeopleNet [21], and
SociableSense [29]). Meanwhile, more and more native mo-
bile social networking services, such as Loopt and Foursquare,
have been created.

Not all mobile users are equal in terms of mobility. Some
of them, such as salespeople, may travel to many places dur-
ing a day, while others, such as graduate students, may stay
in their office for most of the working time. When consi-
dering the problem of information dissemination in mobile
networks, if we employ these active salespeople as the ini-
tial physical carriers, they may be able to further propagate
information to a much larger fraction of mobile users, com-
pared with selecting initial carriers randomly. This is exactly
the rationale behind the influence maximization problem of
information diffusion in traditional social networks [10, 17].
Similarly, if we monitor these critical individuals, we may
be able to detect the outbreaks of infectious diseases much
earlier, for example, during the flu season [4].

In this paper, we address the following question: how

do we identify influential users in mobile social networks

through distributed solutions with low message overhead? In-
fluential users are individuals with high centrality in their
social-contact graphs. In our previous work [16], we propose
a heuristic algorithm to select influential mobile users for in-
formation dissemination, which is an extension of the greedy
algorithm by Kempe, Kleinberg, and Tardos [17]. Nguyen
et al. [23] propose to find these users through the detection
of overlapping community structures in dynamic networks.
However, these solutions are all centralized and require the
complete social-contact graphs.

There are two major challenges when finding these critical
mobile users. First, given the large size of mobile social net-
works, the proposed solutions must be distributed. Besides
the drawback of requiring complete contact graphs, central-
ized schemes are known to have high computational com-
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plexity, especially on large social graphs. For example, as
reported by Chen et al. [3], finding a small set of nodes with
high centrality in a graph with 15,000 vertices could take
days on a modern server machine. Second, because these
distributed protocols usually run on battery-supported mo-
bile devices, such as smartphones1, we need to control their
communication overhead, as data transmission is the major
source of smartphone energy consumption.

Our approach is motivated by the“friendship paradox”[13]
that “your friends have more friends than you do” and lever-
ages random walks to identify critical users. The reason
behind this paradox is that people with larger numbers of
friends may have a high probability of being observed among
one’s friend circle. Thus, the friends of randomly selected
individuals may have higher centrality in friendship graphs
than average. Although the original proof in Feld [13] is for
the static friendship graph of traditional social networks, we
can easily extend it for the dynamic contact graph of mobile
social networks.

This paper makes the following contributions.

• We design a distributed and lightweight protocol, called
iWander, to identify critical individuals in mobile so-
cial networks (Section 3). With the design princi-
ple of decreasing message overhead, iWander can sig-
nificantly reduce the energy consumption on smart-
phones. We assume that everyone in the examined
network has a smartphone that runs iWander in the
background. The key idea behind iWander is to per-
form fixed-length random walks periodically by a small
group of smartphones and estimate the centrality of in-
dividuals through their random-walk counters (i.e., the
number of times their smartphones are visited by ran-
dom walks). To verify the feasibility of iWander, we
also implement a proof-of-concept prototype on Nokia
N900 smartphones.

• We present a targeted immunization policy based on
the centrality information provided by iWander to con-
tain the spread of infectious diseases (Section 4). We
evaluate the performance of our proposed random-walk
based immunization through extensive simulation stud-
ies. The simulation results from a real-world mobility
trace show that random-walk based immunization al-
ways outperforms random immunization and performs
very close to degree-based immunization with less than
1% of its message overhead. The results also demon-
strate that selecting monitors based on iWander can
offer early outbreak detection of infectious diseases.

• We show how to benefit from iWander for information
dissemination in mobile social networks (Section 5).
Specifically, we study the target-set selection problem
which chooses target users based on the random-walk
counters of mobile users provided by iWander. Surpris-
ingly, we find that differently from targeted immuniza-
tion, if we choose all target users with high centrality,
the resultant scheme only outperforms random selec-
tion for small target sets. We also propose another en-
hanced scheme that chooses both influential and non-
influential users into the target set. Our simulation
results verify that this enhanced scheme outperforms
random selection for large target sets.

1
We focus on smartphones, the most popular mobile devices, in

this paper.

2. RELATED WORK
In this section, we review related work about identifying

influential users in social networks, applications of random
walks, infectious disease control for public health and infor-
mation dissemination in mobile networks.

2.1 Identifying Influential Users

2.1.1 Traditional Social Networks

Identifying influential users has been extensively studied
for information diffusion in traditional social networks [10,
17, 30]. Domingos and Richardson [10, 30] were the first
to introduce a fundamental algorithmic problem of informa-
tion diffusion: what is the initial target set of k users, if
we want to maximize the propagation of information in a
social network? Kempe et al. [17] prove that the informa-
tion dissemination function of this influence maximization
problem is submodular for several classes of models. They
also propose a greedy algorithm that outperforms heuristics
based on node centrality and distance centrality. Although
the greedy algorithm of Kempe et al. [17] achieves the best
known result so far with a provable approximation ratio of
(1 − 1/e), it is computationally expensive [3]. To solve this
problem, Chen et al. [3] propose an improvement to reduce
the algorithm’s running time.

2.1.2 Mobile Networks

The problem of influence maximization has also been ex-
tended to mobile networks. Previously, we have studied the
target-set selection problem for information delivery as the
first step toward bootstrapping mobile data offloading [16].
In particular, we investigate how to select a target set with
only k users among all subscribed users, such that we can
maximize the number of users that receive the delivered in-
formation through mobile-to-mobile opportunistic commu-
nications. We propose a heuristic algorithm to select the
target set by exploring the regularity of human mobility.
Nguyen et al. [23] propose to select critical nodes through
overlapping community detection in dynamic networks. They
present a framework to adaptively update the community
structure based on history information. They also show that
this framework can improve the performance of forwarding
protocols in delay-tolerant networks and schemes to contain
worms in online social networks.

2.1.3 Targeted immunization

Targeted immunization has been proposed to eradicate
infections for scale-free complex networks [8], by considering
the heterogeneous connectivity properties of these networks.
The idea is to cure the highly connected nodes, the hubs,
to restore the epidemic threshold in the diffusion process.
Christakis and Fowler [4] propose a mechanism for detecting
contagious outbreaks. They recruited 390 Harvard College
students to participate in an experiment and asked them to
nominate up to three friends. Their work demonstrates that
by monitoring only the friends of these randomly selected
students they can provide an early detection of flu by up to
13.9 days. Christley et al. [5] evaluate the performance of
several network centrality measures for identifying high-risk
individuals, including degree, shortest-path betweenness and
random-walk betweenness. Their results show that degree
performs very close to other network measures in predicting
risk of infection.
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Remark: All the above approaches for various problems,
ranging from influence maximization to targeted immuniza-
tion, are based on centralized solutions. Motivated by the
friendship paradox, we leverage smartphones to perform ran-
dom walks among mobile users during their contacts and de-
sign a distributed lightweight protocol to identify the most
influential individuals.

2.2 Random Walks
The term random walk was first introduced by Karl Pear-

son [27]. We are interested in random walks on graphs,
where a walker starts from a source node to a destination
node and for each step of this travel, the next node to visit
is selected uniformly at random from the neighbor-set of the
current node.

Random walks have been integrated into centrality mea-
surement of social science. For instance, Newman [22] pro-
poses the random-walk betweenness centrality, a relaxation
of the shortest-path betweenness. This measure defines how
often a node in a graph is visited by a random walker be-
tween all possible node pairs. Noh and Rieger [24] introduce
the random-walk closeness centrality metric, which measures
how fast a node can receive a random-walk message from
other nodes in the network.

Random walks have also been widely explored in other
fields, such as computer science, economics, biology and
psychology, for various purposes. For example, Braginsky
and Estrin [1] route queries on a random walk to sensor
nodes around which a particular event occurs. Yu et al. [35]
propose SybilGuard which uses a special kind of random
walk, where every node chooses the next hop based on a
pre-computed random permutation, to limit the bad effect
of sybil attacks on peer-to-peer systems.

2.3 Infectious Disease Control
Public-health researchers have developed tools to study

the spreading patterns of infectious diseases and mitigate
the effects of epidemics. Eubank et al. [12] model the out-
breaks of infectious disease in urban social networks. They
find that the contact network is a small-world graph, but the
locations graph is scale-free which enables efficient outbreak
detection that places sensors in the hubs of the graph. They
evaluate the performance of several vaccination strategies
for smallpox using a realistic large-scale simulation frame-
work. The results show that it is possible to contain out-
breaks through a combination of targeted vaccination and
early detection.

Recently, researchers started to measure human contact
networks for infectious disease transmission using mobile
devices, such as sensor motes or RFID badges. Salathé et
al. [31] measure the close proximity interactions among 788
individuals at an American high school during a typical day.
Through trace-driven simulation studies, they show that tar-
geted immunization using the contact-network data is more
effective than random immunization. Stehlé et al. [33] re-
port a similar study in a primary school in French which
measured face-to-face proximity of 6-12 years children and
teachers. Based on the measurement results, they provide
several public-health implications of infectious diseases, for
example, closing selected classes instead of the whole school.

In this paper, we propose iWander to make it feasible to
identify influential individuals for targeted immunization in
a distributed way, through fixed-length random walks.

2.4 Mobile Information Dissemination
Information dissemination is an important application of

mobile networks. Papadopouli and Schulzrinne [25] propose
7DS, a peer-to-peer information dissemination system, to
increase data availability for mobile users with intermittent
connectivity. With 7DS, mobile devices query data from
neighboring peers when they fail to access Internet with
their own connections. Small and Haas [32] propose a net-
working model, called the Shared Wireless Infostation Model
(SWIM), which allows information to travel within a net-
work using mobile users as physical carriers. They demon-
strate the effectiveness of SWIM using a practical informa-
tion system of radio-tagged whales.

McNamara et al. [20] propose a scheme to choose the
best sources (peers who can remain co-located long enough
to complete data transfer) for content sharing among co-
located mobile users in urban transport. Using three differ-
ent experimental traces, Zyba et al. [36] study fundamental
properties of human interactions that may affect the perfor-
mance of information dissemination in mobile ad-hoc net-
works. They find that the efficiency of content distribution
depends on not only the devices’ social status, but also the
number and density of devices.

In this paper, we propose to identify critical mobile users
for facilitating information dissemination through distributed
random walks.

3. THE RANDOMWALKS PROTOCOL
In this section, we present the detail of iWander design

and its proof-of-concept prototype implementation.

3.1 The Protocol
We propose to leverage random walks to design a dis-

tributed protocol, iWander, for identifying influential users
in mobile social networks. The intuition is that if we period-
ically initialize random walks from a small group of smart-
phones, influential mobile users may be visited by these ran-
dom walks more frequently than average.

The proposed iWander protocol works as follows. Every
∆T hours, iWander generates a tiny probing message with
a given probability q on each smartphone. The message
contains only a pre-configured time-to-live (TTL) field L.
During the contacts of a smartphone with its peers, if it has
a probing message in its local queue, it sends this message
to another randomly selected peer. When a smartphone
receives a probing message, it decreases L in the message
by 1, and then stores it in its local queue, waiting for the
opportunity to forward the message to other peers. A prob-
ing message with T = 0 will be finally discarded. iWander

maintains a random-walk counter on each smartphone, ini-
tialized to zero, to record how many times it has received
the probing messages (i.e., visited by these random walks).

After collecting the random-walk counters from all users
recorded by their smartphones, we can determine the set of
k critical users from the head of the user list sorted by these
counters. The reason is that based on the friendship para-
dox, influential users have high probabilities to be visited
by random walks and thus own large random-walk counters.
Differently from the random-walk betweenness metric pro-
posed by Newman [22], iWander applies fixed-length instead
of all-pairs random walks for two reasons. First, in practice,
it is difficult for a mobile user to know every other user and
thus specify random-walk destinations. Second, the message
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discovery idle
Bluetooth 253.05 (5.51) 16.54 (1.11)
WiFi 836.65 (8.98) 791.02 (5.23)

Table 1: The power level of Bluetooth and WiFi on Nokia
N900 during discovery and idle modes (in mW).

overhead of all-pairs random walks may be much higher than
fixed-length random walks, which makes them unsuitable for
battery-powered smartphones.

The update and reset of random-walk counters are deter-
mined by the upper layer applications. In practice, they may
reset these counters periodically, for example, at midnight
(12:00 AM) of every day. They can also apply an exponen-
tial moving average to update these counters by assigning a
higher weight to recent counters.

In summary, the performance of iWander relies on three
parameters: q – the probability that a smartphone generates
a probing message (i.e., the fraction of mobile users that
initialize random walks), L – the length of random walks
(i.e., the number of mobile users visited by a single random
walk), and ∆T – the frequency of generating new random-
walk probing messages. It is important to understand their
impact on the performance of iWander, because they deter-
mine both the quality of identified influential users and the
number of probing messages spreading over the network.

To reduce energy consumption on smartphones, we prefer
short random walks with only a few steps. “Static” ver-
sions of social-contact networks are often very dense and
“expander-like”(see, e.g., Eubank et al. [12]). In such highly-
mixing networks, it is well-known that a random walk of
length O(log n) or less, where n is the number of nodes
in the network, suffices to come very close to the station-
ary distribution of the random walk (in which each vertex
has a probability proportional to its degree). Our networks
are inherently mobile and thus not static, but their static
snapshots will likely be expander-like. The mobile networks
will also likely mix well, serving to explain intriguing results
such as those of Grossglauser and Tse [15]. Thus, the short
random walks that we take will likely come quite close to
sampling vertices approximately according to their degrees.

In Section 4.2, we show how the length of random walks
L affects the performance of iWander through trace-driven
simulation studies. We also evaluate the performance of
iWander with different probabilities (q) and frequencies (∆T )
of the generation of random-walk probing messages. We
leave the theoretical analysis of the optimal values for these
parameters as our future work.

3.2 Proof of Concept
To demonstrate the feasibility of iWander, we implement

a prototype in C language on Nokia N900 smartphones. We
choose Bluetooth as the underlying communication protocol
for iWander due to its low energy consumption. We mea-
sured the power of discovery and idle modes of Bluetooth
and WiFi devices and summarize the average results and
standard deviations for 10 runs in Table 1, which shows
that in Bluetooth discovery mode the power of N900 is less
than 1/3 of WiFi discovery. Moreover, when the Bluetooth
device is in idle mode, the power of N900 is negligible. The
reason for high power of WiFi idle mode is that to enable
device discovery, a WiFi device needs to run in ad-hoc mode
and sends out Beacon messages periodically. Given that the
power of WiFi idle mode is also higher than that of Blue-

tooth discovery mode, no matter what the duration of device
discovery is, the energy consumption of WiFi discovery will
be higher than that of Bluetooth discovery.

Due to the simplicity of iWander design, its prototype im-
plementation using the BlueZ2 protocol stack has less than
300 lines of code and the size of the compiled file is only
around 32 kB, which means that we can easily deploy it
on a variety of mobile devices. Unfortunately, it is hard to
evaluate the performance of iWander in practice because it
is difficult to recruit a large number of participants. In the
next two sections, we present two applications of iWander,
targeted immunization of infectious diseases and target-set
selection for information dissemination, and evaluate their
performance through trace-driven simulation studies using
a real-world mobility trace.

4. CONTROLLING INFECTIOUSDISEASES
In this section, we demonstrate how to leverage the crit-

ical individuals identified by iWander to control infectious
diseases and perform early outbreak detection.

4.1 Random-Walk Based Immunization
Smartphones and Internet-related technologies have re-

cently been used to collect data pertaining to the behavior
of individuals for various purposes, including disease control
and health care. For example, the FluPhone3 study collects
information on social encounters in Cambridge, UK using
mobile phones, with the goal of helping medical researchers
to better understand the propagation of close-contact infec-
tions. Pollak et al. [28] design a mobile phone based game to
motivate children to practice healthy eating habits. More-
over, Cook et al. [7] propose Google Flu Trends which uses
aggregated Google search queries to provide near-real time
estimates of the level of flu in 121 cities of the US.

We propose to perform targeted immunization of infec-
tious diseases based on the random-walk counters main-
tained by iWander. For example, during the flu season,
iWander can periodically report these counters on the smart-
phones of college students to the university health center.
The medical staff can then vaccinate students with high
random-walk counters first to contain the spread of flu. We
can also use these counters to detect the outbreaks of in-
fectious diseases, where the medical staff monitor the health
condition of students with high counters instead of randomly
selected students.

The centralized collection of random-walk counters is re-
quired by this specific application and the target-set selec-
tion for mobile information dissemination in Section 5. For
other applications, such as distribution of self-generated con-
tent among users, it is possible to extend iWander and de-
sign a fully distributed protocol to compute and disseminate
these counters among mobile users, for example, by leverag-
ing diffusing computations [9].

There are several differences between our proposed tar-
geted immunization scheme and those in the literature, for
example, by Christakis and Fowler [4] and Christley et al. [5].
First, our scheme can benefit from the social contacts de-
tected directly by smartphones, instead of using the estima-
tion through friendship graphs generated from surveys [4].

2
The default Bluetooth protocol stack of most Linux distribu-

tions, http://www.bluez.org/
3
https://www.fluphone.org/
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(a) p : 0.003, start: 10% infected, init: 5
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(c) p : 0.01, start: 10% infected, init: 5
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(e) p : 0.003, start: 30% infected, init: 5
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Figure 1: Comparison of the evolution of infected individuals for three immunization policies, random, degree-based, and
random-walk-based, with different infection probabilities, immunization start conditions, and initial infections.

Second, our scheme can reflect the dynamics of social con-
tacts in a timely way and avoid the computation-extensive
centralized data analysis. Finally, our fixed-length random-
walk metric is an extension of the general all-pairs random-
walk betweenness centrality [22] and the one-step diffusion-
style estimation of node centrality [4], and its low message
overhead makes it amenable to run on smartphones.

4.2 Performance Evaluation
We evaluate the performance of iWander for infectious

disease control through extensive trace-driven simulations.

4.2.1 Simulation Setup

We implement a simulator in C based on the SIR model,
to simulate the spread of infectious diseases. Each individ-
ual can be in one of three states: susceptible, infectious,
and recovered. Initially, all individuals are in the suscepti-
ble state. At the beginning of the simulation, we randomly
select a small group of individuals and set their status to
be infectious. Transmission of disease occurs from an infec-
tious to a susceptible individual with a probability of p per
60-second contact. Thus, the probability of disease trans-
mission from an infectious individual to a susceptible indi-
vidual, co-located for t seconds, is 1− (1− p)⌊t/60⌋. Finally,
an infectious individual is recovered from the disease if he
or she is vaccinated.

To simulate the social contacts of individuals, we use a
real-world mobility trace, the Dartmouth data set [19], which
records at WiFi access points the association and disasso-
ciation events of wireless devices. We use a one-week trace
of this data set, from 2004-03-01 to 2004-03-07, which in-
cludes 4522 devices. As in many previous studies that use
this kind of data set, for example in Zyba et al. [36], we
consider that the owners of wireless devices are in “social

contacts” if their devices are associated with the same ac-
cess point. We note that although the Dartmouth data set
is based on WiFi association data, the user mobility derived
from it is for general purpose and has been widely used in
the literature [2, 6, 34, 36].

The main reason we chose the Dartmouth data set is that
it involves a large number of mobile users, although this data
set has its own limitations. For example, the user mobility
derived from WiFi association events may not be complete
(only around WiFi APs). There are some other publicly
available data sets, such as the Reality Mining data set of
mobile phone users [11] and the Cabspotting traces of San
Francisco’s taxi cabs4. However, compared to them which
either is too small (e.g., the Reality Mining data set with
only less than 100 users) or cannot represent the human
mobility (e.g., the traces of cabs), we believe the Dartmouth
data set is more suitable for our purpose.

For all figures presented in this section, we run the simu-
lation 1,000 times to get average values and standard devi-
ations. For the sake of clarity, we plot standard deviations
only in Figure 3 of message overhead.

4.2.2 Targeted Immunization

We compare the performance of random-walk based im-
munization with random immunization, Random, and degree-
based immunization, Degree. With Random, the medical
staff vaccinate college students randomly. Using Degree, the
smartphone attached with a student performs device discov-
ery every 60 seconds to record the number of smartphones it
has contacts with (i.e., node degree in the aggregated social-
contact graphs). Then the medical staff vaccinate students
with large number of contacts first. During random-walk

4
http://cabspotting.org/
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Figure 2: Comparison of random-walk based immunizations with different lengths, probabilities and frequencies.
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Figure 3: Comparison of the amount of messages for different lengths, probabilities and frequencies of random walks. The
number of messages for the degree-based scheme is 1.26×108.

based immunization, iWander also performs device discovery
every 60 seconds only when the message queues on smart-
phones are not empty. Finally, we assume that vaccinations
happen only during the day time, from 9:00AM to 5:00PM,
and that on average 60 students are vaccinated every hour.

There are two reasons why we chose degree-based immu-
nization for comparison. First, Christley et al. [5] report that
for the networks they examined, degree performs at least as
good as other network centrality metrics, such as shortest-
path or random-walk betweenness, in predicting risk of infec-
tion. Second, it can be easily implemented in a distributed
way. For example, Pásztor et al. [26] propose a selective
reprogramming mechanism for sensor networks, which de-
termines target sensor nodes using the results of distributed
community detection based on node degrees.

For the random-walk based and degree-based immuniza-
tions, we update the medical staff with the latest random-
walk counters and the number of contacts of all students
every 12 hours. Smartphones can send this information to a
centralized server through cellular networks. This message
overhead should be low, because it contains only a number
and two bytes should be enough for the most of the cases.
During the immunizations, the medical staff use the most
recent information to get a sorted list of all students and
then select from this list the student to be vaccinated for
the next minute.

We plot the evolution of the number of infected individuals
during the one-week simulated period in Figure 1 for various
immunization policies, with different infection probabilities,
immunization start conditions, and initial infections. Dur-
ing the outbreak of an infectious disease, we assume that

the medical staff start immunizations under two conditions:
(1). they have an estimation of the percent of infected indi-
viduals and start immunizations after a certain percentage
of students are infected; (2). the medical staff start immu-
nizations after a certain amount of time, say 24 hours.

In Figure 1, Original plots the curves without immuniza-
tion as the baseline. As we can see from these subfigures, the
number of infected individuals increases much more slowly
from the midnight till the morning, compared with other
periods in a day, mainly because college students move less
frequently during that time period. It is true especially for
the first 2 or 3 days, when a large number of students get
infected. In all figures of this paper, RW-n plots the curves
for random walks with n steps.

Among these 6 subfigures, Figures 1a, 1b, and 1c plot the
number of infected individuals with different infection prob-
abilities, 0.003, 0.001 and 0.01, 5 initial infections and im-
munizations after 10% of students are infected. Figures 1d
and 1e plot the cases for immunizations after 24 hours and
30% of infections with 0.003 infection probability and 5 ini-
tial infections. Finally, Figure 1f plots the case with 0.003
infection probability, 10 initial infections and immunizations
after 10% infections. In all these 6 subfigures, RW-10 per-
forms very close to Degree and they all outperform Random.
Compared to Random, the improvement of RW-10 ranges from
14.10% (Figure 1c) to 25.36% (Figure 1b).

4.2.3 Effects of Various Random-Walk Parameters

We also evaluate the performance of random-walk based
immunization with different lengths, probabilities and fre-
quencies of random walks, and plot the simulation results
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Figure 4: Comparison of early detection of outbreaks with randomly selected monitors and those selected using RW-10.

in Figures 2a, 2b and 2c. All the curves in Figure 2 show
the number of infected individuals under random-walk based
immunization with 0.001 infection probability, 5 initial in-
fections and immunizations after 10% infections. As we can
see from these 3 subfigures, we can improve the performance
of random-walk based immunization when increasing the
length of random walks from 1 to 10, increasing the proba-
bility from 0.1 to 0.4, or increasing the frequency from once
every 12 hours to 3 hours. However, we achieve these im-
provements at the expense of higher message overhead.

We plot the message overhead of iWander with different
lengths, probabilities and frequencies of random walks in
Figures 3a, 3b and 3c. There are three types of messages,
probing request and probing response messages for device
discovery, and random-walk probing messages for iWander.
In all these subfigures, the baseline is iWander with 1-step
random walks and smartphones generate random-walk mes-
sages with probability 0.1 every 12 hours. For Degree, all
messages are generated during device discovery and the to-
tal number of messages is 1.26×108 for the simulated period.
The amount of messages generated by iWander is extremely
low, less than 1% of Degree (3.6×105 for RW-10 in Figure 3a
and less than 1.5×105 for RW-1-0.4 in Figure 3b and RW-1-

3h in Figure 3c).

4.2.4 Early Detection of Outbreaks

We can also benefit from iWander for early outbreak de-
tection, which is important to control the spread of infec-
tious diseases [4, 12]. We investigate how to choose a subset
of students whose health conditions are monitored to pro-
vide early detection, similar to the approach in Christakis
and Fowler [4]. Motivated by the observation that monitor-
ing a sample of individuals with high centrality in social-
contact networks could allow early detection of contagious
outbreaks before they happen in the whole population [4],
we propose to choose monitors based on the random-walk
counters maintained by iWander.

We plot the evolution of the number of infected monitors
chosen randomly and based on iWander in Figures 4a, 4b
and 4c with 100, 200, and 400 monitors. In this scenario,
the infection probability is 0.003 and there are 5 initial in-
fections. Smartphones generate random-walk messages with
probability 0.1 every hour. The medical staff choose a group
of monitors based on the random-walk counters reported
at the noon of 2004-03-01. These subfigures confirm that
iWander does offer early outbreak detection, compared with
the random selection scheme. For example, if we draw the

conclusion that an outbreak is occurring when 60% of the
monitors are infected, we can detect the outbreak around 21
hours earlier.

5. FACILITATING INFORMATION

DISSEMINATION
In this section, we illustrate how to benefit from iWander

for target-set selection of information dissemination.

5.1 Target-Set Selection Using RandomWalks
Motivated by the importance of influence maximization in

traditional social networks, in our previous work we study
the target-set selection problem for information dissemina-
tion in mobile social networks [16]. We leverage opportunis-
tic communications and social participation to facilitate in-
formation dissemination and thus reduce the amount of data
traffic over 3G networks. We also propose a centralized
heuristic algorithm based on the regularity of human mo-
bility, which requires the complete social-contact graph of a
given time period and shares the same computational inef-
ficiency as the original greedy algorithm by Kempe, Klein-
berg, and Tardos [17].

In this paper, we leverage the random-walk counters of
iWander to select target users without requiring global net-
work structure and thus design a distributed solution for the
target-set selection problem. Smartphones attached with
mobile users run iWander in the background and periodically
report their random-walk counters to a centralized server of
information service providers. The providers then sort all
users based on these counters and then choose the top-k
users into the target set. In this scenario mobile users not in
the target set can also help to propagate information once
they receive it from either target users or others.

The process of information dissemination in mobile so-
cial networks is mainly determined by user behaviors. Usu-
ally, smartphones can start the exchange of information af-
ter they know each other through periodic device discov-
ery. A key concept in the target-set selection problem is
the information dissemination probability and it is defined
as the probability p that information propagates among mo-
bile users after each device discovery. The value of p may be
affected by several factors, including status of mobile users
and their privacy concerns. Mobile users with high levels
of privacy concerns or those who are very busy with their
work may have a low probability to involve in information
dissemination process. Similar to the transmission of in-
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Figure 5: Comparison of the number of infected users for four target-set selection schemes with different values of p.

fectious diseases, given the value of p, the probability that
two mobile users with a 60-second device discovery inter-
val can exchange information during a t-second contact is
1 − (1 − p)⌊t/60⌋.

We note that the purpose of target-set selection for mo-
bile information dissemination is different from targeted im-
munization, although the usage of random-walk counters is
similar in these two applications. For targeted immuniza-
tion, we want to vaccinate all influential individuals as early
as possible. For target-set selection, if two influential mobile
users spend most of their time together, a good choice may
be selecting only one of them into the target set. Moreover,
as we will show in Section 5.2.2, adding non-influential users
into the target set can increase the number of infected users
for large target sets.

5.2 Performance Evaluation
We develop another trace-driven simulator also in C, us-

ing the same Dartmouth data set [19], to evaluate the per-
formance of random-walk based target-set selection. In this
simulator, we assume that the underlying wireless commu-
nication is reliable. We have measured the performance
of Bluetooth-based opportunistic communications on Nokia
N900 smartphones, such as the device discovery probabil-
ity [16]. We are currently working on a packet-level simula-
tor to take into account the low layer issues, including the
failure of random-walk probing messages and the transmis-
sion of data packets in information dissemination.

5.2.1 Simulation Setup

The simulator first generates the contacts trace of mobile
users under the same assumption that they are in contacts
if their wireless devices are associated with the same access
point. It then replays the contact events for the given infor-
mation dissemination period, from 6:00PM to 10:00PM on
2004-03-01.5 Based on the pre-configured information dis-
semination probability, the simulator determines randomly
whether a user can receive information from peers after each
device discovery. We also call the users that can receive in-
formation before delivery deadline infected users. Usually,
information providers will send information to uninfected
users at the end of dissemination period, to guarantee that
every user can finally receive the delivered information [16].

5
We have also evaluated other information dissemination peri-

ods with different durations and got similar results with those
presented in this paper.

We compare the performance of random-walk based target-
set selection, RW-1, with random selection, Random, and the
degree-based selection, Degree. The interval of device dis-
covery is 60 seconds, which means that smartphones have
the chance to start the exchange of information every 60
seconds. Similar to degree-based immunization, Degree also
uses the number of other smartphones that a smartphone
has contacts with as the metric to select target users. For
RW-1, smartphones generate 1-step random-walk messages
of iWander with probability 0.1 every hour. RW-1 and De-

gree choose target users based on the updated random-walk
counters and the number of contacts of smartphones at the
beginning of information dissemination period.

5.2.2 The Number of Infected Users

We plot the number of infected users I for RW-1, Random
and Degree in Figure 5. Suppose the number of subscribed
users is n, the amount of reduced mobile data traffic will be
n − (k + (n − I)) = I − k [16]. We run the simulation 1,000
times and report the average values with standard devia-
tions. The information dissemination probability p is 0.01,
0.05 and 0.005 for Figures 5a, 5b and 5c. We vary the size
of target set from 10 to 2,000. As we can see from these
subfigures, RW-1 and Random outperform Degree when the
size of target set is larger than 10. RW-1 performs better
than Random for small target sets. For example, for a tar-
get set with 50 users, RW-1 can deliver information to 51%
more users than Random (667 vs. 441) when p is 0.005. The
improvement is 37% when p is 0.01 (1054 vs. 772) and 14%
when p is 0.05 (1863 vs. 1639).

The performance of RW-1 becomes worse than Random when
the size of target set is larger than 1,000. One of the possi-
ble reasons is that non-influential users (i.e., users with low
centrality in social-contact networks) also play an important
role in information dissemination. These users are called
vagabonds in Zyba et al. [36], which demonstrates that un-
der certain circumstances the effectiveness of information
dissemination in mobile social networks predominantly de-
pends on the number of vagabonds. When the size of tar-
get set is large, Random has a higher probability to select
more vagabonds into the target set, who may have very lit-
tle chance to receive information before delivery deadline.
However, Degree and RW-1 select only mobile users with high
centrality into the target set and ignore these vagabonds.

To verify this possible reason, we modify RW-1 by selecting
90% of target users with low centrality from the end of the
user list sorted by random-walk counters. We call this en-
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Figure 6: Comparison of the ratio between the number of infected users I and the size of target set k for three target-set
selection schemes with different values of p. Only target users can propagate information to others.
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Figure 7: Comparison of delivery delay for 4 target-set selection schemes with different values of p.

hanced scheme Mix-1, which also uses 1-step random walks.
The three subfigures in Figure 5 show clearly that Mix-1

outperforms Random for large target sets. We tried other dif-
ferent percentages of non-influential target users and these
variations perform very close to each other.

We also evaluate the performance of these schemes for an-
other scenario where only target users are willing to prop-
agate information to others. We show the results of only
RW-1, Random, and Degree with k ranging from 50 to 1,000
in Figure 6 for clarity. These subfigures plot the ratio be-
tween the number of infected users, I and k for different
target-set sizes. In this uncooperative scenario, RW-1 per-
forms much better than Random and Degree for small target
sets. For example, when p = 0.05 and k = 100, the improve-
ment of this ratio is 51% and 85% compared with Random,
and Degree. However, for the cooperative scenario, the im-
provement under the same condition in Figure 5 is only 9%
(Random) and 42% (Degree). For large target sets, Random
performs very close to RW-1 because in these cases Random

has more chances to select influential mobile users into a
target set.

Differently from targeted immunization, increasing the
values of q, L, or ∆T has limited impact on the perfor-
mance of random-walk based target-set selection. We omit
these results due to the limited space.

5.2.3 Delivery Delay

We finally compare the delivery delay of these four target-
set selection schemes for the cooperative scenario. We set
the delivery delay of target users to be 0 and the users who
cannot receive information before delivery deadline to be

10,800 seconds, the same as the duration of information dis-
semination period. We plot the delivery delay for different
information dissemination probabilities in Figure 7. Sim-
ilarly to the observation from Figure 5, RW-1 outperforms
Random for small target sets and Mix-1 outperforms Random

for large target sets, in terms of delivery delay. Moreover,
they all perform better than Degree when the size of target
set is larger than 50.

In summary, when information service providers can de-
liver information directly to only a small number of users,
we should use the pure random-walk based target-set se-
lection policy. However, the enhanced scheme that mixes
both influential and non-influential users into the target set
is preferable when it is possible to deliver information to a
large number of users directly.

6. CONCLUSION
In this paper, we propose a lightweight and distributed

protocol, named iWander, to identify influential mobile users
who have high centrality in their social-contact networks.
iWander leverages fixed-length random walks and runs in
the background of smartphones attached to mobile users. It
estimates the centrality of individuals based on the number
of times their smartphones are visited by random walks.
We evaluate the performance of iWander using trace-driven
simulations for two applications, targeted immunization of
infectious diseases and target-set selection for information
dissemination.

Our simulation results show that the proposed random-
walk based immunization outperforms random immuniza-
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tion and performs very close to degree-based immunization,
but generating only less than 1% of its message overhead.
For the information dissemination application, the proposed
random-walk based target-set selection performs better than
random selection for small size of target set and another pro-
posed scheme that chooses also users with low centrality into
the target set outperforms random selection when the size
of target set is large.

We are exploring the design space of device discovery
to further reduce the message overhead of iWander. We
also plan to evaluate its performance using other real-world
human-contact traces [31].
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[8] Z. Dezső and A.-L. Barabási. Halting viruses in scale-free
networks. Physical Review E, 65(5):055103, May 2002.

[9] E. W. Dijkstra and C. S. Scholten. Termination Detection for
Diffusing Computations. Information Processing Letters,
11(1):1–4, Aug. 1980.

[10] P. Domingos and M. Richardson. Mining the Network Value of
Customers. In Proceedings of SIGKDD 2001, pages 57–66,
Aug. 2001.

[11] N. Eagle, A. S. Pentland, and D. Lazer. Inferring friendship
network structure by using mobile phone data. Proceedings of
the National Academy of Sciences, 106(36):15274–15278, Sept.
2009.

[12] S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe,
A. Srinivasan, Z. Toroczkai, and N. Wang. Modelling Disease
Outbreaks in Realistic Urban Social Networks. Nature,
429(6988):180–184, May 2004.

[13] S. L. Feld. Why Your Friends Have More Friends Than You Do.
American Journal of Sociology, 96(6):1464–1477, May 1991.

[14] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt.
Micro-Blog: Sharing and Querying Content Through Mobile
Phones and Social Participation. In Proceedings of MobiSys
2008, pages 174–186, June 2008.

[15] M. Grossglauser and D. N. C. Tse. Mobility Increases the
Capacity of Ad Hoc Wireless Networks. IEEE/ACM
Transactions on Networking, 10(4):477–486, Aug. 2002.

[16] B. Han, P. Hui, V. S. A. Kumar, M. V. Marathe, J. Shao, and
A. Srinivasan. Mobile Data Offloading through Opportunistic
Communications and Social Participation. IEEE Transactions
on Mobile Computing, 11(5):821–834, May 2012.

[17] D. Kempe, J. Kleinberg, and Éva Tardos. Maximizing the
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[31] M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W.
Feldman, and J. H. Jones. A high-resolution human contact
network for infectious disease transmission. Proceedings of the
National Academy of Sciences, 107(51):22020–22025, Dec.
2010.

[32] T. Small and Z. J. Haas. The Shared Wireless Infostation
Model - A New Ad Hoc Networking Paradigm (or Where there
is a Whale, there is a Way). In Proceedings of MobiHoc 2003,
pages 233–244, June 2003.
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