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Abstract—In wireless networks, radio-map based locating tech-
niques are commonly used to cope the complex fading feature of
radio signal, in which a radio-map is built by calibrating received
signal strength (RSS) signatures at training locations in the offline
phase. However, in severe hostile environments, such as in ship
cabins where severe shadowing, blocking and multi-path fading
effects are posed by ubiquitous metallic architecture, even radio-
map cannot capture the dynamics of RSS. In this paper, we intro-
duced multiple feature radio-map location method for severely
noisy environments. We proposed to add low variance signature
into radio map. Since the low variance signatures are generally
expensive to obtain, we focus on the scenario when the low
variance signatures are sparse. We studied efficient construction
of multi-feature radio-map in offline phase, and proposed feasible
region narrowing down and particle based algorithm for online
tracking. Simulation results show the remarkably performance
improvement in terms of positioning accuracy and robustness
against RSS noises than the traditional radio-map method.

I. INTRODUCTION

For on-ship wireless sensor networks [1], [2], [3], one of the
most important and desirable applications is to provide real-
time location information for crews, passengers or facilities by
using the sensor network as a wireless locating infrastructure.
When the ships seal on the sea, the location information will
be fundamental context for safety-oriented applications or on-
ship facility management.

For locating using sensor networks, wireless location tech-
niques have attracted great research attentions in recent years.
Various locating techniques have been developed using differ-
ent implementation techniques, but it is still challenging to find
a balance between the positioning accuracy and the system
cost. Some positioning techniques provide good positioning
accuracy, such as TOA (Time of Arrival) [4] or TDOA (Time
Difference of Arrival)[5] based localization methods, but these
methods generally need special hardware, such as ultrasound
or acoustic transducers, which need additional hardware costs.
Some other methods are inexpensive, such as RSS (Radio
Signal Strength) based wireless location [6], because RSS
information is free-of-charge. But these inexpensive methods
provide only coarse-grained positioning accuracy.

A way to increase the positioning accuracy by using RSS is
to exploit a radio-map based locating method [7], [8], which
trains the RSS fingerprints of all cared locations in an offline
calibration phase, to construct a radio map; then the online
measured RSS of the target is searched in the radio-map to find
the location whose RSS signature matches best to the online

RSS measurement. The location is chosen as the position
estimation of the target. Probabilistic radio-maps and Bayesian
reasoning methods can be applied to improve the positioning
accuracy.

In our previous works, we have studied both ultrasound
TOA-based locating systems [4], [9] and radio-map based
locating systems in buildings [10]. But when we developed
and tested these systems on ships, dramatic performance
degradation was found because of the signal blocking effects
by the metallic architecture of the cabins. The multi-path,
shadowing, and blocking effects are serious. The received
signal strength can be very weak even when the receivers are
close to a transmitter but are not in line of sight (NLOS).
To deal with this problem, in this paper, we propose efficient
methods to construct multi-feature radio-map to overcome the
hostile environments for wireless localization.

To be tolerant to the noise of RSS, we proposed hybrid
radio-map integrating both low-variance signature and the RSS
signature. More particularly, we deploy ultrasound beacons
sparsely in the sensing field which contributes sparse, by
low-variance time-of-arrival (TOA) information of ultrasound
from the transmitter to receiver. We show that by integrating
these sparse low variance information into radio-map, it can
dramatically improve the positioning accuracy of Radio-map
based positioning systems.

Utilizing the lower variance signature, we proposed a new
efficient method to offline calibrate hybrid radio-maps without
the pain of manual calibration. Then in the online phase,
instead of simple matching algorithm, we propose to use the
low variance signature to narrow down the feasible space
firstly, and then use particle filter based algorithm to efficiently
and accurately tracking the mobile targets. Since the low
variance beacons are very sparse, only a little additional costs
are needed, but the hybrid radio-map system can provide dra-
matical improvement in positioning accuracy and reliability.

The remainder sections are organized as following. Back-
ground and related works are introduced in Section 2. We
introduce the hybrid radio-map model construction and online
tracking algorithm in Section 3. Simulation based evaluation
results are introduced in Section 4. Conclusions are drawn in
Section 5.



II. BACKGROUND AND RELATED WORKS

Using wireless networks as indoor locating infrastructure,
there are different ways to utilize the wireless signal. One
way is to use the propagation model of RF signal as a ranging
reference. Some research works studied the RF attenuation
model in indoor environments [6], so that distances from a
target to a set of beacons can be inferred from the amount of
RF attenuations. Then least square estimation or multilatera-
tion methods [11] are applied to the distance set to estimate
the position of the target. Although this method is simple
to calculate, the positioning accuracy is coarse, because even
empirical propagation model cannot capture the dynamics of
indoor environments.

A. Radio-map Locating Method

To improve the positioning accuracy, pattern-matching
based approach was proposed to model the diverse fading
signatures of radio signal [7][12][13]. This method contains
an offline and an online phase. In offline phase, n training lo-
cations are selected in the sensing field, which are denoted by
L = {l1, l2, · · · , ln}. Suppose there are m beacons (WiFi APs
or wireless sensors) in the sensing field, which are denoted by
B = {b1, b2, · · · , bm}. In the training phase, the RSS values
of all beacons at each training location li will be measured
over a period of time, so that a signal signature vector of
location li is constructed as ri = {ri,1, ri,2, · · · , ri,m}. When
only mean value of RSS is considered, ri,j represents the
average RSS value from bj , j = 1, · · · ,m. When signature
distribution is considered, ri,j can be probabilistic density
function (pdf) of RSS from bj . The signature vectors of all
training locations are stored as a database, called radio-map,
denoted by R = {r1, r2, · · · , rn}.

In the online positioning phase, a mobile target measures
its current RSS vector s = {s1, s2, · · · , sm} and finds the
best match (Euclidean distance in signal space) of s in R
to estimate the position of the target. In mean value type
radio-map, matching can be conducted by Nearest Neighbor
algorithm[13]. In pdf type radio-maps, maximum likelihood
estimation and Bayesian estimation can be applied. When
radio-map is trained in fine granularity and the environments
are not highly dynamic, the positioning accuracy of radio-map
based method can be in 2-3 meters resolution.

But the positioning accuracy may become worse in hostile
environment such as in ship cabins, where the shadowing and
multi-path fading effects are severe and the RSS signatures
change over time. Another problem is that the radio-map
calibration process is general time consuming and laborious,
which generally needs deliberate training method [8].

B. Locating by Time of Arrival (TOA)

A more accurate approach is to utilize the speed difference
of signal propagation to measure distances from transmit-
ters to receivers, so as to conduct indoor locating more
accurately[4][5]. Ultrasound and acoustic signals are the gen-
erally exploited low speed signals. In the case of measuring
time of arrival, the transmitter broadcasts low-speed signal

(ultrasound or acoustic) and RF signal simultaneously. The
receiver receives the RF signal to synchronize timer with the
transmitter and then measures the traveling time of the low-
speed signal to estimate distance from the transmitter. Only
when a receiver j is within the communication range of the
low speed signal (denoted by R, and generally small) of the
transmitter i, can a distance di,j be measured. When a set of
distances, which is denoted by Di = {di,j} are obtained, least
square estimation or multilateration is applied for position cal-
culation. TOA-based positioning can provide centimeter level
positioning accuracy[9]. But because the short transmission
range of the low speed signals (ultrasound and acoustic), and
the requirement of more than three non-collinear distances
for location estimation, TOA-based positioning requires dense
deployment of TOA beacons, which poses high cost to the
positioning system.

III. HYBRID RADIO-MAP LOCATING METHOD

Note that the radio-map based and TOA-based wireless
locating methods both have advantages and shortcomings. We
propose a method to integrate their advantages and to avoid
their shortcomings. Our proposed method is not specifically
designed for integrating RSS and TOA signatures, it is actually
designed for integrating RSS with a low variance signature
such as TOA, time difference of arrival (TDOA) etc. There-
fore, in the following model, we call the second signature low
variance signature (LVS).

Let’s consider a hybrid positioning system containing a
set of RF beacons and some sparsely deployed LVS bea-
cons in the sensing field. The RF beacons are denoted by
B = {b1, b2, · · · , bm} and the LVS beacons are denoted by
V = {v1, v2, · · · , vg}.

In offline phase, some training locations L =
{l1, l2, · · · , ln} are selected in the sensing field. At each
training location, after a training target listens to beacon
signals for a period of time. It can learn a set of beacon
signatures sl = {d1,l, · · · , dg,l, s1,l, · · · , sm,l}, where di,j and
si,j are the LVS signature from vj and RSS signature from
bj respectively. We consider the signatures are calculated by
taking average on the collected signatures in the training time.
We assume the LVS signature is distance-based signature,
such as TOA or TDOA. An identical variance δ is assumed
for all the LVS signatures. We store the multi-feature vector
as the signature of location l.

In online phase, a target can online detect a set of beacon
signals s

′
= {d′

1, · · · , d
′

g, s
′

l, · · · , s
′

m}. Note that, for the
limited communication range of beacons, many entries of s

′

are zero. We design efficient algorithm to match s
′

against the
radio map to find a location l′ whose radio signature has the
least distance to s

′
as the position estimation of the target.

Since the mobile target has limited moving speed, its histor-
ical track implies important clues for its future position. There-
fore, based on the online hybrid radio-map locating scheme,
we designed particle filter algorithm to more accurately track
the movements of the mobile targets.
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Fig. 1. An example of hybrid indoor locating system
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Fig. 2. Routine of proposed methods for hybrid indoor locating system

We use example in Fig.1 to illustrate the scenario of hybrid
indoor locating system. The dashed curve is the communica-
tion range of the LVS beacons. Note that the communication
ranges of beacons are irregular in indoor environments.

The overview of this paper for calibrating, locating and
tracking using hybrid radio-map is shown in Fig.2. With the
advantage of hybrid beacons, we at first present a method to
fast calibrate the hybrid radio-map. It is based on the controlled
tracks of the target movements. Then in the online phase,
we presented an algorithm to assign radio signature different
priorities to list a set of possible positions of the targets by
matching the online measured signatures of targets against
the radio map. We then present particle filter based target
tracking algorithm to utilize the historical position information
to accurately track the mobile targets.

A. Fast Calibration of Hybrid Radio-map

Radio-map calibration is known time-consuming and labo-
rious, which is a major limitation of radio-map based locating.
By utilizing the advantages of hybrid beacons, we present an
efficient method for fast radio-map calibration.

The LVS beacon, whether using TOA or TDOA signature
can provide ranging information from the target to the beacon
with good precision. So that in the offline calibration phase,
instead of manually assigning location labels to the signal
signatures, we design controlled tracks for the training targets
to collect hybrid signatures and then use algorithm to calculate
the location labels for the hybrid signatures. The working flow
of fast calibration method is as following:

1) Feature points selection: we select some feature

points in the sensing field, which are denoted F =
{f1, f2, · · · , fh}. Let h denote the number of feature
points. The rule to select the feature points is that
the path between two neighboring feature points is a
directed line. We manually assign location labels to the
hybrid signatures of these feature points.

2) Controlled training paths: A training target is moved
along the paths that connecting the feature points. Each
segment of its movement is a line, and the whole path
can be represented by a set of feature points pi =
{fi,1, fi,2, · · · , fi,ei}, where fi,j ∈ F, j = 1, · · · , ei.
Since we know the start point and end point of each
line segment, we can infer the location labels of all the
intermediate points.

3) LVS-aided fast calibration: to calibrate the location
label of each point on the line segment, we adopt
two methods based on whether the point is in the
communication range of the LVS beacon.

Case 1: When the point whose location label need to be
calibrated is in the communication range of a LVS beacon,
since we know the starting point and ending point of this
line segment and know the distance from this point to a LVS
beacon (provided by the LVS signature), we can calculate the
location label of this point precisely. Let (xs, ys) and (xe, ye)
be the coordinates of the starting point and end point of the
line segment that the point is on. The problem of calibrating
the location label of the point is to find a point on this line
who has distance di to the LVS beacon vi. This point can be
calculated by:{

y = ye−ys
xe−xs

x+ ysxe−yexs

xe−xs√
(y − yvi)

2
+ (x− xvi)

2
= di

(1)
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Fig. 3. Example of LVS-aided fast calibration method.

This equation array generally contains two ambiguous so-
lutions. But from the moving direction of the target, we can
easily disambiguate to determine an unique solution. As shown
by the example in Fig.3, p1 is a point on a line segment that
is in the communication range of a LVS beacon. We want to
assign location label to the RSS signatures measured at this
point. There are two intersecting points of the line with the
circle centered at vi with radius d1. They are both solutions of
Eqn.(1). But since the target is moving from f1 to f2, the first
point with distance equal to d1 is the location of p1, which
disambiguate the problem.



Case 2: When the point whose location label need to
be calibrated is out the communication range all LVS bea-
cons, because we know the starting point and ending point
of the line segment, we can infer its location reasonably
by linear interpolation. Suppose the training target moves
in constant speed. If the times at the starting point, end-
ing point and the point to be calibrated are ts, te, tp re-
spectively, then the location of the point can be estimated
by
(
xs +

(tp−ts)(xe−xs)
te−ts , ys +

(tp−ts)(xe−xs)
te−ts

)
. p2 in Fig.3 is

such a case. Its position can be inferred by interpolation based
on the location of f2 and f3.

B. Prioritized Online Positioning Algorithm

After the hybrid radio-map is calibrated in the offline phase,
the system turns to online phase to track the positions of
mobile targets. A target can detect a set of beacon signals
s
′
= {d′

1, · · · , d
′

g, s
′

1, · · · , s
′

m}. Because of the sparse deploy-
ment of the LVS beacons and there limited communication
range, most of the LVS entries are zero. In case the target is
out the communication range of all the LVS beacons, all the
LVS entries are zero.

Because the LVS signature has much less variance than that
of the RSS signature, only if there is one LVS signature in
s
′
, the LVS signature will provide very valuable information

for target position estimation. Instead of simply matching the
online measured signature in the radio-map, we present a
prioritized approach to always process the LVS signatures first.

1) Characterize feasible region by LVS signature. A non-
zero LVS signature d

′

i indicates that the distance from
the target to vi is a random variable with distribution
N(d

′

i, δ). Since δ is small, we can think the target is on
a circle with distance at most d

′

i + 3δ, at least d
′

i − 3δ
around the beacon vi. This region is called feasible
region, where the target must locate in. The feasible
region can dramatically narrow down the searching
space for target position.

2) Find possible locations of target in the feasible region.
In the second step, the online measured RSS signature
is compared to the trained RSS signature of locations
in the feasible region. The locations whose trained RSS
signatures match well with the online measurement is
elected as possible positions of the target. Let Le denote
the possible positions of the target. Let set F include the
locations in the feasible region. For all l ∈ F, l’s trained
RSS signature is compared to the RSS signature in s

′
.

If ‖si,l − s′i‖2 < H , i.e., the RSS distance is less than
a threshold, l is added into the possible position set Le.

Le = ∪l,∀l ∈ F, if

(
m∑
i=1

‖si,l − s′i‖2 < H

)
(2)

H is a RSS-distance threshold which rules out the loca-
tions whose RSS signatures don’t match RSS signature
of s

′
.

An example of the prioritized positioning process is shown
in Fig.4. The green circle is the feasible region characterized

by the LVS signature. The color in the map shows whether
the RSS-distance of the location is smaller than H . Only the
locations in brown color have RSS-distance smaller than H .
Among them, only the locations which are also in the feasible
region are added into the possible target position set, which
are marked by a “X”.
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Fig. 4. Example of prioritized online positioning algorithm.

C. Particle Filter based Target Tracking

Note that the online positioning algorithm provide a set of
possible positions instead of a unique position estimation. It is
designed in this way because the RSS signature is unreliable. If
we determine a unique location using the RSS signature, large
locating error maybe incurred. Therefore, we keep a set of
possible positions at each time and proposed particle filtering
based algorithm to find the optimal moving track of the target.
Let’s denote the possible locations of the target calculated at
time t is in location set L(t).

1) Particle Filter: Since every target has an ID, we only
need to consider the case of tracking one target. At any time
t, we generate K particles (or candidate trajectories), in the
possible locations of the target. Let’s denote the kth particle
zk[t]. At the next time instant t + 1, we generate m > K
position candidates uniformly at random in L(t) for zk[t +
1]. We now have mK candidate trajectories (particles). Pick
the K particles with the best cost functions to get the set
zk[t+ 1], k = 1, ,K, where the cost function is to specified
shortly. Repeat until the end of the time interval of interest.
The final output is simply the particle (trajectory) with the best
cost function.

2) Cost Function: The cost function is designed based on
the fact that the mobile target has restriction in its moving
speed (a target will not change speed suddenly). Therefore,
we proposed an cost function that penalizes changes in the
vector velocity. When a candidate position zk(t+1) is chosen
from the current possible position set L(t+1), the increment
in position zk(t + 1) − zk(t) is an instantaneous estimate of
the velocity vector at time t. The cost at time t is therefore
defined as the norm squared of the difference between the



velocity vector estimates at time t and t− 1. This is:

ck[t] = ‖(zk[t+ 1]− zk[t])− (zk[t]− zk[t− 1])‖2

= ‖zk[t+ 1] + zk[t− 1]− 2zk[t]‖2
(3)

IV. SIMULATION AND NUMERICAL RESULTS

We conducted extensive simulations to verify the advantages
of using hybrid radio-map and particle filter than than the
traditional RSS-based radio-map method.

A. Simulation Settings

The simulation is conducted in Matlab 2012. We provide
the code online at [14]. We simulate the an environment of
120m*80m, in which 10 RSS beacons are randomly deployed.
The radio propagation model used in simulation is [15]:

Pr(d) = Pt − Pl(d0)− 10ηlog10

(
d

d0

)
+N (0, σ) (4)

We choose Pt = 100dbm, d0 = 1m, η = 3, and σ = 3 in
the following simulation results. Note that since σ = 3, the
variance of RSS can be more serious than general indoor RSS
models [13].

Six TOA beacons are deployed in grid topology. They are
activated only when TOA signature is used. The communica-
tion radius of each TOA beacon is set to 25m, so that each
point in the sensing field can almost be covered by one TOA
beacon. In the offline phase, the training points are selected
in 1m∗1m granularity. Hybrid or RSS radio-maps are trained
respectively based on the positioning algorithms. In online
phase, a target moves in the sensing field following a sin-wave
path. {

x = W
T t

y = H
2

(
sin
(
2πx
W

)
+ 1
) (5)

W and H are the width and height of the sensing field (equal
to 120 and 80 respectively in our setting). T is the length
of the simulation , so that the target can finish a sin-wave in
period T .

We evaluated and compared three kinds of positioning
algorithms:

1) Hybrid radio-map with particle filter, in which TOA
beacons are activated. Fine-grained hybrid radio-map
are trained offline (in 1m*1m granularity) and location
algorithms introduced in Section III-B, Section III-C are
evaluated.

2) Hybrid radio-map without particle filter. TOA beacons
are activated. RSS radio-map are trained offline in
1m*1m granularity. Location algorithm introduced in
section III-B is used by limiting the number of posi-
tioning candidates to 1, without using particle filter.

3) RSS radio-map without particle filter. TOA beacons are
inactivated. RSS radio-map are trained offline in 1m*1m
granularity. The position with the least RSS signature
difference to the online measured RSS is estimated as
position of the target.

B. Effectiveness of Hybrid Radio-map and Particle Filter

We at first visually show the effectiveness of using hybrid
radio signature.

1) Narrow down feasible region: One important contribu-
tion of the TOA signature is to provide low variance position
estimation and dramatical search space narrowing down. As
shown in Fig.6a, the red square points are possible position
candidates generated by least RSS-distance. We can see the
estimated possible positions are highly scattered in the sensing
field for the unreliability of the RSS signal. Fig.6b shows how
the TOA-signature helps to narrow down the feasible region.
Since the possible positions must be in the feasible region (the
circle area), the possible positions are filtered.
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Fig. 6. Search space narrow down by TOA signature

2) Improve the positioning accuracy: Fig.5 compares dif-
ferent algorithms to show the improvement of positioning
accuracy by the hybrid radio-map and particle filter algorithms.
The red sin-wave curves in the figures shows the ground truth
of the target movement. Fig.5(a) illustrates the target tracking
performance when using hybrid radio-map plus particle filter
tracking algorithm. The algorithm can provide accuracy target
tracking performance. Fig.5(b) shows the tracking results
when only hybrid radio-map is used without the particle
filter algorithm. Instead of particle filter, at each step, the
candidate position which matches best to the hybrid signature
of measurement is chosen as the position estimation. We can
see the positioning performance degrades much than that in
Fig.5(a). Fig.5c shows the tracking results when only RSS-
based radio-map is used without using TOA signature nor
particle filter. At each step, the candidate position in the
radio-map which matches best to RSS-signature of target
is chosen as the position estimation. We can see that the
tracking performances become much worse than the prior two
approaches.

Fig.7 uses cumulative probability distribution of position-
ing error to further illustrate the locating performance im-
provement achieved by hybrid radio-map and particle filter
algorithms. The results are based on the average positioning
errors of 20 simulations. It show that the method of hybrid
radio-map plus particle filter performs the best, which is a little
better than the method of using hybrid radio-map but without
particle filter. The difference of them is that the latter method
may has a small portion of results having large positioning
error, which is not robust. Both of these two methods are
much better than the traditional methods using RSS-based
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radio-map. The results show the significance of the sparse
low-variance signature for the improvement of positioning
accuracy.

V. CONCLUSION

This paper presents hybrid radio-map method for improve
the positioning accuracy of RSS-based wireless indoor lo-
calization. It presents efficient methods to utilize the sparse,
low variance signature to construct hybrid radio-map, and
presents particle filter based algorithm for accurate online
target tracking. Simulation results verified that by using very
limited TOA beacons, the hybrid radio-map method can
dramatically improve the positioning accuracy of wireless
location systems. We will conduct hardware experiments and
system development in our future work.
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