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ABSTRACT

Reinforcement learning encounters major challenges in multi-agent settings, such
as scalability and non-stationarity. Recently, value function factorization learn-
ing emerges as a promising way to address these challenges in collaborative
multi-agent systems. However, existing methods have been focusing on learn-
ing fully decentralized value function, which are not efficient for tasks requiring
communication. To address this limitation, this paper presents a novel frame-
work for learning nearly decomposable value functions with communication, with
which agents act on their own most of the time but occasionally send messages
to other agents in order for effective coordination. This framework hybridizes
value function factorization learning and communication learning by introducing
two information-theoretic regularizers. These regularizers are maximizing mu-
tual information between decentralized Q functions and communication messages
while minimizing the entropy of messages between agents. We show how to op-
timize these regularizers in a way that is easily integrated with existing value
function factorization methods such as QMIX. Finally, we demonstrate that, on
the StarCraft unit micromanagement benchmark, our framework significantly out-
performs baseline methods and allows to cut off more than 80% communication
without sacrificing the performance. The video of our experiments is available at
https://sites.google.com/view/ndvf.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) are finding applications in many real-
world domains, such as autonomous vehicle teams (Cao et al., 2012), intelligent warehouse sys-
tems (Nowé et al., 2012), and sensor networks (Zhang & Lesser, 2011). To help address these
problems, recent years have made a great progress in MARL methods (Lowe et al., 2017; Foerster
et al., 2018; Rashid et al., 2018; Jaques et al., 2019). Among these successes, the paradigm of cen-
tralized training with decentralized execution has attracted much attention for its scalability and the
ability to deal with non-stationarity.

Value function decomposition methods provide a promising way to exploit such paradigm. They
learn a decentralized Q function for each agent and use a mixing network to combine these local Q
values into a global action value. In previous works, VDN (Sunehag et al., 2018), QMIX (Rashid
et al., 2018), and QTRAN (Son et al., 2019) have progressively enlarged the family of functions
that can be represented by the mixing network. Despite their increasing ability in terms of value
factorization representation, existing methods have been focusing on learning full decomposition,
where each agent acts upon its local observations. However, many multi-agent tasks in the real world
are not fully decomposable – agents sometimes require information from other agents in order to
effectively coordinate their behaviors. This is because partial observability and stochasticity in a
multi-agent environment can exacerbate an agent’s uncertainty of other agents’ states and actions
during decentralized execution, which may result in catastrophic miscoordination.
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To address this limitation, this paper presents a scalable multi-agent learning framework for learn-
ing nearly decomposable value functions with communication, with which agents act on their own
most of the time but occasionally send messages to other agents in order for effective coordina-
tion. This framework hybridizes value function factorization learning and communication learning
by introducing an information-theoretic regularizer for maximizing mutual information between de-
centralized Q functions and communication messages. Messages are parameterized in a stochastic
embedding space. To minimize communication, we introduce an additional information-theoretic
regularizer for minimizing the entropy of messages between agents. With these two regularizers,
our framework implicitly learn when, what, and with whom to communicate and also ensure com-
munication to be both expressive (i.e., effectively reducing the uncertainty of agents’ action-value
functions) and succinct (i.e., only sending useful and necessary information). To optimize these
regularizers, we draw inspiration from variational inference and derive a tractable lower bound ob-
jective, which is easily integrated with existing value function factorization methods such as QMIX.

We demonstrate the effectiveness of our learning framework on the StarCraft II1 unit micromanage-
ment benchmark used in Foerster et al. (2017; 2018); Rashid et al. (2018); Samvelyan et al. (2019b).
Empirical results show that it significantly outperforms baseline methods and allows to cut off more
than 80% communication without sacrificing the performance. We also observe that agents can ef-
fectively learn to coordinate their actions at the cost of sending one or two bits of messages even in
complex StarCraft II tasks.

2 BACKGROUND

In our work, we consider a fully cooperative multi-agent task that can be modelled by a Dec-
POMDP (Oliehoek et al., 2016) G = 〈I, S,A, P,R,Ω, O, n, γ〉, where I ≡ {1, 2, ..., n} is the
finite set of agents. s ∈ S is the true state of the environment from which each agent i draw an
individual partial observation oi ∈ Ω according to the observation function O(s, i). Each agent
has a an action-observation history τi ∈ T ≡ (Ω × A)∗. At each timestep, each agent selects an
action ai ∈ A, forming a joint action a ∈ An, resulting in a shared reward r = R(s,a) for each
agent and the next state s′ according to the transition function P (s′|s, a). The joint policy π induces
a joint action-value function: Qπtot(s,a) = Es0:∞,a0:∞ [

∑∞
t=0 γ

trt|s0=s,a0=a,π], where τ is the
joint action-observation history and γ ∈ [0, 1) is the discount factor.

Learning the optimal action-value function encounters challenges in multi-agent settings. On the
one hand, to properly coordinate actions of agents, learning a centralized action value function Qtot
seems a good choice. However, such a function is difficult to learn when the number of agents is
large. On the other hand, directly learning decentralized action-value function Qi for each agent
alleviates the scalability problem (Tan, 1993; Tampuu et al., 2017). Nevertheless, such independent
learning method largely neglects interactions among agents, which often results in miscoordination
and inferior performance.

In between, value function factorization method provides a promising way to attenuate such dilemma
by representing Qtot as a mixing of decentralized Qi conditioned on local information. Such meth-
ods has shown their effectiveness on complex task (Samvelyan et al., 2019b).

However, current value function factorization methods have mainly focusing on full decomposition.
Such decomposition reduces the complexity of learning Qtot by first learning independent Qi and
putting the burden of coordinating actions on the mixing networks whose input is all Qi’s and
output Qtot. For many tasks with partial observability and stochastic dynamics, mixing networks
are not sufficient to learn coordinated actions, regardless of how powerful its representation ability
is. The reason is that full decomposition cuts off all dependencies among decentralized action-value
functions and agents will be uncertain about states and actions of other agents. Such uncertainty will
increase as time goes by and can result in severe miscordination and arbitrarily worse performance
during decentralized execution.

1StarCraft and StarCraft II are trademarks of Blizzard EntertainmentTM.
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Figure 1: Schematics of our approach. The message encoder generates an embedding distribution
that is sampled and concatenated with the current local history to serve as an input to the local
action-value function. We introduce two regularizers, entropy loss and mutual information loss, to
learn expressive and succinct messages.

3 METHODOLOTY

In this section, we propose to learn nearly decomposable value functions with communication, a
new framework to overcome the miscoordination issue of full factorization methods. Our frame-
work adopts the centralized training and decentralized execution paradigm. During the centralized
training, we assume the learning algorithm has access to all agents’ individual observation-action
histories and global state s. During the decentralized execution, each agent acts based on its learned
action-value function Qi(τi, ai,min

i ) conditioning on its local action-observation history τi and re-
ceived messages min

i . Message communication is also centrally learned and executed in a decen-
tralized manner. Our learning framework is shown in Fig. 1.

In our learning framework, individual action-value functions condition on local action-observation
history and, at certain timesteps, messages from few other agents. We learn such near decomposable
structure via learning minimized communication. We thus expect the communication to have the
following properties:

i) Expressiveness: The message passed to one agent should effectively reduce the uncertainty in its
action-value function.

ii) Succinctness: Agents are expected to send messages as short as possible to the agents who need
it and when necessary.

To learn such a communicating strategy, we draw inspiration from variational inference for its proven
ability in learning structure from data and endow a stochastic latent message space, which we also
refer to as ”message embedding”. Messages are encoded as multi-variate Gaussian distributions
with diagonal covariance in this latent space. Specifically, an encoder fm(mi|τi;θc) conditions on
individual observation-action history is learned and shared among agents. At each timestep, this
encoder outputs a message distribution Mi for each agent i, from which a message mt

i is resampled.
We adopt a point-to-point communication paradigm and mt

i = 〈mt
i1,m

t
i2, ...,m

t
in〉 where message

mij , sampled from the distribution Mij , is the message intended from agent i to agent j.

We impose constraints, which will be discussed in detail in the next section, on the latent mes-
sage embedding to enable agent deciding locally which bits in a message should be sent (from
0 to all) according to their utility in terms of helping other agents make decision. Agent j will
receive an input message min

j that has been cut, on which it conditions the local action-value func-
tion Qj(τj , aj ,min

j ). All the individual Q values are then feed into a mixing network such as in
QMIX (Rashid et al., 2018).

Apart from the constraints on the message embedding, all the components (individual action-value
function, message encoder, and mixing network) are trained end-to-end by the downstream TD loss.
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Thus, our overall objective is to minimize

L(θ) = LTD(θ) + Lc(θc), (1)

where LTD = [r + γmaxa′ Qtot(s
′,a′; θ−)−Qtot(s,a; θ)]

2 (θ− are the parameters of a target
network as in DQN) is the TD loss and θ is all parameters in the model. We now discuss how to get
Lc(θc) to regularize the message embedding.

3.1 MINIMIZED COMMUNICATION OBJECTIVE AND VARIATIONAL BOUND

Introducing a latent variable facilitates the representation of message, but it does not mean that the
messages can reduce uncertainty in action-value functions of other agents. To achieve this goal, we
maximize the mutual information between message Mij and optimal action policy of agent j, Aj ,
Iθc(Aj ;Mij |Tj ,M(-i)j). However, if this is the only objective, the encoder can easily learn to cheat
by giving messages under different histories a representation in different regions in the latent space,
rendering cutting off useless message difficult. A natural constraint to avoid such representation is
the entropy of the messages. Therefore, our objective for message of agent i is to maximize:

Jθc [Mi|Tj ,M(-i)j ] =

n∑
j=1

Iθc(Aj ;Mij |Tj ,M(-i)j)− βHθc(Mij), (2)

where β is a scaling factor trading expressiveness and succinctness and Mij is the message distribu-
tion intended from i to j.

This objective is appealing because it agree exactly with the desiderata that we impose on the mes-
sage embedding. However, applying this objective to our message embedding needs extra efforts
because mutual information and entropy becomes intractable. By introducing a variational approx-
imator, a popular technique from variational toolkit (Alemi et al., 2017), we can construct a lower
bound on the mutual information term in Eq. 2:

Iθc(Aj ;Mij |Tj ,M(-i)j)

≥ ET∼D,Min
j ∼fm(T;θc)

[
−CE

[
p(Aj |T)‖qξ(Aj |Tj ,M in

j )
]]
,

(3)

where Tj is local action-observation history of agent j and T = 〈T1,T2, . . . ,Tn〉 is the joint local
history sampled from the replay bufferD, qξ(Aj |Tj ,M in

j ) is the variational posterior estimator with
parameters ξ. CE is the cross entropy. We share ξ among agents to accelerate learning.

Next we discuss how to minimize the term βH(Mij). Directly minimize the entropy of Gaussian
distribution can cause the variance to collapse to 0. To deal with this possible numeric issue, we set
the covariance to unit matrix and minimize H(Mij)−H(Mij |Ti) instead, where Ti is the random
variable of local history of agent i. This is equivalent becauseH(Mij |Ti) is a multivariate Gaussian
random variable whose entropy is a constant (log(det(2πeΣ))/2, where Σ is the unit matrix). Then
we have:

H(Mij)−H(Mij |Ti) =

∫
p(mij |τi)p(τi) log

p(mij |τi)
p(mij)

dmijdτi. (4)

We use the same technique as in the mutual information term – introducing an variational inference
distribution r(mij) to approximate p(mij), and we can get:

H(Mij)−H(Mij |Ti) ≤
∫
p(mij |τi)p(τi) log

p(mij |τi)
r(mij)

dmijdτi

= ETi∼D [DKL(p(Mij |Ti)‖r(Mij))] .

(5)

This bound holds for any distribution r(Mij). To facilitate cutting off messages, we use unit Gaus-
sian distribution N (0, I). Combining Eq. 3 and 5, we get a tractable variational lower bound of our
objective in Eq. 2:

Jθc [Mi|Tj ,M(-i)j ]

≥ ET∼D,Min
j ∼fm(T;θc)

[
−CE

[
p(Aj |T)‖qξ(Aj |Tj ,M in

j )
]
− βDKL(p(Mij |Ti)‖r(Mij))

]
.

(6)
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We optimize this bound to get a expressive and succinct message embedding. Specifically, we
minimize:

L(θc) = ET∼D,Min
j ∼fm(T;θc)

[
CE
[
p(Aj |T)‖qξ(Aj |Tj ,M in

j )
]

+ βDKL(p(Mij |Ti)‖r(Mij))
]
.

(7)

Intuitively, the first term, which we call the expressiveness loss, guarantees that messages sent can
reduce the uncertainty in action-value functions of other agents. The second term, called succinct-
ness loss, forces messages to get close to unit Gaussian distribution. Since we set covariance of
message embedding to unit matrix, this term actually pushes the mean of messages to the origin of
the latent space. Use this two losses leading to an embedding where useless messages distributes all
near the origin, while messages that can contains information important for decision processes of
other agents occupy other spaces.

Note that loss in Eq. 7 are used to update parameters in message encoder. In the meantime, all the
components (individual action-value function, message encoder, and mixing network) are trained
end-to-end by the TD loss as in QMIX. Thus, the message encoder fm(Mi|Ti;θc) is updated guided
by two gradients: stochastic gradient given by Eq. 6 and the gradient associated with TD loss.

3.2 CUTTING OFF MESSAGES

Our objective compresses messages which can not reduce the uncertainty in action-value functions
of other agents to the origin of the latent message space. This naturally gives us a hint to drop out
meaningless messages – we can order the message distributions according to their means and drop
accordingly. Note that since we adopt diagonal covariance for our message embedding, bits in a
message are independent. We thus make decision bit by bit and send messages with various length.
In this way, such method not only finds out when to communicate (agent keep silence when all bits
are cut), but also what to send (how many bits are sent and their values). Implementation details are
discussed in Appendix B.

4 RELATED WORKS

Deep multi-agent reinforcement learning has witnessed vigorous progress in recent years.
COMA (Foerster et al., 2018), MADDPG (Lowe et al., 2017), and PR2 (Wen et al., 2019) explores
multi-agent policy gradients and respectively address the problem of credit assignment, learning
in mixed environments and recursive reasoning. Another line of research focuses on value-based
multi-agent RL, among which value-function factorization is the most popular method. Three rep-
resentative examples: VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018), and QTRAN (Son
et al., 2019) gradually increase the representation ability of the mixing network. In particular,
QMIX (Rashid et al., 2018) stands out as a scalable and robust algorithm and achieves state-of-
the-art results on StarCraft unit micromanagement benchmark (Samvelyan et al., 2019b).

Communication is a hot topic in multi-agent reinforcement learning. End-to-end learning with dif-
ferentiable communication channel is a popular approach now. Sukhbaatar et al. (2016); Hoshen
(2017); Jiang & Lu (2018); Singh et al. (2019); Das et al. (2019) focus on learning decentralized
communication protocol and address the problem of when and who to communicate. Foerster et al.
(2016); Das et al. (2017); Lazaridou et al. (2017); Mordatch & Abbeel (2018) study the emergence
of natural language in the context of multi-agent learning. IC3Net (Singh et al., 2019) learns gate
to control the agents to only communicate with their teammates in mixed multi-agent environment.
Zhang & Lesser (2013); Kim et al. (2019) study action coordination under limited communication
channel and thus are also related to our works. The difference lies in that they do not explicitly
minimize communication. Social influence (Jaques et al., 2019) and InfoBot (Goyal et al., 2019)
penalize message that has no effect on policies of other agents.

The most related work to this paper is TarMAC (Das et al., 2019), where attention mechanism is used
to differentiate the importance of incoming messages. In comparison, we use variation inference to
decide the content of messages and whether a message should be sent under the guidance of global
reward signals. We compare our method with TarMAC and a baseline combining TarMAC and
QMIX in our methods.

5
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Figure 2: (a) Task sensor; (b) Performance comparison on sensor; (c) Performance comparison
when different percentages of messages are dropped. We measure the drop rate of our method on
two ways: count by number of message (our method ) or count by bit (our method (bits)). QMIX
(5M) is the performance of QMIX after training for 5M time steps.

StarCraft unit micromanagement has attracted lots of research interests for its high degree of control
complexity and environmental stochasticity. Usunier et al. (2017) and Peng et al. (2017) study this
problem from a centralized perspective. In order to facilitate decentralized control, we use the setup
introduced by Samvelyan et al. (2019b), which is the same in Foerster et al. (2017; 2018) and Rashid
et al. (2018).

5 EXPERIMENTAL RESULTS

In this section, we show our experiments to answer the following questions: (i) Is miscoordination
problem of full value function factorization methods widespread? (ii) Can our method learn the
minimized message required by the task? (iii) Can the learnt message distribution reduce uncer-
tainty in value functions of other agents? (iv) How does our method differ from communication via
attention mechanism? (v) How do β influence the communication protocol? We will first show three
simple examples to clarify our idea and then provide performance analysis on StarCraftII unit micro-
management task. For evaluation, all experiments are carried out with 3 random seeds and results
are shown with 95% confidence interval. Videos of our experiments on StarCraft II are available
online2.

5.1 BASELINES AND ABLATIONS

We compare our method with various baselines and ablations (i) QMIX (Rashid et al., 2018). We
use QMIX as representation for full factorization method; (ii) TarMAC (Das et al., 2019). Tar-
MAC is a state-of-the-art attentional communication method. Comparison with it can illustrate the
difference between our method and attention mechanism. (iii) TarMAC+QMIX. Directly compare
with TarMAC is perhaps unfair because it is not designed for tasks with shared rewards. Therefore,
we integrate the communication component of TarMAC into QMIX and compare with this strong
baseline.

5.2 DIDACTIC EXAMPLES

We first demonstrate our idea on a set of didactic examples.

Sensor network is a frequently used testbed in multi-agent learning field (Kumar et al., 2011; Zhang
& Lesser, 2011). We use a 3-chain sensor configuration in task sensor. Each sensor is controlled by
one agent and they are rewarded for successfully locating targets, which requires two sensors to scan
the same area simultaneously when the target appears. At each timestep, target 1 appears in area 1
with possibility 1 and locating it induces a team reward of 20; target 2 appears with probability 0.5
in area 2 and agents are rewarded 30 for locating it. Agents can observe whether a target is present

2https://sites.google.com/view/ndvf
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(a) Target 2 present, β=1 (b) Target 2 present, β=10-3
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Figure 3: Message distribution learnt by our method under different values of β. (Message is cut
by bit, if its µ < 2.0). When β = 10−3, our method learns the strategy where agent 3 sends a bit
to agent 1 to indicate whether target 2 appears while messages intended between any other pairs of
agents is unit Gaussian, which is the minimized communication strategy.
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Figure 4: Results on hallway. (a, b) Task hallway and performance comparison. (c) Similar to
Fig. 2(c), we show performance comparison when different percentages of messages are dropped.
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(a) 3b vs 1h1m (b) 3s vs 5z (c) 1o2r vs 4r

(d) 5z vs 1ul (e) 1o10b vs 1r (f) MMM

Figure 6: Snapshots of the StarCraft II scenarios that we consider.

in nearby areas and need to take one of five actions: scanning north, east, south, west, and noop.
Every scan induces a cost of -5.

In the optimal policy, when the target 2 appears, sensor 1 should turn itself off while sensor 2 and 3
are expected to scan area 2 to get the reward. And when target 2 is absent, sensor 1 and 2 need to
cooperatively scan area 1 while sensor 3 take noop.

Sensor is representative of a class of tasks where the uncertainty about the true state causes policies
learned by full value function factorization method to be sub-optimal – sensor 1 has to know whether
the target is present in area 2 to make decision. However, mixing network of QMIX cannot provide
such information. As a result, QMIX learners converge to a sub-optimal policy which gets a team
reward of 12.5 on average per step (see Fig. 2(b)).

We are particularly interested in whether our method can learn the minimized communication strat-
egy. Fig. 3(a) - 3(f) shows the latent message space learned by our method. Using our method and
set β to 10−3, agent 3 learns to send a bit to tell agent 1 whether target 2 appears. In the meantime,
the latent message distribution between any other pair of agents is close unit Gaussian and thus is
dropped. This results indicates that our method has learnt the minimized conditional graph and can
explain why our method can still perform optimally when 80% messages are cut off (Fig. 2(c)).
When β becomes too large (1.0), all the message bits are pushed below cutting threshold (Fig. 3(a)
and 3(d)); and when β is too small (10−5), our method puts more attention on reducing uncertainty
in Q-functions in stead of compressing messages, so both agent 3 and agent 2 pass message to agent
1 (Fig. 3(c) and 3(f)).

The second example, called Hallway (Fig. 4(a)) is a Dec-POMDP with two agents randomly starting
at states a1 to am and b1 to bn respectively. Agents can observe its own position and chooses to move
left, move right, or keep still at each timestep. Agents win if they arrive at state g simultaneously.
Otherwise, if any agent arrives at g earlier than the other, they receive no reward and the next episode
begins. Winning reward is set to 10 and the horizon is set to max(m,n) + 10 to avoid infinite loop.

Hallway aims to show that the miscoordination problem of full factorization method can be severe
in multi-step scenarios. We show results in Fig. 4(b) where m=n=4 and our method outperforms
all the baselines. We are again particularly interested in the message embedding space learnt by
our method. We show an episode in Fig 5. Two agents begin at a4 and b3 respectively. They first
move left silently (t=1 and t=2) until agent B arrives b1. On arriving b1, it send a bit whose value
is 5.24 to A. After sending this bit, B stays at b1 until it receives a bit from A indicating that A has
arrived at a1. After that, they move left together and win. This is the minimized communication
strategy and our method can therefore still win in 100% episodes when 80% communicating bits are
dropped 4(c).
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Figure 7: Learning curves of our method and baselines on all scenarios during 20M timesteps when
no message is cut for our method and QMIX+TarMAC.
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Figure 8: Performance of our method and TarMAC+QMIX when 80% messages are cut off. We
also plot the learning curves of QMIX for comparison.

The third task, independent search, aims to demonstrate that our method can learn not to commu-
nicate in scenarios where agents are independent. Task description and results analysis are deferred
to Appendix C.1.

5.3 MAXIMUM VALUE FUNCTION FACTORIZATION IN STARCRAFTII

To demonstrate that the miscoordination problem is widespread in multi-agent scenarios, we apply
our method and ablations to decentralized StarCraft II micromanagement benchmark. We use the
setup introduced by Samvelyan et al. (2019b) and consider combat scenarios. We describe the
settings in detail in Appendix C.2.

We further increase the difficulty of action coordination in these tasks by i) reducing the sight range
of the agents from 9 to 2; ii) introducing challenging maps that has complex terrain or with highly
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random spawning positions for units. We compare and analysis our method on the six maps shown in
Fig. 6: 3b vs 1h1m, 3s vs 5z, 1o2r vs 4r, 5z vs 1ul, MMM, and 1o10b vs 1r. 3s vs 5z and MMM
are the same as in Samvelyan et al. (2019b) but with a narrow sight range. Detailed descriptions of
these scenarios are provided in Appendix C.2.

5.3.1 PERFORMANCE COMPARISON

Across all StarCraft II scenarios, we use the same set of hyper-parameters: the length of message
mij is set to 3 and β is set to 10−3. To evaluate the learned policy, we pause training every 100k
environment steps and run 48 testing episode. We show the performance when no message is cut of
our method and baselines in Fig. 7.

Superior performance of methods with communication over QMIX demonstrates that the misco-
ordination problem of full factorization method is widespread, especially in scenarios with high
stochasticity, such as 1o2r vs 4r, 3b vs 1h1m, and 1o10b vs 1r. Notably, our method outperforms
attentional communication mechanism by a large margin. Since both of these two methods use the
TD-error to update parameters, these results highlights the role of constraints that we impose on our
message embedding, especially the expressiveness requirement. In all scenarios, performance of
pure TarMAC struggles because it cannot deal with global rewards.

5.3.2 MESSAGE CUT OFF

Results shown in Fig. 7 is the performance when the coordination graph is a complete graph. In this
paper, we are interested in learning nearly decomposable structure – agents only need to coordinate
their actions with few agents at a time. Therefore, we cut off 80% messages according to the mean
of distribution when testing and show the results in Fig. 8. The results indicates that we can omit
more than 80% communication without significantly affect performance. We show the strategies
learnt by our method in supplementary videos.

For comparison, we cut off messages in QMIX+TarMAC whose weights are 80% smallest and find
that the performance of QMIX+TarMAC drops significantly (Fig. 8). These results indicate that
our method is more powerful in terms of message cut off compared to attentional communication
method.

We further cut all the messages in models learnt by our methods and show the development of testing
performance in Fig. 10. The win rates decrease dramatically, proving that the superior performance
of our method when 80% message is dropped comes from expressive and succinct communication
protocols in stead of implicit coordination strategies are learnt.

6 CLOSING REMARKS

In this paper, we presented a novel multi-agent learning framework within the paradigm of cen-
tralized training with decentralized execution. This framework fuses value function factorization
learning and communication learning, and efficiently learns nearly domcomposable value functions
for agents to act independently most of the time and communicate when it is necessary for coordi-
nation. We introduce two information-theoretical regularizers to minimize overall communication
while maximizing the message information for coordination. Empirical results in challenging Star-
Craft II tasks show that our method significantly outperforms baseline methods and allows to reduce
communication by more than 80% without sacrificing the performance. We also observe that nearly
minimal messages (e.g., with one or two bits) are learned to communicate between agents in order
to ensure effective coordination.
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APPENDIX

A VARIATIONAL BOUND ON MUTUAL INFORMATION

In order to let messages effectively reduce the uncertainty in action-value functions of other agents,
we propose to maximize mutual information betweenAj andMij . We borrow ideas from variational
inference literature and derive a lower bound on this mutual information regularizer.
Theorem 1. A lower bound of mutual information Iθc(Aj ;Mij |Tj ,M(-i)j) is

ET∼D,Min
j ∼fm(T;θc)

[
−CE

[
p(Aj |T)‖qξ(Aj |Tj ,M in

j )
]]
, (8)

where Tj is local action-observation history of agent j and T = 〈T1,T2, . . . ,Tn〉 is the joint local
history sampled from the replay buffer D, qξ(Aj |Tj ,M in

j ) is the variational posterior estimator
with parameters ξ.

Proof.

Iθc(Aj ;Mij |Tj ,M(-i)j) (9)

=

∫
p(aj , τj ,m

in
j ) log

p(aj ,mij |τj ,m(-i)j)

p(aj |τj ,m(-i)j)p(mij |τj ,m(-i)j)
dajdτjdm

in
j (10)

=

∫
p(aj , τj ,m

in
j ) log

p(aj |τj ,min
j )

p(aj |τj ,m(-i)j)
dajdτjdm

in
j , (11)

where p(aj |τj ,min
j ) is defined by our encoder fm(mi|τi;θc) and Markov Chain:

p(aj |τj ,min
j ) (12)

=

∫
p(τ−j , aj |τj ,min

j )dτ−j (13)

=

∫
p(τ−j |τj ,min

j )p(aj |τ )dτ−j
(
According to

[
aj ⊥ min

j |τ
])

(14)

=

∫
p(τ )p(min

j |τ )p(aj |τ )

p(τj ,min
j )

dτ−j . (15)

We introduce qξ(aj |τj ,min
j ) as a variational approximation to p(aj |τj ,min

j ). Since

DKL(p(aj |τj ,min
j )‖qξ(aj |τj ,min

j ) ≥ 0, (16)

we have ∫
p(aj |τj ,min

j ) log p(aj |τj ,min
j )daj (17)

≥
∫
p(aj |τj ,min

j ) log qξ(aj |τj ,min
j )daj . (18)

Thus, for the mutual information term:

Iθc(Aj ;Mij |Tj ,M(-i)j) (19)

≥
∫
p(aj , τj ,m

in
j ) log

qξ(aj |τj ,min
j )

p(aj |τj ,m(-i)j)
dajdτjdm

in
j (20)

=

∫
p(aj , τj ,m

in
j ) log qξ(aj |τj ,min

j )dajdτjdm
in
j (21)

−
∫
p(aj , τj ,m

in
j ) log p(aj |τj ,m(-i)j)dajdτjdm

in
j (22)

=

∫
p(τ )p(min

j |τ )p(aj |τ ,min
j ) log qξ(aj |τj ,min

j )dajdτdm
in
j (23)
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Table 1: The number of agents n, the scaling weight β and the communication bandwidth c len for
different tasks.

Tracker Hallway 3b vs 1h1m 3s vs 5z 1o2r vs 4r 5z vs 1ul MMM 1o10b vs 1r

n 3 2 3 3 3 5 10 11
β 1e-3 1e-3 1e-5 1e-5 1e-5 1e-3 1e-5 1e-5

c len 4 2 6 6 6 12 27 30

−
∫
p(aj , τj ,m(-i)j) log p(aj |τj ,m(-i)j)dajdτjdm(-i)j (24)

=

∫
p(τ )p(min

j |τ )p(aj |τ ) log qξ(aj |τj ,min
j )dajdτdm

in
j

(
According to

[
aj ⊥ min

j |τ
])

(25)

+Hθc(Aj |Tj ,M(-i)j) (26)

= ET∼D,Min
j ∼fm(T;θc)

[∫
p(aj |T) log qξ(aj |Tj ,M in

j )daj

]
(27)

+Hθc(Aj |Tj ,M(-i)j) (28)

= ET∼D,Min
j ∼fm(T;θc)

[
−CE

[
p(Aj |T)‖qξ(Aj |Tj ,M in

j )
]]

(29)

+Hθc(Aj |Tj ,M(-i)j). (30)

Because Hθc(Aj |Tj ,M(-i)j) ≥ 0, we get the lower bound in Theorem 1.

B IMPLEMENTATION DETAILS

B.1 DETAILS OF MESSAGE DROPPING

In our methods, not only the number of messages, but also the length of messages are minimized. In
other words, we send messages with varying length in the communication channel. However, mes-
sages at the recipient side are feed into action-value function approximator, which requires inputs
with fixed length. To solve this problem, we send a mask indicating which bits are sent along with
the messages. To save channel width, masks are regraded as a binary number, so each of them only
consumes a negligible log-scale space compared to the length of message.

B.2 NETWORK ARCHITECTURE, HYPERPARAMETERS, AND INFRASTRUCTURE

We base our framework on PyMARL implementation of QMIX (Samvelyan et al., 2019a) and use
its default parameters to carry out all the experiments. We train our models on an NVIDIA RTX
2080TI GPU using experience sampled from 16 parallel environments. We have collected a total of
20 million time step data for each task. Specific values of the number of agents n, the scaling weight
β and the communication bandwidth c len of each agent can be found in Table 1.

C EXPERIMENTAL RESULTS

C.1 DIDACTIC EXAMPLE: INDEPENDENT SEARCH

In independent search, two agents are finding landmarks in two independent 5 × 5 rooms for 100
time steps (see Fig. 9). Agent is rewarded 1 every time step they step on the landmark in its room.

Independent search is an example where agents are totally independent. This task aims to demon-
strate that our method can learn not to communicate in independent scenarios. We show the demon-
strative plot in Fig. 9 and team performance comparison in Table 2.
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Agent 1
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Target 1

Target 2

Room 1 Room 2

Figure 9: Task Independent-search. Two agents are both reward- and transition-independent.

Table 2: Team reward gained on average in an episode on task independent-search.
Ours QMIX TarMAC TarMAC + QMIX

No message is cut 96.0 96.0 96.0 96.0
100% messages are cut 96.0 — — 96.0

C.2 STARCRAFT II

We first describe the scenarios that we consider in details. We consider combat scenarios where the
enemy units are controlled by StarCraft II built-in AI (difficulty level is set to medium) and each of
the ally unit is controlled by a learning agent. Units of two groups can be asymmetric and the initial
placement is random. At each timestep, each agent takes one action from the discrete action space
consists of the following actions: noop, move[direction], attack[enemy id], and stop. Under
the control of these actions, agents move and attack in a continuous map. A global reward that is
equal to the total damage dealt on the enemy units is given at each timestep. Killing each enemy
unit and winning a combat induces an extra bonus of 10 and 200 respectively.

3b vs 1h1m: 3 Banelings spawning randomly on the map try to kill a Hydralisk assisted by a
Medivac. 3 Banelings together can just blow up the Hydralisk. Therefore, they should not give the
Hydralisk rest time during which the Medivec can restore its health. Banelings have to align their
attacking time to get the winning reward. This scenario is designed to test whether our method can
learn communication protocol to coordinate actions.

3s vs 5z: 3 Stalkers encounter 5 Zealots on a map. Zealots can deal high damage but are much
slower so that Stalkers have to take advantage of this to beat Zealots using a technique called kiting –
Stalkers should alternatively attack the Zealots and flee for a distance. Kiting requires the knowledge
of exact positions of enemies. Since we narrow down the sight range of units, 3 Stalkers has to
coordinate and learn to communicate necessary messages to win.

1o2r vs 4r: An Overseer has found 4 Reapers. Ally units of the Observer, 2 Roaches, need to get
there and kill the Reapers. At the beginning of each episode, the Overseer and Reapers spawn at
a random point on the map while the Roaches are initialized at another random point. Since the
sight range of Roaches is limited, only the Overseer knows the position of the enemy. Therefore, a
learning algorithm has to learn to communicate the target position to effectively win the combat.

5z vs 1ul: 5 Zealots try to kill a powerful Ultralisk. A sophisticated micro-trick demanding right
positioning and attack timing has to be learnt to win.

MMM: Symmetric teams consist of 7 Marines, 2 Marauders and 1 Medivac spawn at two fixed
points and the enemy team are tasked to attack the ally team. This task can demonstrate the scala-
bility of our method.

1o10b vs 1r: In a map full of cliffs, an Overseer detects a Roach, and its teammates, 10 banelings
need to kill this Roach to get winning reward. The overseer and the Roach spawn at a random point
while the Banelings spawn randomly all round the map. In the minimized communication strategy,
Banelings can keep silence and the Overseer needs to encode its position and send it to Banelings.
We use this task to test the performance of our method in complex scenarios.
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Figure 10: Performance comparison of our method and TarMAC+QMIX when 100% messages are
cut off. We also plot the learning curves of QMIX for comparison. As expected, performance of our
method drops

Performance of our methods when all messages are cut is shown in Fig. 10
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