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Abstract—The network communication scenario where one
or more receivers request all the information transmitted by
different sources is considered. We introduce the first polynomial-
time (in network size) network codes that achieve any point inside
the rate-region for the problem of multiple-source multicast in
the presence of malicious errors, for any fixed number of sources.
Our codes are fully distributed and different sources require no
knowledge of the data transmitted by their peers. Our codes are
“end-to-end”, that is, all nodes apart from the sources and the
receivers are oblivious to the adversaries present in the network
and simply implement random linear network coding.

I. INTRODUCTION

Information dissemination can be optimized with the use of
network coding since it maximizes the network throughput in
multicast transmission scenarios [1]. At the same time network
coding is highly vulnerable to malicious attacks from rogue
users. The presence of even a small number of adversarial
nodes can contaminate the majority of packets in a network,
preventing receivers from decoding.

For both coherent (when the network transform is known
a priori to the receiver(s)) and non-coherent (when no such
information is known a priori to the receiver(s)) cases, we
consider the design of multisource network error-correcting
codes that are resilient against worst-case network errors, i.e.,
against errors injected by computationally unbounded adver-
saries who know the network topology, the coding scheme and
messages used by the sources, all local encoding coefficients at
the internal nodes and the decoding schemes employed by the
receivers. Although the single source network error-correcting
codes are well studied, the multisource scenario still faces the
following challenge:

Challenge: The single source network error-correcting codes
require the source to judiciously insert redundancy into the
transmitted codeword. However, in the distributed multisource
case, all sources need to work cooperatively to insert redun-
dancy for their messages. Thus, direct implementations of
single-source error-correcting codes (for instance [2]) fail to
achieve optimal rates.

A. Related works

For the single source multicast scenario, the work of Cai-
Yeung [3] first studied the network error-correcting problem,
and their scheme requires high (exponential in the network
size) design complexity. Further works by [4], [5], [6] provided

network error-correcting codes with design and implementa-
tion complexity that is low (i.e., polynomial in size of the
network parameters).

For the multisource multicast scenario without network
errors, the works [7], [8] and [9] achieve any point inside
the rate region. For the multisource multicast scenario with
worst-case network errors, the work in [10] gives the capac-
ity region for the problem, but the achievability proof uses
codes with high decoding complexity (exponential in network
size). To be concrete, let {S1,S2, . . . ,Ss} be the sources
and z be the number of network edge errors. A rate tuple
(R1, R2, . . . , Rs) is achievable if and only if for any subset I
of {1, 2, . . . , s},

∑

i∈I
Ri ≤ CI−2z, where CI is the capacity

from {Si : i ∈ I} to the receivers1. The work [2] provides
efficient error-correcting code construction for linear subspace

codes with subspace injection/deletion errors. For the edge

rank error model2 considered in this paper, using the technique
in [2] a strict subregion is attainable. That is, [2] achieves rate
tuple (R1, R2, . . . , Rs) when

∑

i∈I
Ri ≤ CI −2|I|z for each

I ⊆ {1, 2, . . . , s}.

B. Our contributions

For both coherent and non-coherent cases, we provide
the first efficient algorithm achieving the whole rate-region
demonstrated in [10], via a novel “multiple field-extension”
technique. This technique is crucial – direct implementations

of previous low complexity network error correction codes (as

in [2]) do not achieve the full rate-region.

Our codes have implementation complexity that is polyno-
mial in the size of the network. Furthermore our codes are
fully distributed in the sense that different sources require no
knowledge of the data transmitted by their peers and end-to-
end, i.e., all nodes are oblivious to the adversaries present
in the network and simply implement random linear network
coding [11].

In Section II we formulate the problem and introduce the
mathematical preliminaries. The code constructions for coher-
ent case and non-coherent cases are provided in Section III
and Section IV respectively.

1Let {R1,R2, ...,Rd} be the receivers, the capacity from {Si : i ∈ I}
to the receivers is defined as minj∈[1,d](max-flow({Si : i ∈ I},Rj)).

2More details about subspace injection/deletion errors and edge rank errors
can be found in [6].
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Fig. 1. An example network with two sources. The Network in Figure 1(a)
has C1 = C2 = 4, C = 5 and the adversary can inject z = 1 error packet.
The achievable rate region is shown in the dark region of Figure 1(b).

II. PRELIMINARIES

A. Model

We consider a delay-free network G = (V, E) where V is
the set of nodes and E is the set of edges. The capacity of each
edge is normalized to be one symbol of Fp per unit time. Edges
with non-unit capacity are modeled as parallel edges.

For notational convenience we restrict ourselves to the
analysis of the situation where there are only two sources
S1,S2 ∈ V transmitting information to one receiver R ∈ V ,
since the extension of our results to more sources and receivers
is straightforward. The minimum cut capacity from source Si

to R is denoted by Ci for i ∈ [1, 2], and the minimum cut
capacity from both sources to the receiver is equal to C.

Within the network there is a hidden adversary trying to
interfere with the transmission of information by observing
all the transmissions in the network and injecting its own
packets in any z links3, that may be chosen as a function
of his complete knowledge of the network, the message, and
the communication scheme.

The sources on the other hand know nothing about each
other’s transmitted information and the links compromised
by the adversary. Their goal is to add redundancy into their
transmitted packets so that they can achieve any rate-tuple
(R1, R2) such that R1 ≤ C1 − 2z, R2 ≤ C2 − 2z, and
R1 + R2 ≤ C − 2z (this is the rate region of the multi-source
multicast problem proved in [10]). An example network and
its rate region is shown in Figure 1.

To simplify the discussion we show the code construction
for rate-tuple (R1, R2) satisfying R1 ≤ C1−2z, R2 ≤ C2−2z,
R1 + R2 + 2z = C and exactly C edges reach the receiver R
(if more do, redundant information can be discarded).

B. Random linear network coding

In this paper, we consider the following well-known dis-
tributed random linear coding scheme [11].

Sources: The source Si arranges the data into a Ri × ℓ
Message matrix Mi over Fp (here the packet-length ℓ is a
network design parameter). For i ∈ [1, 2] source Si then takes

3Note that since each transmitted symbol in the network is from a finite
field, modifying symbol x to symbol y is equivalent to injecting/adding
symbol y − x into x.

independent and uniformly random linear combinations over
Fp of the rows of Mi to generate respectively the packets
transmitted on each outgoing edge.

Network nodes: Each internal node similarly takes uni-
formly random linear combinations of the packets on incoming
edges to generate packets transmitted on outgoing edges.

Receiver: The receiver R constructs the C × ℓ matrix Y
over Fp by treating the received packets as consecutive length-
ℓ row vectors of Y (recall that exactly C edges reach R). In
the case that the network is error-free the network’s internal
linear operations induce linear transforms from Mi to Y as

Y = T1M1 + T2M2, (1)

where Ti is the overall transform matrix from Si to R.

C. Finite field extension

We denote by Fp
m×n the set of all m × n matrices with

elements from Fp. The m-dimensional identity matrix is
denoted by Im, and the zero matrix of any dimensions is
denoted by O. Vectors are in bold-face (e.g. A).

We first review some finite field theory. Every finite field Fp,
where p is a prime power, can be algebraically extended4 [12]
to a larger finite field Fq, where q = pn for any positive
integer n. Since Fq includes Fp as a subfield thus any matrix
A ∈ Fp

m×ℓ is also a matrix in Fq
m×ℓ. Hence throughout the

paper matrix multiplication over different fields (one over the
base field and the other from the extended field) is allowed
and computed over the extended field.

A bijective map from Fp
m×n to Fq

m is defined as follows:

• For each A ∈ Fp
m×n, the folded version of A is a vector

A
f in Fq

m given by Aa
T where a = {a1, . . . , an} is a

basis of the extension field Fq with respect to Fp. Here we
treat the ith row of A as a single element in Fq to obtain

the ith element of A
f . For instance let A =

[

1 0
1 1

]

be

a matrix in F2
2×2. Then the operation of folding it into

F4
2 gives A

f =

[

(1, 0)
(1, 1)

]

=

[

2
3

]

∈ F4
2 (where 2 ≡ x and

3 ≡ x + 1 mod (x2 + x + 1) [12]).
• For each B ∈ Fq

m, the unfolded version of B is a matrix
Bu in Fp

m×n. Here we treat the ith element of B as a
row in Fp

1×n to obtain the ith row of Bu. For instance

let B =

[

2
3

]

be a vector in F4
2. Then the operation of

unfolding it into F2
2×2 gives Bu =

[

1 0
1 1

]

.

We can also extend these operations to include more general
scenarios. Specifically any matrix A ∈ Fp

m×ℓn can be writ-
ten as a concatenation of matrices A = [A1 . . . Aℓ], where
Ai ∈ Fp

m×n. The folding operation is defined as follows:

Af = [Af
1 . . .Af

ℓ ]. Similarly the unfolding operation u can
be applied to a number of submatrices of a large matrix, e.g.,

[Af
1 . . .Af

ℓ ]u = [(Af
1 )u . . . (Af

ℓ )u] = [A1 . . . Aℓ].

4Let Fp[x] be the set of all polynomials over Fp and f(x) ∈ Fp[x] be an
irreducible polynomial of degree n. Then Fp[x]/f(x) defines an algebraic
extension field Fpn by a homomorphism mapping [12].



TABLE I
SUMMARY OF FIELD NOTATIONS

Field Fp Fq FQ

Size p q = pn Q = qN

In the paper double algebraic extensions are considered.
More precisely let FQ be an algebraic extension of Fq, where
Q = qN = pnN for any positive integer N . Table I summarize
the notation of the fields considered.
Note: Of the three fields Fp, Fq and FQ defined above, two
or sometimes all three appear simultaneously in the same
equation. To avoid confusion, unless otherwise specified, the
superscript f for folding is from Fp to Fq , and the superscript
u for unfolding is from Fq (or FQ) to Fp.

D. Row-space distance

For any matrices B1 ∈ Fp
m1×n and B2 ∈ Fp

m2×n let B1 and
B2 be the subspaces spanned by the rows of B1 and the rows of
B2 respectively. The row-space distance of B1 and B2 (which
is a metric and satisfies the triangle inequality [13].) is defined
as dS(B1, B2) = dim(span(B1∪B2))−dim(span(B1∩B2)).
If m1 = m2 = m, Proposition 1 below is a direct consequence
of Corollary 3 in [5]:

Proposition 1. dS(B1, B2) ≤ 2 rank(B1 − B2).

E. Gabidulin codes

Gabidulin in [14] introduced a class of error correcting
codes over Fp

m×n. Let X ∈ F
R
q be the information vector,

G ∈ F
m×R
q be the generator matrix, (GX)u ∈ F

m×n
p be

the transmitted matrix, Z ∈ F
m×n
p be the error matrix, and

(GX)u + Z ∈ F
m×n
p be the received matrix. Then decoding

is possible if and only if rank(Z) ≤ ⌊d
2⌋, where d = m−R+1

is the minimum distance of the code.
The work of [5] utilizes the results of [14] to obtain network

error-correcting codes with the following properties:

Theorem 1 (Theorem 11 in [5]). Let Z be expressed as Z =
∑

i∈[1,τ ] LiEi, such that:

• For each i ∈ [1, τ ], Li ∈ Fp
m×1 and Ei ∈ Fp

1×n;

• For each i ∈ [1, µ], Li is known a priori by the receiver;

• For each i ∈ [µ + 1, µ + δ], Ei is known a priori by the

receiver;

• 2τ − µ − δ ≤ d − 1,

using Gabidulin codes the receiver can decode X with at most

O(mn) operations over Fq.

Thus when µ = δ = 0, Theorem 1 reduces to the basic case
where the receiver has no prior knowledge about Z.

III. COHERENT NETWORK ERROR-CORRECTING CODES

Coherent here means the receiver R knows the linear
transforms from both S1 and S2, i.e., R knows T1 and T2

defined in equation (1). For instance, it is possible T1 and T2 to
be inferred by network communications before the adversary
enters the network and corrupts information. Alternatively, if
centralized designed network coding is used [15], T1 and T2

is assumed to be known by the receiver.

While the non-coherent codes we propose are more general
than the coherent codes, the description of the latter is simpler,
and hence we first describe them. Under the coherent assump-
tion the goal of the section is to construct a code attaining any
rate-tuple (R1, R2) in the rate region for our communication
scenario (see section II-A for details).
Encoding: Each source Si, i ∈ [1, 2], has information to
deliver to destination R and organizes this information into
batches of Ri packets. Each packet is a concatenation of
ℓ = knN symbols from the finite field Fp, where n = R1+2z
and N = R2 + 2z and k is a code design parameter. For
simplicity we will analyze the transmission of a single batch
of packets.

The way sources encode their information packets is
through the use of Gabidulin codes (see Section II-E for
details). More precisely the information of S1 is a matrix
X1 ∈ F

R1×kN
q , where Fq is an algebraic extension of Fp and

q = pn (see Section II-C for details). Before transmission X1

is multiplied with a generator matrix, G1 ∈ F
n×R1

q , creating

G1X1 ∈ F
n×(kN)
q whose unfolded version M1 = (G1X1)

u is
a matrix in Fp

n×ℓ that is transmitted through the network using
the random linear network coding defined in Section II-B.

The information of S2 is a matrix X2 ∈ F
R2×k
Q , where

FQ is an algebraic extension of Fq and Q = qN = pnN .
Before transmission X2 is multiplied with a generator matrix,
G2 ∈ F

N×R2

Q , creating G2X2 ∈ F
N×k
Q whose unfolded

version M2 = (G2X2)
u over Fp is a matrix in Fp

N×ℓ that
is transmitted through the network using the random linear
network coding defined in Section II-B.

Both G1 and G2 are chosen as generator matrices for
Gabidulin codes and have the capability of correcting errors
of rank at most z over Fp and Fq respectively.
Decoding: The packets reaching receiver R can be expressed
as

Y = T1M1 + T2M2 + E, (2)

where Y ∈ Fp
C×ℓ is the matrix formed by the packets received

by R, T1 ∈ Fp
C×n, T2 ∈ Fp

C×N are the linear transform
matrices from S1 and S2 to the receiver R, and E ∈ Fp

C×ℓ is
the error matrix induced at the receiver. Note that rank(E)≤ z
since the adversary can inject only z error packets [4].

Folding equation (2) into Fq results in:

Y f = [T1G1 T2]

[

X1

Mf
2

]

+ Ef , (3)

where Ef has rank at most equal to z according to Lemma 1.

Lemma 1. Folding a matrix does not increase its rank.

Proof: Let matrix H ∈ Fp
m×kn has rank(H) = r. Thus H =

WZ, where Z ∈ Fp
r×kn is of full row rank and W ∈ Fp

m×r

is of full column rank. After the folding operation H becomes
Hf = WZf and therefore rank(Hf ) ≤ r. ¤

Let D = [ T1G1 T2 ]. Since R1 +N = R1 +R2 +2z = C
(see Section II-A for details), D is a C × C square matrix.

Lemma 2. Matrix D ∈ F
C×C
q is invertible with probability

at least 1 − |E|/p.



Proof: Let X be the set of random variables over Fp comprised
of the local coding coefficients used in the random linear
network code. Thus the determinant of D is a polynomial
f(X ) over Fq of degree at most |E| (see Theorem 1 in [11]
for details). Since the variables X in f(X ) are evaluated
over Fp, f(X ) is equivalent to a vector of polynomials
(f1(X ), f2(X ), . . . , fn(X )), where fi(X ) ∈ Fp[X ] is a poly-
nomial over Fp with variables in X . Note that fi(X ) also
has degree no more than |E| for each i ∈ [1, n]. Thus once
we prove that there exists an evaluation of X such that f

is a nonzero vector over Fp, we can show D is invertible
with probability at least 1 − |E|/p by the Schwartz-Zippel
lemma [16].

Since R1 +N = C (see Section II-A for details) and R1 ≤
C1 and N ≤ C2, there exist R1 + N edge-disjoint-paths:
P1

1 ,P1
2 , . . . ,P1

R1
from s1 to r and P2

1 ,P2
2 , . . . ,P2

N from s2

to r. The variables in X are evaluated in the following manner:

1). Let O be the zero matrix in Fn×N
q . We choose the

variables in X so that the R1 independent rows of [G1, O] ∈
F

n×C
q correspond to routing information from s1 to R via

P1
1 , . . . ,P1

R1
.

2). Let {uR1+1,uR1+2, . . . ,uC} be N distinct rows of the
identity matrix in F

C×C
q such that for each i ∈ [1, N ], uR1+i

has the element 1 located at position R1 + i. Then these N
vectors correspond to routing information from s2 to r via
P2

1 ,P2
2 , . . . ,P2

N .

Under such evaluations of the variables in X , matrix D

equals

[

G′
1 O

O IN

]

, where G′
1 ∈ F

R1×R1

q consists of the R1

independent rows of G1. Hence f is non-zero. Using the
Schwartz-Zippel Lemma f 6= 0 and thus D is invertible with
probability at least 1 − |E|/p over the choices of X . ¤

Hence, by multiplying Equation (3) by D−1 the receiver

gets D−1Y f =

[

X1

Mf
2

]

+D−1Ef . The last N = R2 +2z rows

of D−1Y f are (D−1Y f )d = Mf
2 + (D−1Ef )d, where the

subscript d stands for the last N rows of each matrix.

Note: To show why S2 uses a generator matrix G2 over a
double-extended field FQ = FqN = FpnN , consider what
happens if instead it uses FQ = Fq. In this case the matrix

Mf
2 +(D−1Ef )d is indeed of the form required for successful

decoding of Gabidulin codes as long as (D−1Ef )u
d has rank

less than z over Fp. But this is not generally the case since
D−1 belongs to Fq but not Fp. Therefore although Ef and
consequently D−1Ef have rank less than z over Fq, the rank
of (D−1Ef )u

d might increase over Fp.

If source S2 uses a generator matrix G2 defined over FQ =
FqN that is able to correct rank z errors over Fq, we can prove
the main result in this section as follows.

Theorem 2. A coherent receiver R can efficiently decode both

X1 and X2 correctly with probability at least 1 − 2|E|/p.

Proof: First, according to Lemma 2 matrix D is invertible with
probability at least 1−|E|/p. Since G2 is able to correct rank

z errors over Fq , using (D−1Y f )d = Mf
2 + (D−1Ef )d, R

can execute the Gabidulin decoding algorithm and get X2.

Second, once X2 is known T2M2 is subtracted from Y to

result in T1M1+E. Since T1 is left invertible with probability
at least 1−|E|/p (by [11]), R can multiply T1M1+E with the
left inverse of T1 giving M1 +T−1

1 E. Since rank(T−1
1 E) ≤ z

over base field Fp, the execution of the Gabidulin decoding
algorithm results in X1. In the end the overall probability of
correct decoding is at least 1 − 2|E|/p. ¤

IV. NON-COHERENT ERROR CORRECTION

In the non-coherent case it is assumed that receiver R
does not know the network transform matrices T1 and T2

of the two sources prior to communication in the presence
of the adversary. Assuming a non-coherent receiver the goal
of this section is to construct codes attaining any rate-tuple
(R1, R2) in the rate region for our communication scenario
(see section II-A for details).
Encoding: In the scenario where the receiver R does not know
T1 and T2 a priori the two sources append headers on their
transmitted packets to convey information about T1 and T2

to the receiver. Thus source S1 constructs message matrix
[In O M1] with the zero matrix O having dimensions n×N ,
and source S2 constructs a message matrix [O IN M2] with
the zero matrix O having dimension N × n. The identity and
zero matrices have elements from Fp and the M1, M2 matrices
in F

C×ℓ
p have the same definitions as in Section III-A.

Decoding: The two message matrices are transmitted to the
receiver R through the network with the use of random linear
network code and therefore the receiver gets:

Y = [Y1 Y2 Y3] = [T1 T2 A] + E, (4)

where A = T1M1 + T2M2 ∈ Fp
C×ℓ and E ∈ Fp

C×(n+N+m)

has rank no more than z over field Fp. Let E =
[

E1 E2 E3

]

, where E1 ∈ Fp
C×n and E2 ∈ Fp

C×N and

E3 ∈ Fp
C×ℓ. As in the decoding scheme in Section III the

receiver R first decodes X2 and then X1.
Stage 1: Decoding X2: Let Ya =

[

Y1G1 Y2 Y f
3

]

be a

matrix in F
C×(R1+N+kN)
q . To be precise:

Ya =
[

T1G1 T2 Af
]

+
[

E1G1 E2 Ef
3

]

. (5)

Receiver R uses invertible row operations over Fq to transform
Ya into a row-reduced echelon matrix

[

TRRE MRRE

]

that
has the same row space as Ya, where TRRE has C = R1 +N
columns and MRRE has kN columns. Then the following
propositions are from the results5 proved in [5]:

Proposition 2. 1) The matrix
[

TRRE MRRE

]

takes the

form
[

TRRE MRRE

]

=

[

IC + L̂UT
µ r

O Ê

]

, where

Uµ ∈ F
C×µ
q comprises of µ distinct columns of the C×C

identity matrix such that UT
µ r = 0 and UT

µ L̂ = −Iµ. In

particular, L̂ in F
C×µ
q is the “error-location matrix”, r

in F
C×kN
q is the “message matrix”, and Ê in Fq

δ×kN is

the “known error value” (and its rank is denoted δ).

2) Let X =

[

X1

Mf
2

]

and e = r − X and τ =

rank

[

L̂ e

0 Ê

]

. Then 2τ − µ − δ is no more than

51) is from Prop. 7, 2) from Thm. 9, and 3) from Prop. 10 in [5].



dS(
[

TRRE MRRE

]

,
[

IC X
]

), i.e., the row-space

distance between
[

TRRE MRRE

]

and
[

IC X
]

.

3) There exist τ column vectors L1,L2, . . . ,Lτ ∈ F
C
q

and τ row vectors E1,E2, . . . ,Eτ ∈ F
1×kN
q such that

e =
∑

i∈[1,τ ] LiEi. In particular, L1,L2, . . . ,Lµ are the

columns of L̂, and Eµ+1,Eµ+2, . . . ,Eµ+δ are the rows

of Ê.

Recall that the subscript d stands for the last N rows of any
matrix/vector. Then we show the following for our scheme.

Lemma 3. 1) Matrix ed = rd − Mf
2 can be expressed as

ed =
∑

i∈1,2,...,τ (Li)dEi, where (L1)d, (L2)d, . . . , (Lµ)d are

the columns of L̂d and Eµ+1,Eµ+2, . . . ,Eµ+δ are the rows

of Ê.

2) With probability at least 1 − |E|/p, 2τ − µ − δ ≤ 2z

Proof: 1) It is a direct corollary from Proposition 2.3.

2) Using Proposition 2.2 it suffices to prove with probability
at least 1 − |E|/p, dS(

[

TRRE MRRE

]

,
[

IC X
]

) ≤ 2z.

As shown in the proof of Lemma 1, the columns of

Ef
3 are in the column space of E3 (and then of E) over

Fq. Thus
[

E1 E2 Ef
3

]

and therefore
[

E1G1 E2 Ef
3

]

has rank at most equal to z over Fq. Using Propo-
sition 1 and (5), dS(Ya,

[

T1G1 T2 Af
]

) is no more

than 2z. Since dS(
[

TRRE MRRE

]

, Ya) = 0, we have

dS(
[

TRRE MRRE

]

,
[

T1G1 T2 Af
]

) ≤ 2z.

Using Lemma 2, matrix D is invertible with proba-
bility at least 1 − |E|/p, so

[

IC X
]

has zero row-

space distance from
[

D DX
]

=
[

T1G1 T2 Af
]

. Thus

dS(
[

TRRE MRRE

]

,
[

IC X
]

) ≤ 2z. ¤

In the end combining Lemma 3 and Theorem 1 the receiver
R can take (L̂d, Ê, r) as the input for the Gabidulin decoding
algorithm and decode X2 correctly.

Stage 2: Decoding X1: From (4) the receiver gets Y =
[

T1 + E1 T2 + E2 A + E3

]

, computes (T2 + E2)M2, and

then subtracts matrix
[

O (T2 + E2) (T2 + E2)M2

]

from
Y . The resulting matrix has N zero columns in the middle
(column n + 1 to column n + N ). Disregarding these we get:

Y ′ =
[

T1 T1M1

]

+
[

E1 E3 − E2M2

]

.

The new error matrix E′ =
[

E1 E3 − E2M2

]

has rank
at most z over Fp since the columns of E′ are simply
linear combinations of columns of E whose rank is at most
z. Therefore the problem degenerates into a single source
problem and receiver R can decode X1 with probability at
least 1 − |E|/p by following the approach in [5].

Summarizing the above decoding scheme for X1 and X2,
we have the main result of this work.

Theorem 3. A non-coherent receiver R can efficiently decode

both X1 and X2 correctly with probability at least 1−2|E|/p.

A. Complexity discussion

For both coherent and non-coherent cases the computational
complexity of Gabidulin encoding and decoding of two source
messages is dominated by the decoding of X2, which requires
O(nNCℓ log(nN)) operations over Fp (see [5]).

To generalize our technique to more sources, consider a
network with s sources S1,S2, . . . ,Ss. Let Ri be the rate of
Si and ni = Ri+2z for each i ∈ [1, s]. A straightforward gen-
eralization uses the multiple field-extension technique so that
Si uses the generator matrix over finite field of size pn1n2...ni .
In the end the packet length must be at least ng = n1n2 . . . ns,
resulting in a decoding complexity O(Cn2

g log(ng)) increasing
exponentially in the number of sources s. Thus the multiple
field-extension technique works in polynomial time only for a
fixed number of sources.
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