
Fast Elimination of Redundant Linear Equations and Reconstruction

of Recombination-Free Mendelian Inheritance on a Pedigree

Jing Xiao∗ Lan Liu† Lirong Xia∗ Tao Jiang†

Abstract

Computational inference of haplotypes from genotypes has

attracted a great deal of attention in the computational bi-

ology community recently, partially driven by the interna-

tional HapMap project. In this paper, we study the ques-

tion of how to efficiently infer haplotypes from genotypes of

individuals related by a pedigree, assuming that the hered-

itary process was free of mutations (i.e. the Mendelian law

of inheritance) and recombinants. The problem has recently

been formulated as a system of linear equations over the

finite field of F (2) and solved in O(m3n3) time by using

standard Gaussian elimination, where m is the number of

loci (or markers) in a genotype and n the number of individ-

uals in the pedigree. We give a much faster algorithm with

running time O(mn2 + n3 log2 n log log n). The key ingredi-

ents of our construction are (i) a new system of linear equa-

tions based on some spanning tree of the pedigree graph and

(ii) an efficient method for eliminating redundant equations

in a system of O(mn) linear equations over O(n) variables.

Although such a fast elimination method is not known for

general systems of linear equations, we take advantage of the

underlying pedigree graph structure and recent progress on

low-stretch spanning trees.

1 Introduction

For centuries, human beings have fought the battle
against deadly diseases, such as diabetes, cancer, stroke,
heart disease, depression, and asthma. Genetic factors
are believed to play a significant role for preventing, di-
agnosing, and treating these diseases. In recent years,
gene mapping, whose goal is to establish connections
between diseases and some specific genetic variations,
has become one of the most active areas of research in
human genetics. In October 2002, a multi-country col-
laboration, namely, the international HapMap project
was launched [18]. One of the main objectives of the
HapMap project is to identify the haplotype (i.e., the
states of genetic markers from a single chromosome)
structure of humans and common haplotypes among
various populations. This information will greatly facili-

∗Department of Computer Science and Technology, Tsinghua
University, Beijing, China

†Department of Computer Science and Engineering, University
of California, Riverside, CA

tate the mapping of many important disease-susceptible
genes. However, the human genome is a diploid (i.e., its
chromosomes come in pairs with one being paternal and
the other maternal) and, in practice, haplotype data are
not collected directly, especially in large-scale sequenc-
ing projects mainly due to cost considerations. Instead,
genotype data (i.e., the states of genetic markers from
all chromosomes, without specifying which chromosome
giving rise to each particular marker state) are collected
routinely. Hence, combinatorial algorithms and statisti-
cal methods for the inference of haplotypes from geno-
types, which is also commonly referred to as phasing,
are urgently needed and have been intensively studied.

This paper is concerned with the inference of hap-
lotypes from genotypes of individuals related by a pedi-
gree, which describes the parent-offspring relationship
among the individuals. Figure 1 gives an illustrative
example of pedigree, genotype, haplotype, as well as re-
combination where the haplotypes of a parent recombine
to produce a haplotype of her child. (See the appendix
for more detailed definitions of these concepts.) Pedi-
gree data is often collected in family-based gene asso-
ciation/mapping studies in addition to genotype data.
It is generally believed that haplotypes inferred from
pedigrees are more accurate than those from popula-
tion data. Moreover, some family-based statistical gene
association tests such as TDT (i.e. Transmission Dis-
equilibrium Test) and its variants (e.g. [30, 37] among
others) require access to haplotype information of each
member in a pedigree.

By utilizing some reasonable biological assump-
tions, such as the Mendelian law of inheritance, i.e. one
haplotype of each child is inherited from the father while
the other is inherited from the mother free of muta-
tions, and the minimum-recombination principle which
says that genetic recombination is rare for closely linked
markers and thus haplotypes with fewer recombinants
should be preferred in haplotype inference [28, 29], sev-
eral combinatorial approaches for inferring haplotypes
from genotypes on a pedigree have been proposed re-
cently and shown to be powerful and practical [28, 21,
22, 23, 29, 34, 35]. These methods essentially propose
polynomial-time heuristics or exponential-time exact al-
gorithms for the so called the minimum-recombinant
haplotype configuration (MRHC) problem, which re-

655

quires a haplotype solution for the input pedigree with
the minimum number of recombinants (i.e. recombi-
nation events) and is known to be NP-hard [21]. (See
the appendix for a more formal definition of the MRHC
problem).

A closely related problem, called the zero-
recombinant haplotype configuration (ZRHC) problem
where we would like to enumerate all haplotype solu-
tions that require no recombinant (if such solutions ex-
ist), was studied in [21] under a more stringent biologi-
cal assumption that the pedigree is also recombination-
free. (See the appendix for a more formal definition of
the ZRHC problem). ZRHC is interesting because re-
cent genetic research has shown that human genomic
DNAs can be partitioned into long blocks (called haplo-
type blocks) such that recombination within each block
is rare or even nonexistent [6, 10, 19], especially when
restricted to a single pedigree [22, 23]. An efficient al-
gorithm for ZRHC could also be useful for solving the
general MRHC problem as a subroutine, when the num-
ber of recombinants is expected to be small. We note in
passing that recent work on haplotype inference for pop-
ulation data based on perfect phylogenies also assumes
the data is recombination-free [11, 12]. Observe that,
when the solution for ZRHC is not unique, it would re-
ally be useful to be able to enumerate all the solutions
instead of finding only one feasible solution, so that the
solutions can be examined in subsequent analysis (e.g.
likelihood distribution of haplotypes [22, 23], linkage be-
tween different haplotype blocks, etc.) by geneticists.

The Algorithmic Problem and Our Result. The
ZRHC problem can also be stated abstractly as a
simple inheritance reconstruction problem as follows.
We have a pedigree connecting n individuals where
each individual j has two haplotypes (i.e. strings)
defined on m marker loci aj,1 · · · aj,m and bj,1 · · · bj,m

inherited from j’s father and mother, respectively.
That is, if the parents of j are individuals j1 and
j2, then aj,1 · · · aj,m ∈ {aj1,1 · · · aj1,m, bj1,1 · · · bj1,m}
and bj,1 · · · bj,m ∈ {aj2,1 · · · aj2,m, bj2,1 · · · bj2,m}. The
haplotypes are unknown, but the genotype of each
individual j is given to us in the form of string
{aj,1, bj,1} · · · {aj,m, bj,m}. We would like to reconstruct
all the haplotype solutions that could have resulted in
the genotypes.

Li and Jiang presented an O(m3n3) time algorithm
for ZRHC by formulating it as a system of O(mn) linear
equations with mn variables over the finite field of F (2)
and applying Gaussian elimination [21]. Although this
cubic time algorithm is reasonably fast, it is inadequate
for large scale pedigree analysis where both m and n

can be in the order of tens or even hundreds, and we
may have to examine many pedigrees and haplotype
blocks. There are, for example, over five million SNP

2
2

1

1

2

1
1

2

1

2

Genotype

H
a
p

lo
ty

p
e

Paternal Maternal

A B C

1 2

54
7 8

6

3

9

1

3 4

2
1 | 2

2 | 1

2 | 2

2 | 2

1 | 2

1 | 2

1 | 2

2 | 2

Figure 1: A. The structure of a pair of chromosomes
from a mathematical point of view. In the figure, each
numeric value (1 or 2) represents a marker state or an
allele. The haplotype inherited from the father (or the
mother) is called paternal haplotype (or maternal haplo-

type, respectively). The paternal and maternal haplotypes
are thus strings 22112 and 11212, and they form the geno-
type {1, 2}{1, 2}{1, 2}{1, 1}{2, 2}, which is a string of un-
ordered pairs of alleles at each locus. B. An illustration of
a pedigree with 9 members with a mating loop, where cir-
cles represent females and boxes represent males. Children
are shown under their parents with line connections. For
example, individuals 7 and 8 are children of individuals 2
and 3. Individuals without parents, such as individuals 1
and 2 are called founders. A pedigree with no mating loops
are called tree pedigree conventionally. C. An example of
recombination event where the haplotypes of individual 1
recombine to produce the paternal haplotype of individual
3. The numbers inside the circles/boxes are individual IDs.
Here, a “|” is used to indicate the phase of the two alleles at
a marker locus, with the left allele being paternal and the
right maternal. Both loci of individual 2 and the 2nd locus
of individual 4 are homozygous while all the other loci in
the pedigree are heterozygous.

markers in the public database dbSNP [18]. This
challenge motivates us to find more efficient algorithms
for ZRHC. Several attempts have been made recently in
[3, 25], but the authors failed to prove the correctness
of their algorithms in all cases, especially when the
input pedigree has mating loops. Chan et al. proposed
a linear-time algorithm in [2], but the algorithm only
works for pedigrees without mating loops (i.e. the tree
pedigrees).

In this paper, we present a much faster algorithm for
ZRHC with running time O(mn2 + n3 log2 n log log n).
Our construction begins with a new system of linear
equations over F (2) for ZRHC. Although the system
still has O(mn) variables and O(mn) equations, we
prove that it can be reduced to an effectively equiv-
alent system with O(mn) equations and at most 2n

variables, by exploring the underlying pedigree graph
structure. By using standard Gaussian elimination, this
already gives an improved algorithm with running time
O(mn3). We then show how to reduce the number of
equations further to O(n log2 n log log n) (assuming that
m ≥ log2 n log log n, which usually holds in practice),
by giving an O(mn) time method for eliminating re-
dundant equations in the system. Although such a fast
elimination method is not known for general systems
of linear equations, we again take advantage of the un-
derlying pedigree graph structure and recent progress

656

on low-stretch spanning trees in [8]. In particular, the
low-stretch spanning tree result helps upper bound the
number of equations that need be kept in the elimina-
tion process. We also show that our algorithm actually
runs in time O(mn2 +n3) time when the input pedigree
is a tree pedigree with no mating loops (which is often
true for human pedigrees) or when there is a locus that is
heterozygous across the entire pedigree. Moreover, our
algorithm produces a general solution 1 to the original
system of linear equations at the end that represents all
feasible solutions to the ZRHC problem.

Related Work on Solving Systems of (Sparse)
Linear Equations. The search for efficient algorithms
for solving systems of linear equations is a classical
problem in linear algebra. Besides Gaussian elimina-
tion, methods based on fast matrix multiplication al-
gorithms have been proposed and could achieve an as-
ymptotic speed of O(n2.376) on n equations with n un-
knowns [7, 33]. However, these methods are only of
theoretical interest since they are hard to implement
and do not outperform Gaussian elimination unless n is
very large. Moreover, they assume that the coefficient
matrix is of full rank, which is an unreasonable assump-
tion in ZRHC (considering the linear systems derived
for ZRHC so far).

Observe that the linear system given in [21] for
ZRHC is actually very sparse since each of its equations
has at most four variables. Thus, a plausible way to
speed-up is to utilize fast algorithms for solving sparse
linear systems. The Lanczos and conjugate gradient
algorithms [15], and the Wiedemann algorithm [36]
are some of the best known algorithms for solving
sparse linear system over finite fields. The Wiedemann
algorithm runs in (expected) quadratic time (which is
in fact slower than our algorithm when applied to linear
systems for ZRHC) while the Lanczos and conjugate
gradient algorithms are only heuristics [27]. However,
they use randomization and do not find all solutions.
Furthermore, the algorithms cannot check if the system
has no solution [14]. A randomized algorithm with
quadratic expected time for certifying inconsistency of
linear systems is given in [14].

The rest of our paper is organized as follows. We
will describe a new system of linear equations for ZRHC
and some useful graphs derived from a pedigree in
section 2. The O(mn3) time algorithm is presented
in section 3, and the O(mn2 + n3 log2 log log n) time
algorithm is given in section 4. Some concluding
remarks are given in section 5. Due to page constraint,

1A general solution of any linear system is denoted by the span
of a basis in the solution space to its associated homogeneous
system, offset from the origin by a vector, namely by any
particular solution.

the proofs are omitted in the main text and given in the
full version [38].

2 A System of Linear Equations for ZRHC and
the Pedigree Graph

In this section, we first present a new formulation of
ZRHC in terms of linear equations, and define some
graph structures which will be used in our algorithm.

2.1 The Linear System Throughout this paper, n

denotes the number of the individuals (or members)
in the input pedigree and m the number of marker
loci. Without loss of generality, suppose that each allele
in the given genotypes is numbered numerically as 1
or 2 (i.e. the markers are assumed to be bi-allelic,
which make the hardest case for MRHC/ZRHC[21]),
and the pedigree is free of genotype errors (i.e. the two
alleles at each locus of a child can always be obtained
from her respective parents). Hence, we can represent
the genotype of member j as a ternary vector gj as
follows: gj[i] = 0 if locus i of member j is homozygous
with both alleles being 1’s, gj[i] = 1 if the locus is
homozygous with both alleles being 2’s, and gj[i] = 2
otherwise (i.e. the locus is heterozygous). For any
heterozygous locus i of member j, we use a binary
variable pj [i] to denote the phase at the locus as follows:
pj [i] = 0 if allele 1 is paternal, and pj [i] = 1 otherwise.
When the locus is homozygous, the variable is set to
gj[i] for some technical reasons (so that the equations
below involving pj[i] will hold). Hence, the vector
pj describes the paternal and maternal haplotypes
of member j. Observe that the vectors p1, . . . ,pn

represent a complete haplotype configuration of the
pedigree. In fact, the sparse linear system in [21] was
based on these vectors. Also for technical reasons, define
a vector wj for member j such that wj [i] = 0 if its i-th
locus is homozygous and wj [i] = 1 otherwise.

Suppose that member jr is a parent of member
j. We introduce an auxiliary binary variable hjr,j to
indicate which haplotype of jr is passed to j. If jr gives
its paternal haplotype to j, then hjr ,j = 0; otherwise
hjr ,j = 1. Suppose that j is a non-founder member with
her father and mother being j1 and j2, respectively. We
can define two linear (constraint) equations over F (2)
to describe the inheritance of paternal and maternal
haplotypes at j respectively, following the Mendelian
law of inheritance and zero-recombinant assumption:

(2.1)

{
pj1

+ hj1,j · wj1 = pj

pj2
+ hj2,j · wj2 = pj + wj

If we let dj1,j be the vector 0 and dj2,j = wj

otherwise, then the above equations can be unified into
a single equation as:

(2.2) pjr
+ hjr ,j · wjr

= pj + djr ,j (r = 1, 2)

657

Formally, we can express the ZRHC problem as a
system of linear equations:
(2.3)

pk[i] + hk,j · wk[i] = pj[i] + dk,j [i]
1≤i≤m, 1≤j, k≤n, k is a parent of j

pj [i] = gj [i] 1≤i≤m, 1≤j≤n, gj [i] 6=2

wj [i] = 1 1≤i≤m, 1≤j≤n, gj [i]=2

wj [i] = 0 1≤i≤m, 1≤j≤n, gj [i] 6=2

dk,j [i] = wj [i] 1≤i≤m, 1≤j,k≤n, k is the mother of j

dk,j [i] = 0 1≤i≤m, 1≤j,k≤n, k is the father of j

where gj [i], wj [i], dk,j [i] are all constants depending on
the input genotypes, and pj[i], hk,j are the unknowns.
Note that, the number of p-variables is exactly mn and
the number of g-variables is at most 2n since every child
has two parents and there are at most n children in the
pedigree.

Remark: Observe that for any member j, if the
member itself or one of its parents are homozygous at
locus i, pj [i] is fixed based on Equation (2.3). In the
rest of the paper, we will assume that all such variables
pj [i] are pre-determined (without any conflict), and use
them as “anchor points” to define some new constraints
about the h-variables.

2.2 The Pedigree Graph and Locus Graphs
To conform with standard graph theory notations, we
transform the input pedigree into a graph, called the
pedigree graph, by connecting each parent directly to her
children, as shown in Figure 2 (B). Although the edges
in the pedigree represent the inheritance relationship
between a parent and a child and are directed, we will
think of the pedigree graph, and more importantly,
the subsequent locus graphs, as undirected in future
definitions and constructions, since each edge (j, k) of
the pedigree graph (and locus graphs) will be used to
represent the constraint between the vectors pj and
pk (i.e. the phases at j and k) via the variable hj,k,
which is symmetric as can be seen from Lemma 2.1 and
Corollaries 2.1 and 2.2 below. 2

Clearly, such a pedigree graph G = (V, E) may be
cyclic due to mating loops or multiple children shared
by a pair of parents. Let T (G) be any spanning tree
of G. T (G) partitions the edge set E into two subsets:
tree edges and non-tree edges. For simplicity, the non-
tree edges will be called cross edges. Let EX denote the
set of cross edges. Since |E| ≤ 2n and the number of
edges in T (G) is n − 1, we have |EX| ≤ n + 1. Figure 2
(B) gives an example of tree edges and cross edges.

For any fixed locus i, the value wk[i] can be viewed
as the weight of each edge (k, j) ∈ E, where k is

2The reader can also verify that the direction of an edge
will not affect the graph traversal and the ensuing treatment of
constraint equations to be discussed in the next two sections.

A B C

3

5 6

4

1 2
1 2

1 1

2 2

1 2

1 2

1 2

1 2

1 1

1 2

1 2

1 2

1 1

3

5 6

4

1 2

3

5 6

4

1 2

3

5 6

4

1 2

Figure 2: A. An example pedigree with genotype data.
Here, the alleles at a locus are ordered according to their
id numbers instead of phase (which is unknown). B. The
pedigree graph with a spanning tree. The tree edges are
highlighted. Observe that there lies a cycle of length 4 in
the given tree pedigree graph. C. The locus graphs. The
left graph is for the first locus, which has a cycle, while the
right graph is for the second locus. The locus forests are
highlighted.

a parent of j. We construct the i-th locus graph
Gi as the subgraph of G induced by the edges with
weight 1. Formally, Gi = (V, Ei), where Ei =
{(k, j)| k is a parent of j, wk[i] = 1}. The i-th locus
graph Gi induces a subgraph of the spanning tree T (G).
Since the subgraph is a forest, it will be referred to as
the i-th locus forest and denoted by T (Gi). Figure 2
(C) shows the locus graphs and the loucs forests of the
given pedigree.

The locus graphs can be used to identify some im-
plicit constraints on the h-variables as follows. First, we
need “symmetrizing” the h-variables and d-constants:
for any edge (k, j) ∈ E, define hk,j = hj,k and dk,j =
dj,k.

Lemma 2.1. For any path P = j0, . . . , jk in locus graph
Gi connecting vertices j0 and jk, we have

pj0 [i] + pjk
[i] +

k−1∑

r=0

hjr,jr+1 + djr ,jr+1 [i] = 0

Note that the above constraint remains the same
no matter in which direction path P is read, since the
addition is over field F (2) and the h-variables and d-
constants are symmetric. From the lemma, we can see
that for a cycle in Gi, the summation of all the h-
variables corresponding to the edges on the cycle is a
constant. The constant is said to be associated with the
cycle.

Corollary 2.1. For any cycle C = j0, . . . , jk, j0
in Gi, there exists a binary constant b defined

as b =
∑k

r=0 djr ,jr+1 mod k+1
[i] such that∑k

r=0 hjr ,jr+1 mod k+1
= b.

From Lemma 2.1, we can easily see that if the p-
variables at the endpoints of a path are pre-determined,
then the summation of all the h-variables corresponding
to the edges on the path is a constant. The constant
is said to be associated with the path. We construct
constraints on h-variables as follows. Again, notice

658

that the following constant b does not depend on the
direction that path P is read.

Corollary 2.2. Suppose that P = j0, . . . , jk is a path
in Gi connecting vertices j0 and jk, and the variables
pj0 [i] and pjk

[i] are pre-determined. Then there exists
a binary constant b defined as b = pj0 [i] + pjk

[i] +∑k−1
r=0 djr ,jr+1 [i] such that

∑k−1
r=0 hjr ,jr+1 = b.

3 An O(mn3) Time Algorithm for ZRHC

Since the number of h-variables is at most 2n, our key
idea is to first derive a system of O(mn) linear equations
on the h-variables, using paths and cycles in Gi and
the pre-determined p-variables as mentioned in the last
section, and then find a general solution to the system by
using Gaussian elimination so that all inherent freedom
in Equation (2.3) is kept. This new system of equations
about the h-variables is clearly necessary for Equation
(2.3). The crux of the construction is to show that
it is also sufficient, and thus the p-variables can be
determined from the values of the h-variables by a
simple traversal of the locus graphs.

3.1 Linear Constraints on the h-Variables We
will introduce constraint equations to “cover” all the
edges in each locus graph. As mentioned above, these
equations connect the p-variables and will suffice to
help determine their values. Note that, since the edges
broken in each locus graph involve pre-determined p-
variables, we do not have to introduce constraints to
cover them. The constraints can be classified into two
categories with respect to the spanning tree T (G) :
constraints for cross edges and constraints for tree edges.

Cross Edge Constraints. Adding a cross edge e to
the spanning tree T (G) yields a cycle C in the pedigree
graph G. Let length(C) denote the length of cycle C.
Suppose that the edge e exists in the i-th locus graph
Gi, and consider two cases of the cycle C with respect
to graph Gi.

Case 1: The cycle exists in Gi. We introduce a
constraint along the cycle as in Corollary 2.1. This
constraint is called a cycle constraint. The set of such
cycle constraints for edge e in all locus graphs is denoted
by CC(e), i.e.

CC(e) =

{
(b, e)

∣∣∣∣
b is associated with the cycle in

T (Gi) ∪ {e}, 1 ≤ i ≤ m

}

The set of cycle constraints for all cross edges is denoted
by CC =

⊎
e∈EX CC(e). 3

Case 2: Some of the edges of the cycle do not exist in
Gi. This means that the cycle C is broken into several

3In order to save running time, we use disjoint union (i.e.
U

)
instead of union (i.e. ∪) throughout the paper.

disjoint paths in Gi by the pre-determined vertices.
Since e exists in Gi, exactly one of these paths, denoted
as P , contains e. Observe that both endpoints of P
are pre-determined and thus Corollary 2.2 could give us
a constraint concerning the h-variables along the path.
Such a constraint will be called a path constraint. The
set of such path constraints for e in all locus graphs Gi

is denoted by CP(e), i.e.

CP(e) =

(k, j, b, e)

∣∣∣∣∣∣∣

in T (Gi) ∪ {e}, b is associated

with the path containing e and

connecting two pre-determined

vertices k and j, 1 ≤ i ≤ m

The set of path constraints for all cross edges is denoted
by CP =

⊎
e∈EX CP(e).

Tree Edge Constraints. By Corollary 2.2, there is an
implicit constraint concerning the h-variables along each
path between two pre-determined vertices in the same
connected component of T (Gi). Therefore, for each
connected component T of T (Gi), we arbitrarily pick
a pre-determined vertex in the component as the seed
vertex, and generate a constraint for the unique path
in T (Gi) between the seed and each of the other pre-
determined vertices in the component, as in Corollary
2.2. Such a constraint will be called a tree constraint.
Notice that if there exists any component having no pre-
determined vertices, then locus i must be heterozygous
across the entire pedigree and T (Gi) is actually a
spanning tree. Such a locus will be referred to as an
all-heterozygous locus. For such a locus i, we arbitrarily
pick a vertex in T (Gi) as the seed, but will not generate
at tree constraints.

To conform with the notation of path constraints
and for the convenience of presentation, we arbitrarily
pick a tree edge denoted as e0, and write the set of tree
constraints at all loci as

CT =

(k, j, b, e0)

∣∣∣∣∣∣∣

in a connected component of T (Gi)

with seed k, b is associated with the

path connecting vertices k and a pre-

determined vertex j, 1 ≤ i ≤ m

Note that e0 is the same for all the tree constraints, and
will be used as an indictor to distinguish tree constraints
from path constraints defined by cross edges.

Again, we need symmetrize path constraints and
tree constraints: given any constraint (k, j, b, e) gener-
ated for a path connecting two pre-determined vertices
k and j in a locus graph, define (k, j, b, e) = (j, k, b, e).
The above constructions of CC, CP and CT are more for-
mally described as pseudo-code in Figures 3. We can
easily see that

Lemma 3.1. |CC| + |CP| + |CT| = O(mn).

659

Procedure Cross Edge Constraints

input: locus graphs G[1..m] and the spanning tree T (G)

output: cross edge constraint sets CC, CP

begin

CC = CP = ∅;
for each cross edge e

Suppose that C is the cycle in T (G) ∪ {e};

CP(e) = CC(e) = ∅;
for each locus i
if C is connected in Gi

Let b =
P

(k,j)∈ C
dk,j [i];

CC(e) = CC(e)
U

{(e, b)};
else

Suppose P is the path containing e in T (Gi) ∪ {e};
Let vertices j1 and j2 be the endpoints of P ;

Define b = pj1 [i] + pj2 [i] +
P

(k,j)∈P
dk,j [i];

CP(e) = CP(e)
U

{(j1, j2, b, e)};

CC = CC
U

CC(e);

CP = CP
U

CP(e);

end.

Procedure Tree Edge Constraints

input: locus forests T (G[1..m]) and a fixed tree edge e0

output: tree edge constraint set CT

begin

CT = ∅;
for each locus i
for each connected component T in T (Gi)

if T has no pre-determined vertices
Arbitrarily pick a vertex j0 in T as the seed of T ;

else
Arbitrarily pick a pre-determined vertex j0 in T as
the seed of T ;

for each pre-determined vertex j1 6= j0 in T
Let P be the path between j0 and j1;

Define b = pj0 [i] + pj1 [i] +
P

(k,j)∈P
dk,j [i];

CT = CT
U

{(j0, j1, b, e0)};

end.

Figure 3: The procedure for generating constraints.

Algorithm ZRHC Phase

[Improved ZRHC Phase]

input: pedigree G = (V, E) and genotype {gj}

output: a general solution of {pj}

begin

Step 1. Preprocessing

Construct a [low-stretch] spanning tree T (G) on G;

Let e0 be an arbitrary tree edge;

for each locus i
Generate the locus graph Gi;

Generate the locus forest T (Gi);

Identify the pre-determined nodes;

Step 2. Constraint generation

Cross Edge Constraints(G[1..m] ,T (G), CC, CP);

Tree Edge Constraints(T (G[1..m]), CT, e0);�
Step 2′. Redundant Constraint Elimination

Compact Constraints(CC, CP, CT, e0);

�
Step 3. Solve the h-variables

Apply Gaussian elimination on CC
U

CP
U

CT

to get a general solution of the h-variables;

Step 4. Solve the p-variables by propagation

for each locus i

for each connected component T in T (Gi)

if T has no pre-determined vertices
Set the p-variable of the seed as a free variable and
treat it as a determined value;

Traverse T by BFS starting from the seed;

for each edge (j, k) in T

if pj [i] is determined but pk[i] is undetermined

pk[i] = pj [i] + hj,k + dj,k[i];

return {pj};

end.

Figure 4: The O(mn3) time algorithm ZRHC Phase,
and the O(mn2 + n3 log2 n log log n) time algorithm Im-

proved ZRHC Phase. The additional instructions in Im-

proved ZRHC Phase are highlighted by bold font in square
brackets.

660

3.2 Solving the Linear System for ZRHC Us-
ing the New Constraints We now describe how to
solve the system in Equation (2.3) in O(mn3) time. The
pseudo-code for solving the system is formally given as
algorithm ZRHC phase in Figure 4. Here, we first con-
struct the cycle, path and tree constraints on the h-
variables, and pick a vertex as the seed for every con-
nected component in the locus forests T (Gi), as de-
scribed in the last subsection. Then we solve these con-
straints by using Gaussian elimination to obtain a gen-
eral solution of the h-variables, which may contain some
free h-variables. Next, for each connected component
with no pre-determined vertices, we set the p-variable
of the seed as a free variable and treat it as a determined
value. Finally, we perform a (e.g. breadth-first) traver-
sal on the spanning forest T (Gi) of each locus graph
Gi. For each connected component of T (Gi), we start
from the seed and propagate its p-variable value to the
undetermined vertices in the component by using the so-
lution for the h-variables, which will result in functions
of the free h-variables and at most one free p-variable.
Note that in the last step of the algorithm, pk[i] is ex-
pressed as a linear combination of the free variables in
pj [i] and the free h-variables with an appropriate con-
stant term.

To show the correctness of the algorithm, we need
only show that the solution found by the algorithm is a
feasible solution for Equation (2.3) and vice the versa.
Since we determine the p-variables based on the linear
system for the h-variables derived from Equation (2.3),
any feasible solution to Equation (2.3) will be included
in the (general) solution found by our algorithm. In
other words, we do not lose any degrees of freedom in
the solution process. Hence, it suffices to show that our
solution satisfies Equation (2.3).

Lemma 3.2. The p-variables and h-variables deter-
mined by algorithm ZRHC Phase satisfy the linear system
in Equation (2.3).

Theorem 3.1. The running time of algorithm
ZRHC Phase is O(mn3).

4 Speeding up the Algorithm by Fast
Elimination of Redundant Equations

The bottleneck in the above algorithm is step 3 where
we have to spend O(mn3) time to solve a system of
O(mn) equations over O(n) variables. Clearly, most of
the equations are redundant and can be expressed as
linear combinations of other equations. The question
is how to detect and eliminate these redundant equa-
tions (without using Gaussian elimination, of course).
To our best knowledge, there are no methods that would
eliminate redundant equations for any system of linear
equations over any field faster than Gaussian elimina-
tion asymptotically in the worst case. Here, we give such

a method taking advantage of the underlying pedigree
structure. We first give a general method to compact
path and tree constraints that correspond to paths on
a cycle in the pedigree graph.

Let C be a cycle in the pedigree graph G induced
by cross edge e1. For convenience, we say that a
path/tree constraint is on the cycle C if it corresponds
to a path/edge on C. The following lemma shows that
the path/tree constraints on a cycle can be greatly
compacted, and is the key to our algorithm to eliminate
redundant constraints.

Lemma 4.1. Given a set C of path/tree constraints on
cycle C, we can reduce C to an equivalent constraint set
of size at most 2 · length(C) in time O(|C|).

An immediate application of Lemma 4.1 is to re-
move redundancy from each path constraint set CP(e),
since the path constraints in CP(e) are all on the cycle
induced by e.

Corollary 4.1. Given the path constraint set CP(e),
we can reduce it to an equivalent constraint set of size
at most 2 · length(C) in time O(|CP(e)|), where C is the
cycle induced by cross edge e.

We can also use Lemma 4.1 to remove redundant
tree constraints. Note that the construction in the proof
of Lemma 4.1 still works if the constraints in C are all
tree constraints involving no cross edge e1. Moreover,

the resultant set Ĉ contains only constraints of the form

(k0, j, b, e0). This implies that |Ĉ| ≤ n. Therefore, the
following corollary holds.

Corollary 4.2. Given the tree constraint set CT, we
can reduce it to an equivalent constraint set of size at
most n, in O(|CT|) time.

4.1 Elimination of Redundant Cycle Con-
straints Each cross edge e induces a unique cycle C.
Since every constraint in CC(e) concerns the same set
of h-variables corresponding to the edges on C, each
CC(e) contains only one independent constraint. More-
over, these constraints are consistent with each other
if and only if their associated constants are identical,
which can be checked in O(m) time. Because the total
number of cross edges are at most n + 1, we have the
following lemma

Lemma 4.2. Given the cycle constraint set CC, we can
reduce it to an equivalent constraint set of size at most
n + 1 in O(mn) time.

4.2 Elimination of Redundant Path Con-
straints We will show how to reduce the path con-
straints CP on a general pedigree to an equivalent set of

661

Procedure Compact PT Const

input: a set C of path/tree constraints

on cycle C induced by cross edge e1,
and a fixed tree edge e0

output: a compact constraint set bC ≡ C

begin

Construct the constraint graph G∗ for C;bC = ∅;

for each connected component S of G∗

Pick an arbitrary vertex k0 ∈ S as the root of S;
Traverse S by BFS starting from k0;

while there exists unvisited vertices in G∗

Visit an unvisited vertex, say k, in the BFS order;

for each constraint c = (k0, j, b, e) in CbC = bCU {c};

for each constraint c = (k, j, b, e) in C

s.t. vertex k 6= k0 is visited before j

for each constraint c′ = (k0, k, b′, e′) in bC
b′′ = b + b′;

if {e} ∪ {e′} = {e0, e1}

e′′ = e1;
else

e′′ = e0;

Construct a new constraint c′′ = (k0, j, b
′′, e′′);

if there exists a constraint (k0, j, b
′′ + 1, e′′) ∈ bC

exit “The input genotypes are inconsistent.”;

if c′′ /∈ bCbC = bCU {c′′};

return bC;

end.

Figure 5: The procedure for compacting path and tree con-
straints on a cycle.

Procedure Compact Constraints

input: CC, CP, CT, and a fixed tree edge e0

output: compact CC, CP and CT

begin

Step 1. Removing redundant cycle constraints

for each cross edge e

Pick an arbitrary constraint, say c = (e, b), from CC(e);

if there exists a constraint (e, b + 1) ∈ CC(e)

exit “The input genotypes are inconsistent.”;

CC = CC − CC(e)
U

{c};

Step 2. Processing path constraints

if G is a tree pedigree
for each cross edge ebCP(e) = ∅;

for each constraint c = (k, j, b, e) ∈ CP(e)

if there exists a constraint (k, j, b + 1, e) ∈ CP(e)

exit “The input genotypes are inconsistent.”;bCP(e) = bCP(e)
U
{c};

CP = CP − CP(e)
U bCP(e);

else if G has an all-heterozygous locus
for each cross edge e

Let (b′, e) be the cycle constraint for e in CC;

for each constraint c = (k, j, b, e) in CP(e)

Construct a new constraint c′ = (k, j, b − b′, e0);

CT = CT
U

{c′} ;

else (i.e. G is a general pedigree)

for each cross edge ebCP(e) = Compact PT Const(CP(e), e0);

CP = CP − CP(e)
U bCP(e);

Step 3. Removing redundant tree constraints

CT = Compact PT Const(CT, e0);

end.

Figure 6: The procedure for removing redundant constraints.

662

path constraints with size O(n log2
n log log n) in O(mn)

time (assuming log2 n log log n < m). Furthermore, for
tree pedigrees (i.e. pedigrees with no mating loops) we
can make the equivalent constraint set as small as O(n).
For pedigrees with an all-heterozygous locus across the
entire pedigree, we can first transform CP into an equiv-
alent tree constraint set with size O(mn), and then will
remove its redundancy via Corollary 4.2. We first start
with the special cases.

Elimination of Redundant Path Constraint on
Tree Pedigrees. Observing that the length of each
(simple) cycle in the pedigree graph of a tree pedigree
is a constant (i.e. 4, of which an example is given in
Figure 2(B)), we can upper bound the total number of
path constraints as follows.

Lemma 4.3. Given the path constraint set CP on a
tree pedigree, we can reduce it to an equivalent path
constraint set of size O(n) in O(mn) time.

Transformation of Path Constraints on Pedi-
grees with an All-Heterozygous Locus. Observe
that for a pedigree with an all-heterozygous locus i, each
cross edge induces a cycle that exists in the locus graph
Gi and has a cycle constraint in the (reduced) set CC.
This allows us to transform all the path constraints into
tree constraints given the cycle constraints as follows.

Corollary 4.3. Given the path constraint set CP on a
pedigree with an all-heterozygous locus, we can construct
a equivalent tree constraint set of size O(mn) in O(mn)
time.

Elimination of Redundant Path Constraints on a
General Pedigree. Now we consider how to compact
path constraints in the general case. As shown in
Corollary 4.1, given a cross edge e inducing cycle C, we
can compact the constraints in CP(e) so that at most
2 · length(C) constraints are kept. Clearly, the compact
CP has size at most O(n2) since the number of cross
edges is at most n+1 and the length of a cycle containing
a cross edge is at most n. This bound can be improved
by observing that the total length of all cycles in G is
related to the average stretch [8] of G with respect to
the spanning tree T (G). Hence, we can obtain a sharper
upper bound on |CP| by using a low-stretch spanning
tree T (G) as constructed in [8].

We first give a formal definition of the stretch
of an unweighted connected graph with respect to
a spanning tree. Given a spanning tree T on an
unweighted connected graph G = (V, E) (e.g. the
pedigree graph), we define the stretch of an edge (k, j) ∈
E, denoted as strethT (k, j), to be the length of the
unique path (i.e. the number of edges on the path) in
T between k and j. The average stretch of G with

respect to T is then defined as avg-stretchT (E) =
1

|E|

∑
(k,j)∈E stretchT (k, j).

Lemma 4.4. Given a pedigree G, we can build a low-
stretch spanning tree T (G) in O(n log n) time such that
|CP| = O(n log2 n · log log n) after compacting.

4.3 Elimination of Redundant Tree Constraints
and the Final Algorithm After we process (i.e. com-
pact or transform) the path constraints, we eliminate
redundant tree constraints and obtain a compact tree
constraint set containing at most n constraints as shown
in Corollary 4.2. The complete algorithm for eliminat-
ing redundant cycle, path and tree constraints is given
in Figure 6 as procedure Compact Constraints. The next
theorem summarizes the above discussion.

Theorem 4.1. Given the constraint sets CC, CP and
CT on a pedigree, we can reduce them to an equivalent
constraint set of size O(n · log2 n log log n) in O(mn)
time. In particular, for tree pedigrees and pedigrees with
an all-heterozygous locus, the equivalent constraint set
has size O(n).

We can incorporate the above redundant con-
straint elimination procedure Compact Constraints into the
O(mn3) time algorithm for ZRHC to obtain an im-
proved algorithm Improved ZRHC Phase as shown in Fig-
ure 4. (An example of how Improved ZRHC Phase works
is given in the appendix). The following theorem is ob-
vious given Theorem 4.1.

Theorem 4.2. The algorithm Improved ZRHC Phase

solves the ZRHC problem correctly on any pedigree
in O(mn2 + n3 log2 n log log n) time. Moreover, it
solves ZRHC on tree pedigrees or pedigrees with an
all-heterozygous locus in O(mn2 + n3) time.

5 Concluding Remarks

It remains interesting if the time complexity for ZRHC
on general pedigrees can be improved to O(mn2 + n3)
or lower. Another open question is how to use the
algorithm to solve MRHC on pedigrees that require only
a small (constant) number of recombinants.

6 Acknowledgements

We would like to thank Jing Li and Cliff Zhang for
many useful discussions on ZRHC. The research is sup-
ported in part by NSF grant CCR-0309902, NIH grant
LM008991-01, NSFC grant 60528001, National Key
Project for Basic Research (973) grant 2002CB512801,
and a fellowship from the Center for Advanced Study,
Tsinghua University. Also, the authors wish it to be
known that the first two authors should be regarded as
joint First Authors of this paper.

663

References

[1] G. R. Abecasis, S. S. Cherny, W. O. Cookson and L. R.
Cardon, Merlin–rapid analysis of dense genetic maps
using sparse gene flow trees. Nat Genet, 30(1):97-101,
2002.

[2] M. Y. Chan, W. Chan, F. Chin, S. Fung, and M. Kao
Linear-Time Haplotype Inference on Pedigrees without
Recombinations Proc. of the 6th Annual Workshop
on Algorithms in Bioinformatics (WABI06), to appear,
2006.

[3] F. Chin and Q. Zhang. Haplotype inference on tightly
linked markers in pedigree data. Unpublished manu-
script, 2005.

[4] F. Chin, Q. Zhang, and H. Shen. k-Recombination
Haplotype Inference in Pedigrees. Proc. of the Interna-
tional Workshop on Bioinformatics Research and Ap-
plications (ICCS), 985-993, 2005.

[5] K. Doi, J. Li and T. Jiang. Minimum recombinant
haplotype configuration on tree pedigrees. Proc. of the
3rd Annual Workshop on Algorithms in Bioinformatics
(WABI03), 339-353, 2003.

[6] M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson,
and E. S. Lander. High-resolution haplotype structure
in the human genome. Nat Genet, 29(2):229–32, 2001.

[7] D. Coppersmith, and S. Winograd. Matrix multiplica-
tion via arithmetic programming. J. Symb. Comput.
9:251-280, 1990.

[8] M. Elkin, Y. Emeky, D. A. Spielman, S. Teng. Lower-
Stretch Spanning Trees Proc. 37th ACM Symposium
on Theory of computing(STOC’05), 494-503, 2005.

[9] E. Eskin, E. Halperin, and R. M. Karp. Large scale
reconstruction of haplotypes from genotype data. In
Proc. RECOMB’03, pages 104–113, 2003.

[10] S. B. Gabriel, S. F. Schaffner, H. Nguyen, J. M.
Moore, J. Roy, B. Blumenstiel, J. Higgins, M. DeFelice,
A. Lochner, M. Faggart, S. N. Liu-Cordero, C. Rotimi,
A. Adeyemo, R. Cooper, R. Ward, E. S. Lander, M. J.
Daly, and D. Altshuler. The structure of haplotype
blocks in the human genome. Science, 296(5576):2225–
9, 2002.

[11] D. Gusfield. Haplotyping as perfect phylogeny: con-
ceptual framework and efficient solutions. In Proc. RE-
COMB’02, pages 166–175, 2002.

[12] D. Gusfield. An overview of combinatorial methods
for haplotype inference. Lecture Notes in Computer
Science (2983): Computational Methods for SNPs and
Haplotype Inference., 9–25, 2004.

[13] D. F. Gudbjartsson, K. Jonasson, M. L. Frigge, and A.
Kong. Allegro, a new computer program for multipoint
linkage analysis. Nat Genet, 25(1):12–13, 2000.

[14] M. Giesbrecht, A. Lobo, and B. Saunders. Certifying
inconsistency of sparse linear systems. International
Symposium on Symbolic and Algebraic Computation
pp. 113-119, 1998.

[15] G. H. Golub and C. F. Van Loan. Matrix Computa-
tions. John Hopins Univeristy Press, Baltimore, Mary-
land, third edition, 1996.

[16] L. Helmuth. Genome research: Map of the human
genome 3.0. Science, 293(5530):583–585, 2001.

[17] B. V. Halldórsson, V. Bafna, N. Edwards, R. Lippert,
S. Yooseph and S. Istrail. A survey of computational
methods for determining haplotypes. Lecture Notes in
Computer Science (2983): Computational Methods for
SNPs and Haplotype Inference., 26–47, 2004.

[18] The international HapMap Consortium. International
HapMap Project. Nature 426:789-796, 2003.

[19] L. Helmuth. Genome research: Map of the human
genome 3.0. Science, 293(5530):583–585, 2001.

[20] L. Kruglyak, M. J. Daly, M. P. Reeve-Daly and E.
S. Lander. Parametric and nonparametric linkage
analysis: a unified multipoint approach. Am J Hum
Genet, 58(6):1347–63, 1996.

[21] J. Li and T. Jiang. Efficient rule-Based haplotyping
algorithm for pedigree data. Proc. 7th Annual Confer-
ence on Research in Computational Molecular Biology
(RECOMB’03), 197-206, 2003.

[22] J. Li and T. Jiang. An exact solution for finding min-
imum recombinant haplotype configurations on pedi-
grees with missing data by integer linear programming.
Proc. RECOMB’04, 20-29, 2004.

[23] J. Li and T. Jiang. Computing the minimum recombi-
nant haplotype configuration from incomplete genotype
data on a pedigree by Integer Linear Programming.
Journal of Computational Biology 12(6), 719-739, 2005.

[24] S. Lin and T. P. Speed. An algorithm for haplotype
analysis. J Comput Biol, 4(4):535–46, 1997.

[25] X. Li, Y. Chen and J. Li. An efficient algorithm for
the zero-recombinant haplotype cofiguration problem.
Unpublished manuscript, 2006.

[26] L. Liu, X. Chen, J. Xiao and T. Jiang. Complex-
ity and approximation of the minimum recombination
haplotype configuration problem. Proc. 16th Inter-
national Symposium on Algorithms and Computation
(ISAAC’05), 370-379, 2005.

[27] B. LaMacchia and A. Odlyzko. Solving large sparse
linear systems over finite fields. Proceedings of the
10th Annual International Cryptology Conference on
Advances in Cryptology. Lecture Notes In Computer
Science 537, pp. 109 - 133, 1990.

[28] J. R. O’Connell. Zero-recombinant haplotyping: appli-
cations to fine mapping using SNPs. Genet Epidemiol,
19 Suppl 1:S64–70, 2000.

[29] D. Qian and L. Beckmann. Minimum-recombinant
haplotyping in pedigrees. Am J Hum Genet,
70(6):1434–1445, 2002.

[30] H. Seltman, K. Roeder, and B.D. Devlin. Trans-
mission/disequilibrium test meets measured haplotype
analysis: family-based association analysis guided by
evolution of haplotypes. Am J Hum Genet, 68(5):1250–
1263, 2001.

[31] E. Sobel, K. Lange, J. O’Connell, and D. Weeks.
Haplotyping algorithms. T. Speed and M. Waterman,
eds., Genetic Mapping and DNA Sequencing, IMA Vol
in Math and its App, 81:89–110, 1996.

[32] E. Sobel and K. Lange. Descent graphs in pedigree
analysis: applications to haplotyping, location scores,
and marker-sharing statistics. Am J Hum Genet,
58(6):1323–37, 1996.

[33] V. Strassen. Gaussian Elimination is not Optimal
Numer. Math. 13, pp. 354-356, 1969

[34] P. Tapadar, S. Ghosh, and P. P. Majumder. Haplotyp-
ing in pedigrees via a genetic algorithm. Hum Hered,
50(1):43–56, 2000.

[35] E. M. Wijsman. A deductive method of haplotype
analysis in pedigrees. Am J Hum Genet, 41(3):356–73,
1987.

[36] D. Wiedemann. Solving sparse linear euquations over
finite fields. IEEE Trans. Inf. Theory, IT-32:52-62,
1986

[37] S. Zhang et al. Transmission/Disequilibrium test based
on haplotype sharing for tightly linked markers. Am J
Hum Genet, 73(3):566–579, 2003.

[38] Available at http://www.cs.ucr.edu/∼lliu/paper/
ZRHC.ps

664

