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Experimental realization of a universal set of
quantum logic gates is the central requirement
for implementation of a quantum computer. An
all-geometric approach to quantum computation
[1, 2] offered a paradigm for implementation
where all the quantum gates are achieved based
on the Berry phases [3] and their non-abelian
extensions, the holonomies [4], from geometric
transformation of quantum states in the Hilbert
space [5]. Apart from its fundamental interest
and rich mathematical structure, the geometric
approach has some built-in noise-resilient features
[1, 2, 6, 7]. On the experimental side, geometric
phases and holonomies have been observed using
nuclear magnetic resonance with thermal ensem-
bles of liquid molecules [8, 9], however, such sys-
tems are known to be non-scalable for quantum
computing [10]. There are proposals to imple-
ment geometric quantum computation in scalable
experimental platforms such as trapped ions [11],
superconducting qubits [12], or quantum dots
[13], and a recent experiment has realized geomet-
ric single-bit gates with the superconducting sys-
tem [14]. Here, we report the first experimental
realization of a universal set of geometric quan-
tum gates with solid-state spins of the diamond
defects. The diamond defects provide a scalable
experimental platform [15–17] with the potential
for room-temperature quantum computing [16–
19], which has attracted strong interest in recent
years [20]. Based on advance of coherent con-
trol in this system [15–20], our experiment shows
that all-geometric and potentially robust quan-
tum computation can be realized with solid-state
spin qubits.

Under adiabatic cyclic evolution, a non-degenerate
eigenstate of a quantum system acquires a phase factor,
which has a dynamical component proportional to the
time integral of the eigenenergy and a geometric com-
ponent determined by the global property of the evo-
lution path. This geometric phase, first discovered by
Berry [3], has found connection with many important
physics phenomena [21]. If the system has degenerate
eigenstates, the Berry’s phase is replaced by an geo-
metric unitary operator acting on the degenerate sub-
space, termed as holonomy from the differential geome-

try. The holonomies are in general non-commutable with
each other. In the proposal of geometric quantum com-
putation [1, 2], such holonomies are exploited to realize
a universal set of quantum gates, compositions of which
then can fulfill arbitrary quantum computation tasks. As
holonomies are determined by global geometric proper-
ties, geometric computation is more robust to certain
control errors [1, 2, 6, 7]. Implementation of geomet-
ric quantum computation has been proposed in several
qubit systems [11–13], however, it remains experimen-
tally challenging to realize a universal set of gates all by
holonomies, because of the requirements of slow adiabatic
evolution and a complicated level structure.

In the recent proposal of non-adiabatic geometric
quantum computation [6, 22], universal quantum gates
are constructed fully by geometric means without re-
quirement of the adiabatic condition, thereby combin-
ing speed with universality. Under a cyclic evolution of
the system Hamiltonian H (t) (with H (τ) = H (0)), let
|ξl (t)〉 (l = 1, 2, · · · ,M) denote instantaneous orthonor-
mal bases (moving frames) which coincide with the ba-
sisvectors |ξl〉 of the computational space C at t = 0, τ
with |ξl (τ)〉 = |ξl (0)〉 = |ξl〉. The evolution operator
U (τ) on the basis states |ξl〉 has two contributions: a dy-
namic part and a fully geometric part [6]. If the parallel-
transport condition 〈ξl (t)|H (t) |ξl′ (t)〉 = 0 is satisfied
for any l, l′ at any time t, the dynamic contribution be-
comes identically zero, and U (τ) is given by

U (τ) = T exp

i τ∫
0

Adt

 , (1)

where T denotes the time-ordered integration and A =
[All′ ] = [〈ξl (t)| i∂t |ξl′ (t)〉] represents the M × M con-
nection matrix [6]. The form of U (τ) is identical to the
Wilczek-Zee holonomy in the adiabatic case [4, 6].

Our experiment realizes a universal set of quantum
gates all by use of the nonadiabatic holonomies [6].
Single-bit gates, together with entangling controlled-
NOT (CNOT) operation, are universal for quantum com-
putation. Our realization is based on control of electron
and nuclear spins in a diamond nitrogen-vacancy (NV)
center that form effectively a quantum register [20]. To
realize the single-bit geometric gates, we manipulate the
electron spin states of a NV center (Fig. 1a) in a syn-
thetic diamond at room temperature (see Methods for
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FIG. 1: Geometric gates in a diamond nitrogen va-
cancy center. a, Illustration of a nitrogen vacancy (NV)
center in a diamond with a proximal C13 atom. b, Encoding
of a qubit in the spin-triplet ground state of the NV center
and the microwave coupling configuration. The electron spin
0 state provides an ancillary level |a〉 for geometric manipu-
lation of the qubit. c, A geometric picture of the holonomic
gates. Under a cyclic Hamiltonian evolution, the dark |D〉
(bright |B〉) state rotates by 2π along the north pole (equa-
tor) of the Bloch sphere, acquiring a geometric phase of 0
(π) given as half of the swept solid angle. When we choose
different forms of the dark and bright states by controlling
parameters in the Hamiltonian, this state-dependent geomet-
ric phase leads to the corresponding holonomic gates. d, The
time sequence for implementation and verification of single-
qubit geometric gates.

description of the experimental setup). The NV center
has a spin-triplet ground state. We take the Zeeman com-
ponents |m = −1〉 ≡ |0〉 and |m = +1〉 ≡ |1〉 as the qubit
basis states and use |m = 0〉 ≡ |a〉 as an ancillary level for
geometric manipulation of the qubit. The spin state is
initialized through optical pumping to the |m = 0〉 level
and read out by distinguishing different fluorescence lev-
els of the states under illumination of a short green laser
pulse [20] (see Methods for calibration of fluorescence
levels of different states). We apply a magnetic field of
451 G along the NV axis using a permanent magnet. Un-
der this field, the nearby nuclear spins are polarized by
optical pumping [23], enhancing the coherence time of
the electron spin.

The transitions from the qubit states |0〉 , |1〉 to the

ancillary level |a〉 are coupled by microwave pulses con-
trolled through an arbitrary waveform generator (AWG),
with Rabi frequencies Ω0 (t), Ω1 (t), respectively (Fig.
1b). We vary the amplitude Ω (t) =

√
Ω2

0 + Ω2
1 but fix

the ratio Ω1/Ω0 = eiϕ tan θ to be constant. The Hamil-
tonian for the coupling between these three levels takes
the form

H1 (t) = ~Ω (t)
[(

cos θ |0〉+ eiϕ sin θ |1〉
)
〈a|+H.c.

]
(2)

where ~ is the Planck constant divided by 2π and H.c.
denotes the Hermitian conjugate. Define the bright state
as |B〉 = cos θ |0〉 + eiϕ sin θ |1〉 and the dark state as
|D〉 = −e−iϕ sin θ |0〉 + cos θ |1〉. When Ω (t) makes a
cyclic evolution with Ω (0) = Ω (τ) = 0, the bright state
evolves as |B (t)〉 = eiα(t) [cosα (t) |B〉+ sinα (t) |a〉],
where α (t) ≡

∫ t
0

Ω (t′) dt′, while the dark state remains
unchanged. After a cyclic evolution with α (τ) = π,
the bright (dark) state picks up a geometric phase of
π (0), respectively, as illustrated in Fig. 1c. We take
the moving frame as |ξ0 (t)〉 = cos θ |B (t)〉−eiϕ sin θ |D〉,
|ξ1 (t)〉 = e−iϕ sin θ |B (t)〉 + cos θ |D〉, which makes a
cyclic evolution with |ξl (0)〉 = |ξl (τ)〉 = |l〉 (l = 0, 1).
For this evolution, one can easily check that the condi-
tion 〈ξl (t)|H (t) |ξl′ (t)〉 = 0 is always satisfied, so there is
no dynamic contribution to the evolution operator U (τ)
[6]. Using the expression (1), we find the holonomy

U (τ) =

[
− cos (2θ) −eiϕ sin (2θ)
−e−iϕ sin (2θ) cos (2θ)

]
(3)

under the computational basis {|0〉 , |1〉}.
We evolve the Rabi frequencies Ωi (t) along three dif-

ferent loops, with the parameters (θ, ϕ) chosen respec-
tively as (3π/4, 0), (3π/4, π/8), (5π/8, 0). The three ge-
ometric gates resulting from these cyclic evolutions are
denoted by the NOT gate N , the rotation gate A, and
the Hadamard gate H, respectively. The combination
of the gates N and A gives the well-known π/8-gate
T = NA, which, together with the Hadamard gate H,
make a universal set of single-bit gates. To characterize
these geometric gates, we use quantum process tomog-
raphy by preparing and measuring the qubit in different
bases [25], with the time sequence shown in Fig. 1d. The
matrix elements for each process are shown in Fig. 2a-2c,
which are compared with the corresponding elements of
the ideal gates. From the process tomography (see Meth-
ods), we find the process fidelity FP = (96.5± 1.9) %,
(96.9± 1.5) %, (92.1± 1.8) % respectively for the N , A,
and H gates. The major contribution to the infidelity
actually comes from the state preparation and detection
error in quantum process tomography. To measure the
intrinsic gate error, we concatenate a series of gates and
examine the fidelity decay as the number of gates in-
creases [19]. As an example, we show in Fig. 2d the
fidelity decay by concatenating the NOT gates. From
the data, we find the intrinsic error per gate is about
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FIG. 2: Experimental results for single-bit geometric
gates. The measured process matrix elements for the rota-
tion gate A (a), the NOT gate N (b), and the Hadamard gate
H (c). The measured tiny imaginary parts of the process ma-
trices for the NOT and the Hadamard gates are not shown.
The hollow caps in these figures denote the corresponding
matrix elements for the ideal gates. d, The measured fideli-
ties of the final states compared with the ideal output (error
bars denote s.d.) after application of a sequence of the ge-
ometric NOT gates, with the initial state taken as |0〉 and
|1〉, respectively. By fitting the data under the assumption of
independent error for each gate, we obtain the error induced
by each NOT gate at (0.24± 0.06)%.

0.24%. This can be compared with the 1% error rate
for the dynamic NOT gate using optimized pulses by the
same method of measurement [19]. The achieved high
fidelity indicates that the geometric manipulation is in-
deed resilient to control errors.

To realize the geometric quantum CNOT gate, we use
one nearby C13 nuclear spin as the control qubit (with
the basisvectors |↑〉 , 〈↓|) and the NV center electron spin
as the target qubit [24]. Both the electron spin and the
nuclear spin are polarized through optical pumping under
the 451 G magnetic field, which is confirmed by the opti-
cally detected magnetic resonance (ODMR) spectroscopy
shown in Fig. 3b. The spins are interacting with each
other through hyperfine and dipole couplings, and the re-
sultant level configuration is shown in Fig. 3a. By apply-
ing state-selective microwave (MW) and radio-frequency
(RF) pulses, we can couple different levels. In particular,
with the MW0 and MW1 pulses with Rabi frequencies
Ω0 (t), Ω1 (t), we have the following coupling Hamilto-
nian

H2 (t) = ~Ω (t) [(|0, ↑〉 − |1, ↑〉) 〈a, ↑|+H.c.] /
√

2, (4)

where we have fixed the ratio Ω1/Ω0 = −1. Under a
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FIG. 3: Level scheme and pulse sequence for the geo-
metric CNOT gate. a, The level structure of the electron
and the nuclear spins for the geometric CNOT gate and the
microwaves and RF coupling configuration. b, Optically de-
tected magnetic resonance (ODMR) spectroscopy by measur-
ing the fluorescence level while scanning the frequency of the
microwave that couples to the electron spin 0 to 1 transition.
The two dips at 33.6 G magnetic field (shown in the insert)
represent the hyperfine splitting caused by the unpolarized
nuclear spin. The very asymmetric dips at 451 G field indi-
cates that the nuclear spin has been polarized. c, The time
sequence for implementation and verification of the geomet-
ric CNOT gate between the electron and the nuclear spins.
The CNOT gate is implemented by applying MW0 and MW1
pulses simultaneously. The other microwaves (MW0, MW1,
MW2, and MW3) are used for implementation of a spin echo
to increase the spin coherence time. To verify the CNOT gate,
we use a combination of the microwave and the RF pulses to
prepare various initial superposition states and measure the
final output in different bases through quantum state tomog-
raphy.

cyclic evolution of Ω (t) with
∫ τ
0

Ω (t) dt = π, we find
the holonomy U (τ) = |↑〉 〈↑| ⊗N + |↓〉 〈↓| ⊗ I using the
formula (1), where I denotes the 2× 2 unit matrix. This
achieves exactly the quantum CNOT gate.

To characterize the geometric CNOT gate, we apply
the gate to the qubit basis states as well as their su-
perpositions, and measure the fidelity of the final states
compared with the ideal outputs through the quantum
state tomography [25]. The superposition of the nu-
clear spin states required for state preparation and mea-
surement is generated through RF pulses, which take
longer times compared with the microwave pulses due
to the much smaller magnetic moment of the nuclear
spin. The electron spin decoherence is significant dur-
ing the slow RF pulses. To correct that, we apply a
Hahn spin echo in the middle of the whole operation
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Two-qubit geometric CNOT gate 

Initial state |0 ↑〉 |0 ↓〉 |1 ↑〉 |1 ↓〉 0 (| ↑〉 + | ↓〉) 0 (| ↑〉 + 𝑠𝑠| ↓〉) 

Ideal final state 1 ↑  |0 ↓〉 |0 ↑〉 |1 ↓〉 1 ↑ + |0 ↓〉 1 ↑ + 𝑠𝑠|0 ↓〉 

Measured fidelity 0.99(1) 0.97(1) 0.87(1) 0.94(2) 0.90(3) 0.86(4) 

Real part Imaginary part 

(a) 

(b) 

FIG. 4: Experimental results for the geometric CNOT
gate. a, Measured output state fidelities of the geometric
CNOT gate under a few typical input states, where the num-
ber in the bracket represents the error bar (s.d.) in the
last digit. b, The matrix elements of the output density
operator reconstructed through quantum state tomography
when the geometric CNOT is applied to the product state
|0〉 (|↑〉+ |↓〉) /

√
2. The hollow caps denote the matrix ele-

ments for the ideal output state under a perfect gate.

with the time sequence shown in Fig. 3c. The measured
state fidelities are listed in Fig. 4a under typical input
states. As a hallmark of the entangling operation, the
geometric CNOT gate generates entanglement from the
initial product state. As an example, for the input state
|0〉 ⊗ (|↑〉+ |↓〉) (unnormalized), the matrix elements of
the output density operator are shown in Fig. 4b, with
a measured entanglement fidelity of (90.2± 2.5) % and
concurrence of 0.85 ± 0.05, which unambiguously con-
firms entanglement [10].

Our experimental realization of a universal set of holo-
nomic gates with individual spins paves the way for all-
geometric quantum computation in a solid-state system.
The electron and nuclear spins of different NV centers
can be wired up quantum mechanically to form a scal-
able network of qubits through, e.g., the direct dipole
interaction [16, 18], the spin-chain assisted coupling by
the nitrogen dopants [17, 26], or the photon-mediated
coupling [15, 27, 28]. The technique employed here for
geometric realization of universal gates may also find ap-
plications in other scalable experimental systems, such as
trapped ions or superconducting qubits. The geometric
phase is closely related to the topological phase [29, 30],
and the demonstration of gates all by holonomies is an
important step towards realization of topological compu-
tation [30], the most robust way of quantum computing.
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METHODS

Experimental setup

We use a home-built confocal microscopy, with an
oil-immersed objective lens (N.A. = 1.49), to address
and detect single NV center in a type IIa single-crystal
synthetic diamond sample (Element Six). A 532 nm
diode laser, controlled by an acoustic optical modula-
tor (AOM), is used for spin state initialization and de-
tection. We collect fluorescence photons (wavelength
ranging from 637 − 850 nm) into a single-mode fiber
and detect them by the single-photon counting modu-
lar (SPCM), with a counting rate 105 kHz and a signal-
to-noise ratio 15 : 1. The diamond sample is mounted
on a 3-axis closed-loop Piezo for sub-micrometer reso-
lution scanning. An impedance-matched gold coplanar
waveguide (CPW) with 70 µm gap, deposited on a cover-
glass, is used for delivery of radio-frequency (RF) and
microwave (MW) signals to the NV center.

In our experiment, we find a single NV center with a
proximal C13 of 13.7 MHz hyperfine strength (Fig. 1). To
polarize the nearby nuclear spins (C13 and the host N14),
we apply a magnetic field of 451 G along the NV axis us-
ing a permanent magnet. Under this field, the electron
spin levels |m = 0〉 and |m = −1〉 become almost degen-
erate in the optically excited state (called the esLAC, the
electron spin level anti-crossing [23]), which facilitates
electron-spin nuclear-spin flip-flop process during optical
pumping. The spin flip-flop process leads to polarization
of the nitrogen nuclear spin on the NV site and the nearby
C13 nuclear spins after 2µs green laser illumination [23].
The Zeeman energy from the 451 G magnetic field shifts
the energy difference between electron spin states |m = 0〉
and |−1〉 (|+1〉) from the zero-field splitting 2870 MHz
to 1601 MHz (4141 MHz) and the nuclear spin hyperfine
splitting from 13.7 MHz to 14.15 MHz (13.25 MHz) for
|−1〉 (|+1〉) levels. Due to the large splitting of m = ±1
levels, we apply two independent MW sources (Rohde-
Schwarz), locked by a 10 MHz reference Rubidium clock,
to address each transition. To adjust the frequency and
phase of the MW pulses, we mix each MW output with
an AWG (Tektronix, 500 MHz sample rate). RF signals
for nuclear spin manipulation are generated directly by
another analog channel of the AWG. All the MW and
RF signals are amplified by independent amplifiers, com-
bined through a home-made circuit, and delivered to the
CPW. The digital markers of the AWG are used to con-
trol the pulse sequence (including laser and SPCM) with
a timing resolution of 2 ns.

For each experimental cycle, we start the sequence with
2 µs laser illumination to polarize NV electron spin and
nearby nuclear spins and end it with a 3 µs laser pulse for
spin state detection. We collect signal photons for 300
ns right after the detection laser rises, and another 300
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ns for reference 2 µs later. With a photon collection rate
of 105 kHz, we have an average of 0.03 photon counts
per cycle. For measurement of each data, we repeat the
experimental cycle at least 106 times, resulting in a total
photon counts of 3× 104. The error bars of our data ac-
count for the statistical error associated with the photon
counting. To calculate the error bar of each data, we use
Monte Carlo simulation by assuming a Poissonian distri-
bution for the photon counts. For each simulation trial,
we calculate the value of each data. Then, by sampling
over all the trails according to the Poissonian distribu-
tion, we get statistics of the data (including its mean
value and standard deviation, the error bar).

Calibration of fluorescence levels for different states

Due to the esLAC that induces spin flip-flop during
the detection and the imperfect initial polarization of the
electron and nuclear spins, each spin component |m,mn〉
(m = 0,±1; mn =↑, ↓) may fluorescent at different lev-
els. Note that the spins are dominantly in the state
|m = 0,mn =↑〉 after the optical pumping. To calibrate
the fluorescence level of each state, we therefore asso-
ciate the detected fluorescence level right after the opti-
cal pumping with the state |m = 0,mn =↑〉. With MW
or RF π-pulses (the π-pulses are calibrated through Rabi
oscillations), we can make a complete transfer between
|m = 0,mn =↑〉 and any other |m,mn〉 spin component.
For instance, with a π-pulse between |m = 0,mn =↑〉
and |m = 0,mn =↓〉 right after the optical pumping,
we associate the detected fluorescence level with the

|m = 0,mn =↓〉 state. In this way, the characteristic
fluorescence level of each component |m,mn〉 can be cal-
ibrated. With the calibrated fluorescence level for each
spin component, we then read out the system state after
the geometric gates through quantum state tomography
[25].

Quantum Process tomography

A quantum process can be described by a completely
positive map ε acting on an arbitrary initial state ρi,
transferring it to ρf ≡ ε(ρi). In quantum process to-
mography (QPT), we choose a fixed set of basis opera-
tors {Em} so that the map ε(ρi) =

∑
mnEmρiE

†
nχmn

is identified with a process matrix χmn. We experimen-
tally measure this process matrix χ through the maxi-
mum likelihood technique [25]. For single-bit QPT, we
set the basis operators as I = I, X = σx, Y = −iσy,
Z = σz and choose four different initial states |0〉, |1〉,
(|0〉 + |1〉)/

√
2, and (|0〉 − i|1〉)/

√
2. We reconstruct the

corresponding final density operators through the stan-
dard quantum state tomography and use them to calcu-
late the process matrix χe. This process matrix χe is
compared with the ideal one χid by calculating the pro-
cess fidelity FP = Tr(χeχid). The process fidelity FP
also determines the average gate fidelity F by the for-
mula F = (dFP + 1)/(d + 1) [25], where F is defined as
the fidelity averaged over all possible input states with
equal weight and d is the dimension of the state space
(with d = 2 for a single qubit).


	 References
	 Methods
	 Experimental setup
	 Calibration of fluorescence levels for different states
	 Quantum Process tomography


