
Bounded Rationality of Restricted Turing Machines∗

Lijie Chen, Pingzhong Tang, Ruosong Wang
Institute for Interdisciplinary Information Sciences,

Tsinghua University, Beijing, China.

Abstract

Bounded rationality aims to understand the effects of how
limited rationality affects decision-making. The traditional
models in game theory and multiagent system research, such
as finite automata or unrestricted Turing machine, fall short
of capturing how intelligent agents make decision in realis-
tic applications. To address this problem, we model bounded
rational agents as restricted Turing machines: restrictions on
running time and on storage space. We study our model un-
der the context of two-person repeated games. In the case
where the running time of Turing machines is restricted, we
show that computing the best response of a given strategy is
much harder than the strategy itself. In the case where the
storage space of the Turing machines is restricted, we show
the best response of a space restricted strategy can not be im-
plemented by machines within the same size (up to a constant
factor). Finally, we study how these restrictions affect the set
of Nash equilibria in infinitely repeated games. We show re-
stricting the agent’s computational resources will give rise to
new Nash equilibria.

Introduction

Bounded rationality has been a topic of extensive interest in
artificial intelligence and multi-agent system research (Lar-
son and Sandholm 2004; 2005; Cavallo and Parkes 2008;
Wright and Leyton-Brown 2010; 2012; Celis et al. 2012;
Chen and Tang 2015; Tang and Zhang 2016; Tang et al.
2017). It refers to the limitations (time, space, information,
etc) agents encounter that prevent them from making a fully
rational decision in realistic settings. This phenomenon has
been widely studied in the realm of repeated games (Os-
borne and Rubinstein 1994). An important feature of re-
peated games, often modeled as extensive-form games, is
their gigantic strategy space. A strategy of a player needs
to specify his action choice for any possible history (on
or off the actual play path) where it is his turn to move.
This leads to the difficulty that the description of a gen-
eral strategy costs exponential bits in storage and is highly

∗This work was supported by the National Basic Research Pro-
gram of China Grant 2011CBA00300, 2011CBA00301, the Natu-
ral Science Foundation of China Grant 61033001, 61361136003,
61303077, 61561146398, a Tsinghua Initiative Scientific Research
Grant and a China Youth 1000-talent program.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

unrealistic. To mitigate this difficulty, a stylized approach
models such strategies as finite automata (Rubinstein 1986;
Osborne and Rubinstein 1994), where “equivalent” histo-
ries are grouped into state. Under this compact formula-
tion, the set of equilibria has been characterized (Rubin-
stein 1986), the computation of the best response against
an automata strategy has been investigated (Gilboa 1988;
Ben-porath 1990) and the computation of the Stackelberg
equilibrium has been investigated (Zuo and Tang 2015).

However, restricting strategies to finite automata loses
generality. For example, in infinitely repeated prisoner’s
dilemma, to model the following strategy:
Play D iff the other played D more than
C in the past,
one must resort to machines such as pushdown automata.

Indeed, in reality, one can do much better than fi-
nite automata: we write computer programs! This in-
spires researchers to consider the possibility of modeling
the bounded rational agents as general Turing machines.
Megiddo and Wigderson (1986) model a strategy as a gen-
eral Turing machine and show that, in finitely repeated
games, computing best response against such a machine is
trivial by another Turing machine. Knoblauch (1994) shows
that in infinitely repeated games and limit-of-means utility,
there exists a Turing machine strategy such that no Tur-
ing machine can implement its best response. Nachbar and
Zame (1996) derive the same results, for discounted utility.

However, the general Turing machine model is also un-
realistic in that it assumes an agent can perform computa-
tion in arbitrarily long time and use arbitrarily large stor-
age space. Taking this into consideration, existing work
has investigated Turing machines with size-restrictions
(aka. restrictions on Kolmogorov complexity). Megiddo and
Wigderson (1986) show that, under a certain hypothesis, co-
operation can be approximately sustained in repeated pris-
oner’s dilemma if we restrict the size of a Turing machine.
Lacote (2005) later shows that cooperation can be sustained
in finitely repeated games if and only if the Kolmogorv com-
plexity of one player’s strategy is substantially smaller than
the number of rounds.

In this paper, we explore this direction further, by study-
ing a realistic model of bounded rationality, where agents
are confined to use time-restricted or space-restricted Turing
machines to implement their strategies. We first use com-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

444

putational complexity models to rigorously define time and
space restrictions. We then study the important game theo-
retical question of how to compute and implement the best
response of such a restricted Turing machine.

For time-restricted case. We show that computing best re-
sponse against a strategy whose running time is bounded by
a polynomial in the number of rounds is NP-complete, more
generally, computing best response against a strategy with
oracle access to a

∑P
i -complete language whose running

time is bounded by a polynomial in the number of rounds
is
∑P

i+1-complete. Readers may refer to the full version of
this paper or a standard computational complexity textbook
(e.g., (Arora and Barak 2009)) for the definition of complex-
ity class

∑P
i .

The above results suggest that finding the best response of
a strategy is harder than the strategy itself. It also suggests
even if your opponent runs some polynomial time algorithm
to decide its decision, you might not be able to efficiently
find the best response against him under the conjecture that
P �= NP.

We study the space-restricted case under two natural
models and show that, computing its best response is
PSPACE-complete. We also show that under one of these
models, implementing a strategy’s best response requires a
super linear expansion in strategy size under a certain rea-
sonable complexity conjecture.

Those results suggest that, in contrast to time-restricted
case, finding the best response in polynomial space is possi-
ble, but implementing them with linear expansion in size is
impossible.

The second question we study is that, if both players have
bounded rationality and this is common knowledge, how
does it affect on the play of the game? More specifically,
how does it change the set of the Nash Equilibria? We show
that, in infinitely repeated games, interesting new equilibria
will emerge. The intuition behind this result is as follows:
For certain strategies, when assuming unbounded compu-
tational power of the opponent, these strategies will yield
low utilities; however, knowing (by the common knowledge
assumption) that the opponent is restricted, these strategies
guarantee high utilities and can emerge as new Nash equi-
librium! The proof of this part is quite nontrivial and is of
independent interest.

Preliminaries

Repeated Games

In this paper, we focus on two-person repeated games.

Definition 1. G = 〈S1, S2, u1, u2〉 is a two-person game in
normal form. Si is the finite set of actions for player i and
ui : S1 × S2 → R is the utility function for player i.

Definition 2. A super game Gn consists of n consecutive
repetitions of a stage game G. At the t-th repetition, each
player’s strategy is to choose an action based on the history
plays in rounds 1 . . . t− 1. That is, a player’s strategy in the
super game is a function that maps the set of all possible
histories to the set of actions.

1,1 0,5
5,0 3,3

Table 1: Payoff matrix of Prisoner’s Dilemma

Definition 3. In a super game Gn, denote si as the strat-
egy of player i. The utility for player i is Ui(s1, s2) =∑n

t=1 ui(at,1, at,2), where at,i is the action of the player i
at round t.

For ease of exposition, we consider the simplest non-
trivial case where the stage game is the well-known Pris-
oner’s Dilemma whose payoff matrix is given in Table 1.
Sometimes we may call Prisoner’s Dilemma PD game for
short. In the remainder of this paper, we use G to denote
the Prisoner’s Dilemma. We call the two actions of a player
cooperate and defect. Map cooperate to 1 and defect to 0, a
strategy is then equivalent to a function: {0, 1}∗ → {0, 1}.

For brevity, we denote Turing machine, deterministic Tur-
ing machine and nondeterministic Turing machine by TM,
DTM and NTM, respectively. We assume basic knowledge
in computational complexity. Readers can refer to the full
version of this paper for a list of self-contained conceptions
and definitions related to computational complexity, e.g.,
the definition of time constructible function, the time/space
restricted complexity class DTIME, NTIME, DSPACE,
NSPACE, PSPACE and LOGSPACE, the polynomial hier-
archy (PH) with related complete problem

∑P
i SAT and the

definition of oracle machine PO.
We first formally define the language a specific strategy.

Definition 4. For a strategy s, define the language of s to be
the set of histories based on which s plays cooperate. Here
the history of a repeated game before the t-th round is the
string a1,1, a1,2, a2,1, a2,2, . . . , at−1,1, at−1,2 in which ai,j
is the action that the player j takes in round i. We say a TM
M implements a strategy s if M decides the language of s.

We define a strategy’s complexity by its language’s com-
plexity class.
Definition 5. Let C be a complexity class. A strategy s is a
C-strategy if the language of s belongs to C.

Following the definition above, it is natural to further
define time-restricted strategies like P-strategy and space-
restricted strategies like PSPACE-strategy, which will be
studied in the following sections. Also, we say a strategy s is
a TM-strategy if the language of s is a computable language.

Time-restricted Strategies

In this section, we study how much time resource is needed
to find or implement a best response of a time-restricted
strategy.

As we do not care about the amount of space resources
used, implementing a best response of a particular strategy
in a super game is simple as one can simply store the opti-
mal action sequence and play according to that. Thus, we fo-
cus on studying the computational complexity of finding the
best response in a super game Gn against a time-restricted
strategy.

445

Our plan of computing the best response of a polynomial-
time strategy (i.e., P-strategy) consists of two steps. First, we
compute the cumulative utility of the best response. Second,
we construct the best response based on the utility computed
during the first step.

The decision version of the first step is whether there ex-
ists a strategy that can gain at least utility k from the strategy
represented by a polynomial-time TM M? However, this
question is in fact not well defined. M may run in super-
polynomial time, or even never halts. Meanwhile, by Rice
theorem (Rice 1953), deciding whether a TM M runs in
polynomial time or always halts on all inputs is uncom-
putable. Thus, to make this problem computable, we have
to put some restriction onto it.

To address the issue mentioned, we resort to complex-
ity theory and restrict the TM’s running time explicitly by
a time constructible function f .

Definition 6. Let f be a time constructible function and M
be a TM, define Mf as a TM such that it runs M on input
string x of length n for f(n) steps. During the f(n) steps,
if M halts, then Mf return the output of M ; otherwise Mf

rejects.

It is easy to see that Mf represents a strategy since it al-
ways halt. In addition, if f is a polynomial, Mf is indeed a
P-strategy.

Let f be a time constructible function, define the decision
problem BRf as follows.

Definition 7. BRf = {〈M, 1n, k〉} such that there exists a
strategy that can gain at least utility k against the strategy
Mf in the game Gn.

Here we write n in unary form as if we write n in binary
form instead, the best response sequence will have exponen-
tial length with respect to the input size.

We first show how to use an oracle to the decision problem
to find the best response.

Lemma 1. For a given strategy M whose running time is
bounded by f , finding the best response sequence is in PBRf

.

With Lemma 1, it suffices to study the complexity of the
decision problem BRf . We have the following theorem.

Theorem 1. There is a polynomial f such that BRf is
NP-complete. For every polynomial f , BRf is in NP.

Our plan is to reduce SAT to BRf . Given a CNF formula
ϕ, the intuition here is to construct an agent that cooperates
only if the opponent finds a satisfying assignment for ϕ. It
treats the opponent’s actions in the first n rounds as the as-
signments to the n variables of the SAT instance and checks
its validity. If the opponent gives a satisfying assignment for
ϕ, then it cooperates in the following rounds. Otherwise, it
defects and thus induces a low cumulative utility for the best
response. The detailed proof of Lemma 1 and Theorem 1
can be founded in the full version of this paper.

A direct corollary of Theorem 1 is that for any polynomial
g that is always greater than f , BRg is NP-complete as well.

As for a P-strategy, computing the utility of its best re-
sponse is in NP, then by Lemma 1, we know that we can

find the strategy itself in PNP. Meanwhile, Theorem 1 sug-
gests that, in order to compute the best response for a general
P-strategy, one must be within the class of PNP.

The natural next question to ask what is the complex-
ity of finding the best response against a PNP-strategy. In-
formally, we can prove that calculating the best response
against a PNP-strategy is

∑P
2 -complete. Interested reader

may refer to the full version of this paper for the definition
of

∑P
2 -complete and the details of this proof.

Space-restricted Strategies

In this section, we study the space restricted strategies. The
first natural idea is to study the space complexity to calculate
the best response against a PSPACE-strategy.

Lemma 2. The best response of a PSPACE-strategy can be
found in PSPACE.

However, PSPACE-strategy is unrealistic in practice due
to the huge amount of space owned by the player. Thus, we
switch to study LOGSPACE-strategies that players are lim-
ited to use logarithm amount of extra space to calculate the
best response.

For LOGSPACE-strategies, notice that the history has
large length, which makes it possible for a strategy to
“cheat” by gaining extra space via outputting extra informa-
tion into the history. The idea is to transform a polynomial
time TM to a polynomial size circuit in LOGSPACE. At ev-
ery step, we evaluate one gate in this circuit and output as an
action of the LOGSPACE-strategy. Now the game has poly-
nomial number of rounds. By such a method, a LOGSPACE-
strategy can do something similar to a P-strategy.

The above result for LOGSPACE-strategies is not inter-
esting. The reason is that, since the space is limited, it is
dubious that the strategies afford to store the whole history.
Thus, We need to find better models to study space-restricted
strategies, in which the whole history is not revealed to the
strategy directly.

We propose the following alternative models. The main
idea is to model space-restricted strategy as a function that
takes the last action of the opponent and the current infor-
mation bits as input, and outputs the new information bits
and the action of this round.

An N -bits-strategy is a function trans : {0, 1}N+1 →
{0, 1}N+1. The function trans takes the information bits
and the action of the opponent in last round as input, outputs
the information bits and the action for the current round.

The game is played as follows. See Figure 1 for an illus-
tration. Let oi be the action of the opponent in the i-th round
and ai be the action to be played in the i-th round. We as-
sume o0 = 0. Let bi be the information bits outputted after
the i-th round. We assume b0 = 0N . In the i-th round, we
calculate use the trans function to calculate the new infor-
mation bits and the action, i.e., (ai, bi) = trans(oi−1, bi−1).

We remark that this strategy in fact captures the typical
way we design a gaming AI: record some information and
update the information by an algorithm after the opponent
moves. In general, most of the AI does not sweep through

446

b0 = 0N

o0 = 0 a1 a2o1

trans trans
b1 b2

Figure 1: An illustration of the function trans . The dashed
rectangle indicates the action profile of the first round.

the history every time when making a move, which is costly
and typically unaffordable.

In the time-restricted case, we studied how much time re-
source is needed to find or implement a best response of a
time-restricted strategy. In this case, since we focus on space
resources, it is natural to study how much space resource is
needed for the same tasks of a space-restricted strategy.

To do this, we should first define how to measure the
amount of memory used by a strategy in our model. For an
agent to work with a space-restricted strategy, it needs space
to evaluate the function trans and store the description of the
function trans itself. So it is natural to define the amount of
space used by a space-restricted strategy to be the number
of storage bits needed to evaluate the function trans plus
the number of bits needed to specify the function trans .

In the following part of this section, we study the amount
of space needed for a general TM to compute the best re-
sponse for a space-restricted strategy and to implement the
best response via a space-restricted strategy. We consider
two cases. In the first case, we require trans to be efficiently
computable. This leads to the circuit strategy model. In the
second case, we drop the computation requirement and con-
sider the inplace strategy model.

Circuit Strategy

In this section we consider the case that we require that func-
tion trans can be efficiently computed. In this case, since the
number of information bits N is fixed, we can then represent
trans as a polynomial size circuit. We can benefit from a cir-
cuit representation as a polynomial size circuit will always
halt and can always be efficiently computed, which makes
the analysis easier.

Definition 8. An N -bits-circuit strategy is a boolean circuit
C which has N + 1 input gate and N + 1 output gate. The
size of a circuit strategy is the number of gates in C plus the
binary description size of C.

We include the number of gates in the size of C as for
each gate we need one bit to record its output in order to
evaluate the circuit C.

Inplace Strategy

In this section, we drop the computation efficiency require-
ment and consider the so-called inplace strategy defined as
follows.

Definition 9. An N -bits-inplace strategy is a TM M which
runs on input of N+1 bits, always halts, and uses only N+1
bits of space, returns the content of tape as output when it

halts. The size of an inplace strategy is N plus the binary
description size of M .

The name “inplace strategy” is due to the fact that the
strategy is implemented by an “inplace” TM, which does
not use any extra space other than the input tape itself. Note
that in this case, it does not matter whether M accepts or
rejects.

As dealing with time-restricted strategies, we are still
faced with the same problem: how do we know M is an
inplace strategy of N bits? We address this problem by a
similar manner as we have done for time-restricted strate-
gies.

Let M be a TM, define MI as a TM such that it runs M
on input string x of length N . If M tries to access tape cells
outside the N input bits or does not halt after Q ·N2N steps
where Q is the number of the states in M , then MI halts.
MI returns the content on the tape when it halts.

Lemma 3. If TMM is an (N−1)-bits-inplace strategy, the
output of MI is the same as the output of M for every input
of length N .

Complexity of Computing Best Response

Similar to what we have done for time-restricted cases, to
study the space complexity for computing best response
against a circuit strategy or an inplace strategy, we first study
the decision version, and then use the decision version as a
subroutine to find the best response.

We first introduce two sets of languages BRCT and BRIP,
which are decision versions of finding best response against
circuit strategy and inplace strategy, respectively.

Definition 10. BRCT = {〈C, n, k〉} such that there exists
a strategy can yield at least utility k against circuit strategy
C in the game Gn. BRIP = {〈M, 1N , n, k〉} such that there
exists a strategy can yield at least utility k against an inplace
strategy MI with N information bits in the game Gn.

Similar to the time-restricted case, once we have oracle
access to the decision version, computing the best response
can also be done by an algorithm similar to that of The-
orem 1 in polynomial space, which implies the following
lemma.

Lemma 4. For a given inplace (circuit) strategy M , we
can find the best response at each round in PSPACEBRIP

or PSPACEBRCT.

Lemma 4 suggests that, in order to study the complexity
of finding best response against a circuit strategy or an in-
place strategy, it suffices to study the decision version of the
problem, which was given in the following theorems.

Theorem 2. BRIP is PSPACE-complete.

An NPSPACE algorithm is to enumerate all possible ac-
tion sequences and simulate the inplace strategy to check
whether it can gain utility at least k. As NPSPACE =
PSPACE(Savitch 1970), BRIP ∈ PSPACE. The hardness
part can be found in appendix.

Theorem 3. BRCT is PSPACE-complete.

447

Similar to Theorem 2, constructing a PSPACE algo-
rithm is easy. The non-trivial part is to show that BRCT is
PSPACE-complete. In order to prove that, we first introduce
some necessary notations.

Let the alphabet of a TM be {0, 1} and the unused cells of
the tape be filled with #. Define the configuration of a TM
as follows.
Definition 11. A configuration u of a TM M is a triple
(q, pos, content) ∈ Q × N × {0, 1}∗, where Q is the set
of states of M , q is the current state, pos is the location of
the head pointer and content is the contents of all non-blank
cells of the tape.

For a NTM M , define nextc(M,u) to be the configura-
tion after running M for one step on configuration u with the
nondeterministic choice to be c. If M have already halted on
u, define nextc(u) = u.

The intuition of the proof comes as follows. First, as
PSPACE = NPSPACE, it is sufficient to prove BRCT is
NPSPACE-complete.

For a NPSPACE TM M , its configurations can be de-
scribed by a polynomial number of bits. We construct a cir-
cuit strategy C whose information bits u ∈ {0, 1}∗ describe
a configuration of M . If u is not halted, C defects and treats
the opponent’s action as the nondeterministic choice c and
outputs nextc(M,u) as information bits. Otherwise, C out-
puts u as information bits, cooperates if u is in an accepting
state and defects if u is in a rejecting state.

To test whether M accepts a input string s, note that for a
sufficient long running, if there is such a sequence of nonde-
terministic choices that lead M to an accepting state (which
means M accepts s), then C will always cooperate after that,
so we can gain a relatively high utility. Otherwise, C will al-
ways defect, which causes a low utility. Detailed proof for
this theorem can be found in the full version of this paper.

The above results demonstrate that computing a best re-
sponse against a space-restricted strategy can be done in
polynomial space, in contrary to the time-restricted case,
where it is NP-complete to compute the best response.

Complexity of Implementing Best Response

Now, we study the space complexity for implementing a best
response of a particular space-restricted strategy, which is
equivalent to the question what is the smallest possible size
among all best responses.

From previous sections, the algorithm for computing the
best response uses polynomial space. Then the natural ques-
tion is whether it can be done in linear space? Notice that
as the input string of the algorithm is 〈M,n, k〉 which has
length |M |+log n+log k = |M |+O(log n), thus we when
say polynomial/linear space algorithm, we refer to a polyno-
mial/linear function of |M |+O(log n).

We have the following theorem which demonstrates that
it is impossible to have a linear space best response against
an inplace strategy under reasonable complexity conjecture.
Theorem 4. Unless DSPACE(n) = NSPACE(n), there
does not exist a constant T such that any inplace strategy of
size S in super game Gn have a best response implemented
by an inplace strategy with size smaller than T · (S+log n).

The intuition here is to construct an agent that simulates
the behavior of a NTM on a specific input by treating the op-
ponent’s actions as the nondeterministic choices. The agent
will cooperate only if it is in an accepting state. Thus, the
best response strategy will output a sequence of nondeter-
ministic choices which makes the NTM end in an accept-
ing state. If the best response can be implemented in lin-
ear space, we can then construct a DTM which enumer-
ates all possible inplace strategies with linear size to find
the best response. By finding the best response, we can ac-
tually get the nondeterministic choices of the NTM, and
thus can simulate the running of a NTM on a DTM, still
by using linear space, which contradicts our assumption that
DSPACE(n) �= NSPACE(n). Detailed proof can be found
in the full version of this paper.

The taken-away message of Theorem 4 is that in general,
implementing a best response of a particular strategy need
much more space than the strategy itself.

Nash Equilibria via Restricted Turing

Machine

In this section, we study the case when both player are using
restricted Turing machines strategies and this is a common
knowledge. We are going to study infinitely repeated game
from now on. For simplicity of analysis, we use the standard
limit of mean as the utility notion.
Definition 12. In an infinitely super game G∞, denote
si as the strategy of player i. The utility for player i

is Ui(s1, s2) = lim infN→∞ 1
N

∑N
t=1 ui(at,1, at,2), where

at,i is the action of the player i at the t-th round.
Suppose s is a strategy, Let S be the set of all possible

strategies in G∞, denote BR(s) = sup{U2(s, t) | t ∈ S}.
We say a strategy t is a best response of s if U2(s, t) =
BR(s). Note that it is possible that there is no best response
for s.

Suppose s is a strategy, and C is a complexity class, denote
BRC(s) = sup{U2(s, t) | t is a C-strategy}. We say t is a C-
best response of s if U2(s, t) = BRC(s). Based on these
notations, we are now ready to define C-Nash Equilibrium
(C-NE).
Definition 13. A C-NE of an infinitely super game G∞ is
a pair of strategy (s1, s2) such that both s1 and s2 are C-
strategies, and none of them can gain higher utility by devi-
ating to another C-strategy.

Our goal now is to investigate how does such restriction
affect the set of NE. At first glance, such a restriction will
disqualify some old NEs. Surprisingly, such restriction will
also produce some new NEs.
Lemma 5. There exists a TM-NE that is not a NE, and a
NE which is not a TM-NE.
Lemma 6. There exists a P-NE that is not a TM-NE, and a
TM-NE which is not a P-NE.

Moreover, we have some stronger results summarized in
the following two theorems. We say a f : N → N is a
reasonable function, if f is a strictly increasing time con-
structible function such that f(0) > 0.

448

Theorem 5. Let f, g : N → N be two reasonable func-
tions, such that f(n) log f(n) ∈ o(g(n)) and f(n) ∈
Ω(n log n). There exists a DTIME(f(n))-NE which is not
a DTIME(g(n))-NE, and a DTIME(g(n))-NE which is not
a DTIME(f(n))-NE.

Theorem 6. Let f, g : N → N be two reasonable functions,
such that f(n) ∈ o(g(n)) and f(n) ∈ Ω(logn). There exists
a DSPACE(f(n))-NE which is not a DSPACE(g(n))-NE,
and a DSPACE(g(n))-NE which is not a DSPACE(f(n))-
NE.

We sketch the essence of the proofs here. Full proof can
be found in the full version of this paper. Let C,D be two
complexity classes such that C ⊂ D. Each of our results
has two parts: there exists a D-NE which is not a C-NE, and
there exists a C-NE which is not a D-NE.

We first construct a C-strategy s1 that s1 has a D-strategy
as the best response but no C-strategy as the best response.
For this purpose, we construct a hard problem P . And in
some specific rounds, s1 treats the opponent’s action as the
answer to “what is the value of P(x) ?” where x is depen-
dent on the current round number. s1 will check whether the
opponent’s answer is right in later rounds. Once s1 finds an
incorrect answer, s1 defects forever, otherwise s1 cooper-
ates. Thus, in order to be the best response of s1, the oppo-
nent should be able to solve all questions correctly. Then we
can construct P in a way that no machine of complexity C
can compute it, but some machine in complexity D can.

To prove the first part, we further construct a D-strategy
s2 that s1 and s2 together constitute a NE. Obviously they
constitute a D-NE. And as s1 has no C-strategy as the best
response, so they are not C-NE.

To prove the second part, we construct a hybrid strategy t
such that it asks the opponent to make a two-decision choice
at the first round. If the opponent choose the first choice, t
then acts like a strategy t1 which is easy to make best re-
sponse and BR(t1) < BR(s1), and for the second choice, t
will then act like strategy s1.

Consider another strategy v which chooses the first choice
and then behaves the same as t1’s best response. t and v
forms a C-NE if we construct them carefully. But they does
not form D-NE, as v can make profitable deviation by choos-
ing the second choice and acts like s1’s best response.

Future Works

There are some intriguing problems to be explored.

• How do the restrictions on strategies affect the set of
NE in finitely repeated game? Particularly, to what ex-
tent should we restrict an inplace(circuit) strategy so that
cooperation can be sustained?

• For circuit strategy and inplace strategy, what if we im-
pose the so-called simple machine preference (i.e., prefer
machines with fewer states)?

References

Arora, S., and Barak, B. 2009. Computational complexity.
Cambridge University Press, 1 edition.

Ben-porath, E. 1990. The complexity of computing a best
response automaton in repeated games with mixed strate-
gies. Games and Economic Behavior 2(1):1–12.
Cavallo, R., and Parkes, D. C. 2008. Efficient metadelib-
eration auctions. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI 2008, Chicago,
Illinois, USA, July 13-17, 2008, 50–56.
Celis, L. E.; Karlin, A. R.; Leyton-Brown, K.; Nguyen, C. T.;
and Thompson, D. R. M. 2012. Approximately revenue-
maximizing auctions for deliberative agents. In Proceed-
ings of the Twenty-Sixth AAAI Conference on Artificial In-
telligence, July 22-26, 2012, Toronto, Ontario, Canada.
Chen, L., and Tang, P. 2015. Bounded rationality of re-
stricted turing machines. In Proceedings of the 2015 In-
ternational Conference on Autonomous Agents and Multia-
gent Systems, 1673–1674. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Gilboa, I. 1988. The complexity of computing best-response
automata in repeated games. Journal of Economic Theory
45(2):342–352.
Knoblauch, V. 1994. Computable strategies for repeated
prisoner’ s dilemma. Games and Economic Behavior
7(3):381–389.
Lacôte, G. 2005. Boundedly complex turing machines play
the repeated prisoner’s dilemma: some results. Technical
report.
Larson, K., and Sandholm, T. 2004. Experiments on de-
liberation equilibria in auctions. In 3rd International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), 19-23 August 2004, New York, NY, USA,
394–401.
Larson, K., and Sandholm, T. 2005. Mechanism design
and deliberative agents. In 4th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2005), July 25-29, 2005, Utrecht, The Netherlands,
650–656.
Megiddo, N., and Wigderson, A. 1986. On play by means
of computing machines: preliminary version. 259–274.
Nachbar, J. H., and Zame, W. R. 1996. Non-computable
strategies and discounted repeated games. Economic theory
8(1):103–122.
Osborne, M. J., and Rubinstein, A. 1994. A Course in Game
Theory. MIT Press.
Rice, H. G. 1953. Classes of recursively enumerable sets
and their decision problems. Transactions of the American
Mathematical Society 358–366.
Rubinstein, A. 1986. Finite automata play the repeated pris-
oner’s dilemma. Journal of Economic Theory 83–96.
Savitch, W. J. 1970. Relationships between nondeterminis-
tic and deterministic tape complexities. Journal of computer
and system sciences 4(2):177–192.
Tang, P., and Zhang, H. 2016. Unit-sphere games. Interna-
tional Journal of Game Theory, to appear.
Tang, P.; Teng, Y.; Wang, Z.; Xiao, S.; and Xu, Y. 2017.

449

Computational issues in time-inconsistent planning. In Pro-
ceedings of AAAI.
Wright, J. R., and Leyton-Brown, K. 2010. Beyond equilib-
rium: Predicting human behavior in normal-form games. In
AAAI.
Wright, J. R., and Leyton-Brown, K. 2012. Behavioral game
theoretic models: a bayesian framework for parameter anal-
ysis. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volume 2,
921–930. International Foundation for Autonomous Agents
and Multiagent Systems.
Zuo, S., and Tang, P. 2015. Optimal machine strategies to
commit to in two-person repeated games. In Proceedings of
AAAI.

450

