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Abstract

Given a graph G = (V,E), n = |V |,m = |E|, we wish to compute a spanning tree whose
maximum vertex degree is as small as possible. Computing the exact optimal solution is known
to be NP-hard, since it generalizes the Hamiltonian path problem. For the approximation version
of this problem, a Õ(mn) time algorithm that computes a spanning tree of degree at most ∆∗+1
is previously known [Fürer, Raghavachari 1994]; here ∆∗ denotes the optimal tree degree. In
this paper we give the first near-linear time algorithm for this problem. Specifically speaking,
we first propose a simple Õ(m) time algorithm that achieves an O(∆∗ logn) approximation;
then we further improve this algorithm to obtain a (1 + δ)∆∗ + O( 1

δ2
logn) approximation in

Õ( 1

δ6
m) time.
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1 Introduction

Computing minimum degree spanning trees is a fundamental problem that has inspired a long line
of research. Let G = (V,E) be an undirected graph, and we wish to compute a spanning tree of G
whose tree degree, or maximum vertex degree in the tree, is the smallest. Clearly this problem is
NP-hard as the Hamiltonian path problem can be reduced to it, and so we could only hope for a
good approximation in polynomial time. The optimal approximation of this problem was achieved
in [6] where the authors proposed an 1Õ(mn) time algorithm that computes a spanning tree of
tree degree ≤ ∆∗ + 1; conventionally n = |V |,m = |E| and ∆∗ denotes the optimal tree degree.
However, polynomial time algorithms does not always mean efficient on large data sets, so finding
approximation algorithms of almost linear time is a very popular and important topic nowadays.

1.1 Our results

The major results of this paper are two near-linear time algorithms for minimum degree span-
ning trees in undirected graphs. These are the first near-linear time algorithms for this problem.
Formally we propose the following two theorems.

Theorem 1. There is an 2O(mα(n) log2 n+n log3 n) time algorithm that computes a spanning tree
with tree degree O(∆∗ log n).

As in many algorithms of this problem such as [6], this algorithm iteratively improves the
spanning tree T by finding replacement edge connecting two low-degree vertices. To achieve almost
linear time, we fix a degree threshold k ≥ 3, and repeatedly search for edges connecting two vertices
of tree degree ≤ k − 2 such that the tree path between its two endpoints contains a vertex of tree
degree ≥ k. We can efficiently maintain the spanning tree by the link-cut tree structure [16]. When
there are not many vertices of tree degree k − 1, we can argue a lower bound on ∆∗ in terms of k.
However, the algorithm may generate a large number of (k − 1)-degree vertices which undermines
the lower bound on ∆∗. To circumvent such difficulties, we iteratively perform this procedure on
larger and larger k’s. If the number of vertices of degree ≥ k becomes smaller and smaller, we can
finally bound the number of (k−1)-degree vertices. The crucial observation is that if a vertex which
starts out as a low-degree vertex for previous k now becomes (k − 1)-degree, lots of high-degree
vertices must have lost some tree neighbours. By carefully selecting a series of threshold k’s, finally
we can argue a lower bound on ∆∗ or decrease the degree of T by a constant factor.

Theorem 2. For any constant δ ∈ (0, 16 ), there is an algorithm that runs in time O( 1
δ6
m log7 n)

which computes a spanning tree with tree degree at most (1 + δ)∆∗ + 5
32δ2

log n.

Theorem 2 refines Theorem 1’s approach by an augmenting path approach. In each iteration,
the algorithm conducts a series of tree modifications to remove all augmenting paths of the shortest
length, and so in the next iteration the shortest length of augmenting paths would increase. To
facilitate our search for shortest augmenting paths, we divide the graph into O(1

δ
log n) layers and

then look for edges that connect two different tree components on the bottom layer. If such an
edge is successfully detected, then we add this edge to the tree and propagate a sequence of tree
edge insertions and deletions upwards to higher layers. When no such edges can be found, we argue

1
Õ(·) hides poly-logarithmic factors.

2
α(·) refers to the inverse Ackermann function.
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that every layer can yield a lower bound on ∆∗ which jointly proves a lower bound with a constant
multiplicative error.

1.2 Related work

There is a line of works that are concerned with low-degree trees in weighted undirected graphs. In
this scenario, the target low-degree that we wish to compute is constrained by two parameters: an
upper bound B on tree degree, an upper bound C on the total weight summed over all tree edges.
The problem was originally formulated in [3]. Two subsequent papers [10, 11] proposed polynomial
time algorithms that compute a tree with cost ≤ wC and degree ≤ w

w−1bB+ logb n, ∀b, w > 1. The
cost was improved from wC to C in [2] while degree upper bound becomes bB+2(b+1) logb n; the
authors also proposed an quasi-polynomial algorithm that finds a tree with cost ≤ C and degree
B + O(log n/ log log n). [2]’s result was improved by [8] where for all k, a spanning tree of degree
≤ k + 2 and of cost at most the cost of the optimum spanning tree of maximum degree at most k
can be computed in polynomial time. The degree bound was later further improved from k + 2 to
the optimal k + 1 in [15].

Another variant is minimum degree Steiner trees which is related to network broadcasting
[13, 14, 4]. For undirected graphs, authors of [6] showed that the same approximation guarantee
and running time can be achieved as with minimum degree spanning trees in undirected graphs, i.e.,
a solution of tree degree ∆∗+1 and a running time of Õ(mn). For the directed case, [4] showed that
directed minimum degree Steiner trees problem cannot be approximated within (1−ǫ) log |D|,∀ǫ > 0
unless NP ⊆ DTIME(nlog logn), where D is the set of terminals.

The minimum degree tree problem can also be formulated in directed graphs. This problem was
first studied in [5] where the authors proposed a polynomial time algorithm that finds a directed
spanning tree of degree at most O(∆∗ log n). The approximation guarantee was improved to roughly
O(∆∗ + log n) in [12, 9] while the time complexity became nO(logn). The problem becomes much
easier when G is acyclic, as shown in [17], where a directed spanning tree of degree ≤ ∆∗ + 1 is
computable in polynomial time. The approximation was greatly advanced to ∆∗ + 2 in [1] by an
LP-based polynomial time algorithm, and this problem has become more-or-less closed since then.

2 Definitions

Logarithms are taken at base 2. Assume G = (V,E) is a connected graph, n = |V |,m = |E|, and
we assume n ≥ 4. During the execution of our algorithm, a spanning tree T will be maintained
and our algorithm will repeatedly modify T to reduce its degree ∆ = deg(T). For every u ∈ V , let
deg(u) be the tree degree of u. For each pair u, v ∈ V , let ρu,v be the unique tree path on T that
connects u and v. For each 1 ≤ k ≤ n, define Sk = {u | deg(u) ≥ k}, Nk = {u | deg(u) = k}, and
let dk =

∑
u∈Sk

deg(u), that is, the total degree of all vertices of degree at least k.

3 An O(∆∗ logn) Approximation

3.1 Main algorithm

Starting from an arbitrary spanning tree T with degree ∆, the core of the main algorithm is a
near-linear time subroutine that, as long as ∆ ≥ 20 log n, either reduces ∆ to (1 − Ω(1)) · ∆ or
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terminates with the guarantee that ∆ = O(∆∗ log n); the main algorithm simply repeatedly apply
this subroutine until ∆ < 20 log n or ∆ = O(∆∗ log n). This subroutine consists of two parts:
(1) a low-level fast degree reduction algorithm that, given any degree threshold k, modifies T to
reduce the total number of high-degree vertices; (2) a high-level scheduling algorithm that selects a
sequence of degree thresholds and feed them to the low-level degree reduction algorithm as inputs.
For every 0 ≤ i ≤ log n+ 1, let us define a sequence of degree thresholds:

ki = ⌊
3

4
∆ +

1

4
∆ · (1− (1−

1

log n
)i)⌋

Clearly ki’s are increasing as ∀0 ≤ i ≤ log n,

ki+1 − ki ≥
1

4
∆ · (1−

1

log n
)i −

1

4
∆ · (1−

1

log n
)i+1 − 1 ≥

1

16 · log n
·∆− 1 > 0

The last two inequality holds as (1− 1
logn)

i ≥ 1/4 and ∆ ≥ 20 log n.
The high-level scheduling algorithm (2) is described in Scheduling shown in Algorithm 1. If it

returns false, an upper bound ∆ = O(∆∗ log n) would be established; otherwise when it returns
true, it means ∆ would be reduced to (1−Ω(1)) ·∆. The low-level degree reduction algorithm (1)
is described in FastDegreeReduction in Algorithm 2. The rough idea is that we repeatedly looks for
edges that connect two vertices of tree degree ≤ k− 2 from different components of T \Sk and add
these edges to T, while at the same time we delete some edges incident on Sk so T stays a tree. In
order to implement this idea in near-linear time, we have to neglect those (k − 2)-degree vertices
that have once become (k − 1)-degree. A key operation of our algorithm is marking. During one
execution of FastDegreeReduction, a vertex gets marked whenever its tree degree becomes k − 1
and it stays so even if its degree goes smaller, and instead of searching for edges between two
(k − 2)-degree vertices, we only care about edges between two unmarked vertices.

Algorithm 1: Scheduling

1 input params: T with maximum tree degree ∆ ≥ 20 log n;
2 for i = 1, 2, · · · , 1 + log n do

3 count← |Ski−1
|;

4 if |Ski | >
1
2 · count then

5 invoke FastDegreeReduction with input k = ki;
6 if |Ski | >

1
2 · count then

7 return false;

8 return true;

3.2 Implementation and running time

We specify some implementation details of FastDegreeReduction.

(1) To efficiently implement line-4, we enumerate all edges (u, v) ∈ E one by one. Using the union-
find data structure [7], we check if one of u, v is marked or both of u, v belong to the same
component, we move on to the next edge; otherwise we execute line-5 through line-13. The
total running time of this part would be O(mα(n)).
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Algorithm 2: FastDegreeReduction

1 input params: k;
2 for every u /∈ Sk, let Cu be the connected component containing u of T \ Sk;
3 mark all vertices in Sk−1 and unmark all other vertices;
4 while ∃(u, v) ∈ E, both u, v are unmarked and belong to different components in T \ Sk do

5 find a vertex w ∈ Sk ∩ ρu,v, and (w, z) be an edge ∈ ρu,v which is incident on w;
6 T← T ∪ {(u, v)} \ {(w, z)};
7 merge components Cu and Cv;
8 for x ∈ {u, v} do
9 if deg(x) = k − 1 then

10 mark x;

11 for x ∈ {w, z} ∩ Sk do

12 if deg(x) = k − 1 then

13 remove x from Sk and merge tree components of T \ Sk accordingly;

14 return;

(2) For line-5, to efficiently retrieve a vertex w ∈ Sk ∩ ρu,v given u, v, we maintain T using the
link-cut tree data structure [16]. We set the weight of each u ∈ Sk to be 1, and weight of each
u /∈ Sk equal to 0. Then w ∈ Sk ∩ ρu,v can be found in O(log n) amortized time by querying
the maximum weight vertex on the tree path ρu,v using the link-cut tree data structure. Note
that such Sk ∩ ρu,v is always non-empty because u, v belong to different connected components
of T \ Sk. For line-6, edge updates to T can be handled using the link-cut tree as well. Since
there are less than n components in T \B, the total time would be O(n log n).

(3) On line-7, merging components Cu and Cv can be done in O(α(n)) time using the union-find
data structure.

(4) On line-13, when a vertex x is removed from Sk, we need to add x to T\Sk and possibly merge
some connected components. This can be done by enumerating x’s incident tree edges and
using the union-find data structure. The total cost of such operations would be O(nα(n)).

To conclude, the overall running time complexity of FastDegreeReduction is by O(mα(n) +
n log n). The running time of Scheduling then becomes O(mα(n) log n+n log2 n) since i can increase
to at most O(log n).

To upper bound the running time of the main algorithm, we need the following lemma that
characterize the performance of Scheduling.

Lemma 3. If Scheduling returns true, then the degree ∆ of T has at least dropped by a constant
factor of 31

32 .

Proof. When Scheduling returns true, we claim that count declines by a factor of 1
2 after each

iteration of the while-loop. In fact, on the one hand, if the condition of line-5 does not hold, i.e.
Ski−1

≥ 2|Ski |, then as count was previous set to |Ski−1
| and now equal to |Ski |, count declines

by a factor of 1
2 . On the other hand, if the condition of line-5 holds, then because Scheduling
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returns true, the condition on line-7 always fails, i.e. |Ski | ≤
1
2 · count, and therefore when we

set count ← |Ski | the value of count would decrease by a factor of 1
2 . Hence, the while-loop of

Scheduling can iterate for at most log n + 1 times before count becomes 0; that is to say, |Ski | = 0
for some i ≤ log n+ 1. By definition,

ki ≤
3

4
∆ +

1

4
∆ · (1− (1−

1

log n
)i)

≤
3

4
∆ +

1

4
∆ · (1− (1−

1

log n
)logn+1)

≤
3

4
∆ +

1

4
∆ · (1−

1

8
) =

31

32
·∆

Here we use the fact that (1 − 1
logn)

logn+1 ≥ 1
8 . As |Ski | = 0, deg(T) must now be smaller than

31
32 ·∆. �

Now we can upper bound the running time of the main algorithm as stated in the following
lemma.

Lemma 4. The running time of the main algorithm is O(mα(n) log2 n+ n log3 n).

Proof. By Lemma 3, every invocation of Scheduling that returns true decreases ∆ by a factor of
31
32 . Therefore, such kind of invocations can be at most O(log n) many. Also, there can be at most 1
instance of Scheduling that returns false because the main algorithm terminates immediately after
that. Overall, the total running time of Scheduling would be O(log n · (mα(n) log n + n log2 n)) =
O(mα(n) log2 n+ n log3 n). �

3.3 Approximation guarantee

To prove approximation guarantee, we will utilize the following lemmas.

Lemma 5. Let V1, V2, · · · , Vl ⊆ V be disjoint vertex subsets. A set W is called “boundary” (with re-
spect to V1, V2, · · · , Vl), if any edge incident on

⋃l
i=1 Vi whose both endpoints are not simultaneously

contained in any single Vi, is incident on at least one vertex from W . Then, ∆∗ ≥ l−1
|W | .

Proof. For any spanning tree, there are at least l−1 edges incident on
⋃l

i=1 Vi whose both endpoints
are not simultaneously contained in any Vi, 1 ≤ i ≤ l. Then by definition of W , any one of these
l−1 edges is incident on at least on vertex of W , and thus by the pigeon-hole principle, there exists
a u ∈W whose tree degree is ≥ l−1

|W | . �

Lemma 6. For any vertex subset B, the number of connected components in T \ B is at least∑
u∈B deg(u)− 2|B|+ 2.

Proof. Note that there are at least
∑

u∈B deg(u)−|B|+1 tree edges incident on B, and so removing
all of these edges would break T into ≥

∑
u∈B deg(u) − |B|+ 2 components. Therefore, excluding

singleton components formed by B, there are ≥
∑

u∈B deg(u) − 2|B| + 2 components are from
T \B. �
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Now we prove when the main algorithm terminates, ∆ = O(∆∗ log n). If the main algorithm
terminates with ∆ < 20 log n, then automatically we have ∆ < 20 log n = O(log n) = O(∆∗ log n).
Next we focus on the case when the main algorithm terminates on a false returned by Scheduling. In
this case, there was an execution of Scheduling that returned on line-7. By the branching condition
of line-6, we know that |Ski | >

1
2 · count by the end of this execution of Scheduling.

Consider the most recent invocation of FastDegreeReduction. By the end of this invocation, let
V1, V2, · · · , Vl be the sequence of all different connected components spanned by T \ Sk. Let M
be the set of all marked vertices. To apply Lemma 5, we claim M is a boundary set with respect
to V1, V2, · · · , Vl; this is because, for any edge (u, v) such that u, v belong to different connected
components of T \ Sk, one of u, v must be marked since otherwise FastDegreeReduction would
continue to merge Cu and Cv instead of terminating. Therefore, Lemma 5 immediately yields
∆∗ ≥ l−1

|M | .

One last thing is to lower-bound l and upper-bound |M |.

(1) Lower bounding l.

Let S′
ki−1

and S′
ki

be the snapshots of Ski−1
and Ski before this instance of FastDegreeReduction

began. So by the algorithm we have count = |S′
ki−1
| and thus |Ski | ≥

1
2 · count =

1
2 |S

′
ki−1
| ≥

1
2 |S

′
ki
|. Then clearly, the number of connected components of T \ Sk is at least

l ≥
∑

u∈Sk

deg(u)− 2|Sk|+ 2

≥
∑

u∈Ski

deg(u)− 2|Ski |+ 2 ≥ ki|Ski | − 2|Ski |+ 2

> ki|Ski | − 2|Ski | ≥ (
ki
2
− 1) · |S′

ki
| ≥ (

3

8
∆ +

∆

8 log n
−

3

2
) · |S′

ki
| >

3

8
∆|S′

ki
|

The first inequality holds by Lemma 6; the last two inequalities holds by ki = ⌊
3
4∆+ 1

4∆(1−
(1− 1

logn)
i)⌋ > 3

4∆+ ∆
4 logn − 1 and ∆ ≥ 20 log n.

(2) Upper bounding |M |.

There are two kinds of marked vertices.

(a) Either u ∈ S′
ki−1 was marked at the beginning, or u ∈ S′

ki−1
\S′

ki−1 whose tree degree later
got increased to ki − 1 at some point while the algorithm kept modifying T. The total
number of such vertices is at most |S′

ki−1
| < 2|S′

ki
|.

(b) u is a marked vertex and u /∈ S′
ki−1

. In this case, deg(u) < ki−1 before this instance of
FastDegreeReduction began. Since u is marked, deg(u) increases to ki − 1 at some point.
Every time we modify T, at least one vertex in Ski loses one degree and at most two
unmarked vertices get one degree separately. So for a vertex u /∈ S′

ki−1
to be marked, the

vertices in Ski loses at least
1
2 (ki−ki−1) degrees on average. As each vertex will be removed

from Ski after it loses at most ∆ − ki + 1 tree degree, the total number of such vertex u
can be at most:

2(∆− ki + 1)|S′
ki
|

ki − ki−1
<

2(14∆(1− 1
logn)

i + 2)|S′
ki
|

1
4∆((1− 1

logn)
i−1 − (1− 1

logn)
i)− 1

< 3|S′
ki
| log n

6



Overall, |M | < 2|S′
ki
|+ 3|S′

ki
| log n = (2 + 3 log n)|S′

ki
|.

Summing up (1) and (2), we have

∆∗ ≥
l − 1

|M |
≥

3
8∆|S

′
ki
|

(2 + 3 log n)|S′
ki
|
= Ω(∆/ log n)

or equivalently, ∆ = O(∆∗ log n).

4 A (1 + δ)∆∗ + O( 1
δ2 logn) Approximation

In this section we prove Theorem 2. To obtain an improved approximation of (1+ δ)∆∗ +O( logn
δ2

),
the rough idea is that we refine the fast degree reduction algorithm in the previous section using
an augmenting path technique.

Let ǫ ∈ (0, 1
48) be a fixed parameter. The basic framework stays the same as in the previous

section. One difference is that the new main algorithm consists of two phases. In the large-step

phase, as long as ∆ ≥ 10 log2 n
ǫ3

, we repeatedly apply a near-linear time algorithm LargeStepScheduling

that either reduces ∆ to ≤ (1 − ǫ) · ∆ or terminates with ∆ ≤ (1 + O(ǫ))∆∗. In the small-step

phase we need to deal with the situation where 20 logn
ǫ2

≤ ∆ < 10 log2 n
ǫ3

; in this case we repeatedly
run a weaker near-linear time algorithm SmallStepScheduling that either reduces ∆ by 1 or provides
evidence that ∆ ≤ (1 +O(ǫ))∆∗ +O( logn

ǫ2
).

Both algorithms LargeStepScheduling and SmallStepScheduling rely on a building block algorithm
AugPathDegRed; similar to Scheduling , both scheduling algorithms run a while-loop and repeatedly
feed inputs to AugPathDegRed. Algorithm AugPathDegRed efficiently reduces the total number of
vertices of high tree degree using an augmenting path technique, which is a significant improvement
over FastDegreeReduction.

For the rest of this section, we first propose and analyse the building block algorithm Aug-

PathDegRed which underlies the core of our main algorithm. After that we specify how the two
phases large-step phase and small-step phase work. Finally, we prove Theorem 2.

4.1 Degree reduction via augmenting paths

4.1.1 Algorithm description

Let k ≤ ∆ be a fixed threshold. This algorithm is, in some way, an extension of the previous
algorithm FastDegreeReduction. As before, due to concerns of efficiency, a vertex gets marked if its
tree degree is ≥ k − 1, and it stays marked (throughout one execution of AugPathDegRed) even if
its tree degree decreases afterwards. Previously, we only look for a non-tree edge whose inclusion
could directly reduce some tree degrees of vertices in Sk, and when such edges no longer exist
the procedure terminates. In this case, AugPathDegRed would continue to explore possibilities of
improving the tree structure using the idea of augmenting paths. Intuitively, an augmenting path
consists of a sequence of non-tree edges that can jointly reduce tree degrees of Sk. Formally we
give its definition below.

Definition 7 (augmenting paths). An h-length augmenting path consists of a sequence of distinct
non-tree edges (w1, z1), (w2, z2), · · · , (wh, zh) ∈ E with the following properties.

7



(i) ∃w0 ∈ ρw1,z1 ∩ Sk, wi ∈ ρwi+1,zi+1
\ (

⋃h
j=i+2 ρwj ,zj),∀0 ≤ i < h.

(ii) All zi’s are unmarked, ∀1 ≤ i ≤ h; wi’s are marked for 1 ≤ i < h and wh is unmarked.

Lemma 8 (tree modification). Given an augmenting path (w1, z1), (w2, z2), · · · , (wh, zh) ∈ E, one
can modify T such that dk decreases and no vertices are added to Sk.

Proof. We modify T in an inductive way. For i = h−1, h−2, · · · , 0, as wi ∈ ρwi+1,zi+1
, we can take an

arbitrary tree edge (wi, x) ∈ ρwi+1,zi+1
, and then perform an update T← T∪{(wi+1, zi+1)}\{(wi, x)}

which guarantees that T is still a spanning tree. Note that this update also preserves the property
that wj ∈ ρwj+1,zj+1

\ (
⋃h

l=j+2 ρwl,zl),∀0 ≤ j < i; this is because, when wj /∈ ρwi+1,zi+1
, tree update

T← T∪{(wi+1, zi+1)}\{(wi, x)} does not change the connected components of T \{wj}, and thus

the condition wj ∈ ρwj+1,zj+1
\ (

⋃h
l=j+2 ρwl,zl) stays intact.

During the process, if any deg(zi), 1 ≤ i ≤ h becomes k − 1 during the process, mark zi. By
definition, dk decreases as w0 loses a tree neighbour; plus, because all deg(wi), 1 ≤ i < h are
unchanged, and no vertices are newly added to Sk because deg(zi) ≤ k − 2,∀1 ≤ i ≤ h. �

It is easy to notice that what FastDegreeRedection does is repeatedly looking for augmenting
paths of length 1 and then apply Lemma 8. To extend this algorithm, when we can no longer find
any augmenting paths of length 1, we turn to search for augmenting paths of length 2, and so on.
Generally speaking, when the currently shortest augmenting paths have length h, we apply Lemma
8 to decrease the total number of shortest augmenting paths, and when no further progress of such
kind can be made we argue the shortest length of augmenting paths must now increase. Finally
our algorithm terminates when h grows to ≥ 1 + log1+ǫ n, and then we prove a lower bound on ∆∗

based on the structure of T.
The algorithm for finding the shortest length of augmenting paths works as follows; actually the

algorithm computes an auxiliary layering of the graph that will also help tree modification later.
Initially we set B0 ← Sk. Inductively, suppose we have already computed B0, B1, · · · , Bh, h ≥ 0,
then we compute the forest spanned by T \ (

⋃h
i=0Bi). Here is an extra notation: ∀0 ≤ i ≤ h,

for each u ∈ V \ (
⋃i

j=0Bj), let C
i
u be the connected component of T \ (

⋃i
j=0Bj) that contains u.

If there exists an edge (u, v) ∈ E such that both u, v are unmarked vertices, and that Ch
u 6= Ch

v ,
then the algorithm terminates and reports that the shortest length of augmenting paths is equal
to h + 1; otherwise, we compute Bh+1 to be the set of all marked vertices u ∈ V \ (

⋃h
i=0 Bi) such

that there exists an unmarked adjacent vertex v with Ch
u 6= Ch

v , and then continue. The above
procedure is summarised as the following pseudo-code Layering shown in Algorithm 3. Note that
once Bh+1 = ∅, the algorithm would continue to compute Bh+2 = Bh+3 = · · · = B1+log1+ǫ n

= ∅.
After we have invoked Layering and computed a sequence of vertex subsets B0, B1, · · · , Bh which

naturally divides the graph into h+2 layers, we should start to apply tree modifications of Lemma 8
to decrease the total number of shortest augmenting paths. The difficulty in searching for shortest
augmenting paths is that, for a search that starts from a pair of adjacent and unmarked vertices
u, v satisfying Ch

u 6= Ch
v and goes up the layers Bh, Bh−1, · · · , B1, B0, not every route can reach the

top layer B0 because the augmentations of some previous (h + 1)-length augmenting paths might
have already blocked the road. Therefore, a depth-first search needs to performed. To save running
time, some tricks are needed: if a certain vertex has been searched and failed to lead a way upwards
to B0, then we tag this vertex so that future depth-first searches may avoid this tagged vertex; if
a certain edge has been searched before, then we tag this edge whatsoever. The following pseudo-
code AugDFS shown in Algorithm 4 may be a better illustration of this algorithm; the recursive
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Algorithm 3: Layering

1 B0 ← Sk;
2 h← 0;
3 while h ≤ 1 + log1+ǫ n do

4 compute the forest {Ch
u} spanned by T \ (

⋃h
i=0 Bi);

5 if exists unmarked u, v such that (u, v) ∈ E, Ch
u 6= Ch

v then

6 break;

7 else

8 compute Bh+1 to be the set of all marked vertices in u ∈ V \ (
⋃h

i=0Bi) such that

there exists an unmarked adjacent vertex v with Ch
u 6= Ch

v ;
9 h← h+ 1;

10 return B0, B1, · · · , Bh;

algorithm AugDFS searches for an (h+1)-length augmenting path (w1, z1), (w2, z2), · · · , (wh+1, zh+1)
given input (wh+1, zh+1) ∈ E. Later we will prove, if AugDFS returns true, then the sequence
(w1, z1), (w2, z2), · · · , (wh+1, zh+1) is indeed an augmenting path.

Now we come to describe the upper-level AugPathDegRed: basically, it repeatedly apply Layering

followed by several rounds of AugDFS until h ≥ 1 + log1+ǫ n. Here is the pseudo-code AugPathDe-

gRed as shown in Algorithm 5.
Before proving termination of AugPathDegRed, we first need to argue some properties of Lay-

ering. The following lemma will serve as the basis for our future lower bounds on ∆∗.

Lemma 9 (the blocking property). Throughout each iteration of the repeat-loop in AugPathDegRed,
for any 1 ≤ i < h and any two adjacent vertices u, v ∈ V \ (

⋃i
j=0Bj) such that u is unmarked and

Ci
u 6= Ci

v, then v ∈ Bi+1.

Proof. By rules of Layering, this blocking property holds right after Layering outputs them. This
claim continuous to hold afterwards because tree modifications only merge components Ci

u’s and
never splits any Ci

u’s. �

Here is an important corollary of this Lemma 9.

Corollary 10. Throughout each iteration of the repeat-loop, for any w ∈ Bi, 1 ≤ i ≤ h, suppose
w is adjacent to an unmarked z such that Ci−1

w 6= Ci−1
z . Then ρw,z only contains vertices from

V \ (
⋃i−2

j=0Bj).

Proof. Suppose otherwise, then there would be a vertex x ∈ ρw,z ∩Bj , j ≤ i− 2, then in this case

Cj
w 6= Cj

z , and thus by Lemma 9 w ∈ Bj+1 which is a contradiction as j + 1 < i. �

Now we can argue correctness of AugDFS.

Lemma 11. If AugDFS returns true, (w1, z1), (w2, z2), · · · , (wh+1, zh+1) is an augmenting path.

Proof. Property (ii) in Definition 7 holds by rules of this algorithm. Now let us focus on property
(i). Take an arbitrary w0 ∈ ρw1,z1 ∩ B0. By the algorithm it must be wi ∈ Bi,∀0 ≤ i ≤ h, then
using Corollary 10 we know ρwi,zi does not contain any wj , 0 ≤ j ≤ i− 2, so property (i) holds. �
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Algorithm 4: AugDFS

1 global variables: (w1, z1), (w2, z2), · · · , (wh+1, zh+1);
2 input params: i, 1 ≤ i ≤ h+ 1;
3 if i = 1 then

4 return true;

5 for untagged w ∈ ρwi,zi ∩Bi−1 do

6 wi−1 ← w;
7 for unmarked z such that (w, z) is untagged and Ci−2

z 6= Ci−2
w do

8 zi−1 ← z;
9 run AugDFS with input i− 1;

10 tag (w, z);
11 if AugDFS has returned false then

12 continue;

13 else

14 if i = h+ 1 then

15 modify T by augmenting path (w1, z1), (w2, z2), · · · , (wh+1, zh+1) via Lemma 8
and mark new degree k − 1 vertices;

16 return true;

17 tag w;

18 return false;

Algorithm 5: AugPathDegRed

1 input params: threshold k;
2 mark all vertices from Sk−1 and unmark the rest;
3 repeat

4 run Layering which computes B0, B1, · · · , Bh;
5 untag all vertices and edges;

6 for (u, v) ∈ E such that u, v are unmarked and adjacent, and that Ch
u 6= Ch

v do

7 run AugDFS with input h+ 1 and global params (wh+1, zh+1)← (u, v);

8 until h > 1 + log1+ǫ n;
9 return T;

10



Finally we conclude this subsection with the lemma below, from which termination of Aug-

PathDegRed immediately follows.

Lemma 12. Every iteration of the repeat-loop, if not the last, increases h by at least one.

Proof. By the rules of Layering, it is easy to see that at the beginning when Layering outputs
B0, B1, · · · , Bh, the shortest length of augmenting path is equal to h + 1. So it suffices to prove
that by the end of this iteration the shortest augmenting path has length > h+ 1.

First we need to characterize all augmenting paths using B0, B1, · · · , Bh. Let the sequence
(w1, z1), (w2, z2), · · · , (wl, zl) be an arbitrary augmenting path. We argue l ≥ h + 1, and more
importantly, if l = h+ 1, it must be wi ∈ Bi,∀1 ≤ i ≤ h. We inductively prove that wi ∈

⋃i
j=0Bj

for i = 0, 1, · · · , l − 1. The basis is obvious as is required by property (i) in Definition 7. Now
assume wi ∈ Br for some r ≤ i. Then, by Corollary 10, it would not be hard to see wi+1 ∈⋃r+1

j=0 Bj ⊆
⋃i+1

j=0Bj . Now, on the one hand by Corollary 10 ρwl,zl ∩
⋃h−1

j=0 Bj = ∅, and on the other

hand wl−1 ∈ ρwl,zl ∩
⋃l−1

j=0Bj, so l ≥ h+1. Plus, we can see from the induction that, when l = h+1
it must be wi ∈ Bi,∀0 ≤ i ≤ h.

For any unmarked and adjacent vertices u, v such that Ch
u 6= Ch

v , consider the instance of
AugDFS with input (wh+1, zh+1)← (u, v). We make two claims.

(1) If there is an (h+1)-length augmenting path ending with (wh+1, zh+1) = (u, v), AugDFS would
succeed in finding one.

(2) If it has returned false, then there would be no (h+1)-augmenting path ending with (wh+1, zh+1) =
(u, v) throughout the entire repeat-loop iteration.

If (1)(2) can be proved, then by the end of this repeat-loop iteration, there would be no (h+1)-
length augmenting paths because at such augmenting path should end with a pair of adjacent
unmarked vertices. Next we come to prove (1)(2).

(1) The depth-first search of AugDFS exactly coincides with the conditions that wi ∈ Bi, except
that it skips all tagged vertices and edges. Now we prove that omitting tagged vertices and
edges does not miss any (h+1)-length augmenting paths. For a vertex w to be tagged, we must
have enumerated all of its untagged edges (w, z) but failed to find any augmenting paths, and
therefore any future depth-first searches on w would still end up in vain. For an edge (w, z)
to be tagged, either a further recursion AugDFS on line-9 has succeeded or failed in finding an
augmenting paths; in the former case, Ci−2

w and Ci−2
z has been merged, and so the condition

Ci−2
w 6= Ci−2

z would be violated afterwards; in the latter case, we would not need to recur on
(w, z) anyway.

(2) If AugDFS has once failed to find any augmenting paths starting with (u, v), then all vertices
w ∈ ρu,v ∩Bh visited by this instance of AugDFS should be tagged and they would be omitted
by all succeeding instances of AugDFS. Therefore ρu,v ∩ Bh would stay unchanged since then
(although ρu,v itself might change). Hence, image if we re-run AugDFS with (wh+1, zh+1) ←
(u, v), it may return false without any recursion because all vertices in ρwh+1,zh+1

∩ Bh are
tagged.

�
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4.1.2 Lower bound on ∆∗

Suppose AugPathDegRed has terminated with B0, B1, · · · , Blog1+ǫ n+1. Let us see it yields lower
bounds on ∆∗. To apply Lemma 5, we first need to specify a sequence of disjoint vertex subsets,
which is what the following definition is about.

Definition 13. After an instance of AugPathDegRed has been executed, for an arbitrary component
Ch
u , 0 ≤ h ≤ log1+ǫ n, u ∈ V \ (

⋃h
i=0Bi), it is called clean if all vertices in Ch

u are unmarked.

Lemma 14. For any 0 ≤ h ≤ log1+ǫ n, suppose T\ (
⋃h

i=0Bi) has l clean components, then a lower
bound holds that ∆∗ ≥ l−1∑h+1

i=0 |Bi|
.

Proof. By Lemma 9, any edge that connects a clean components of T \ (
⋃h

i=0 Bi) outwards must

be incident on a vertex in
⋃h+1

i=0 Bi. Therefore by Lemma 5 we have ∆∗ ≥ l−1
|
⋃h+1

i=0 Bi|
= l−1∑h+1

i=0 |Bi|
�

From Lemma 14, it suffices to lower bound the total number of clean components. The next
lemma describes a scenario in which l must be large.

Lemma 15. Suppose an instance of AugPathDegRed has been executed. Let d′k, d
′
k−1, S′

k−1 and
S′
k be snapshots of dk, dk−1, Sk−1 and Sk right before this instance of AugPathDegRed started;

recall that dk, dk−1, Sk−1 and Sk always refer to statistics of the current T after this instance of
AugPathDegRed has finished.

Assume the following three conditions:

(i) k ≥ 4
ǫ

(ii) d′k ≥
1

ǫ(k−1) · d
′
k−1

(iii) dk ≥ (1− ǫ2

2 logn)d
′
k

Then, for each 0 ≤ h ≤ log1+ǫ n, the number of clean components in T \ (
⋃h

i=0Bi) is more than

k · (1− 4ǫ)
∑h

i=0 |Bi|.

Proof. By Lemma 6, the number of tree components in T \ (
⋃h

i=0Bi) is at least

∑

u∈
⋃h

i=0 Bi

deg(u)− 2|
h⋃

i=0

Bi|+ 2

Let M be the set of all marked vertices /∈ S′
k−1 (i.e., vertices that are initially unmarked) by the

end of AugPathDegRed. Then, the number of clean components in T \ (
⋃h

i=0 Bi) is at least

∑

u∈
⋃h

i=0 Bi

deg(u)− 2

h∑

i=0

|Bi|+ 2− |M ∪ S′
k−1|

The argument consists of a lower bound on
∑

u∈
⋃h

i=0 Bi
deg(u) and an upper bound on |M∪S′

k−1|.

12



(1) Lower bound on
∑

u∈
⋃h

i=0 Bi
deg(u).

By the algorithm B0 = Sk, then we have
∑

u∈B0
deg(u) = dk.

For any vertex u ∈
⋃h

i=1Bi, deg(u) = k − 1 by the time u was first added to some Bi. After
that, deg(u) could only decrease when we modify T by an augmenting path (w1, z1), · · · , (wt, zt)
where u = wj for some 1 ≤ j ≤ t. Since t ≤ 1 + log1+ǫ n, during a tree modification, at least

one vertex in Sk loses one degree and at most 1 + log1+ǫ n vertices in
⋃h

i=1 Bi lose one degree
separately. As the total number of the degree loss in Sk is (d′k − dk), we have

∑

u∈
⋃h

i=1 Bi

deg(u) ≥ (k − 1)
h∑

i=1

|Bi| − (d′k − dk)(1 + log1+ǫ n)

From above, we get a lower bound on
∑

u∈
⋃h

i=0 Bi
deg(u),

∑

u∈
⋃h

i=0 Bi

deg(u) ≥ dk + (k − 1)

h∑

i=1

|Bi| − (d′k − dk)(1 + log1+ǫ n)

≥ (k − 1)

h∑

i=1

|Bi|+ (1−
ǫ2

2 log n
)d′k −

ǫ2

2 log n
d′k · (1 + log1+ǫ n)

≥ (k − 1)

h∑

i=1

|Bi|+ (1−
ǫ2

2 log n
− ǫ)d′k

(2) Upper bound on |M |.

The argument is similar to (1). An unmarked vertex u is marked only when we modify T by
an augmenting path (w1, z1), · · · , (wt, zt) where u = zj for some 1 ≤ j ≤ t or u = wt. Since
t ≤ 1 + log1+ǫ n, during a tree modification, at least one vertex in Sk loses one degree and at
most 2 + log1+ǫ n unmarked vertices are marked. Then we get a upper bound on |M |.

|M | ≤ (d′k − dk)(2 + log1+ǫ n) ≤ ǫ · d′k

(3) Upper bound on |S′
k−1|.

By easy calculations, d′k ≥
1

ǫ(k−1)d
′
k−1 ≥

1
ǫ
|S′

k−1|, and so |S′
k−1| ≤ ǫ · d′k.

13



Summing up (1)(2)(3), we can conclude the proof:

∑

u∈
⋃h

i=0 Bi

deg(u)− 2

h∑

i=0

|Bi|+ 2− |M ∪ S′
k−1| > dk + (k − 1)

h∑

i=1

|Bi| − 2

h∑

i=0

|Bi| − 3ǫ · d′k

≥ (1−
ǫ2

2 log n
) · d′k − 2|B0|+ (k − 3)

h∑

i=1

|Bi| − 3ǫ · d′k

≥ (1−
ǫ2

2 log n
− 3ǫ) · d′k − 2|B0|+ (k − 3)

h∑

i=1

|Bi|

> k(1− 3.5ǫ) · |B0| − 2|B0|+ (k − 3)
h∑

i=1

|Bi| ≥ k(1 − 4ǫ) ·
h∑

i=0

|Bi|

The last inequality holds by k ≥ 4
ǫ
. �

4.1.3 Implementation and running time

We present an implementation of AugPathDegRed that runs in O( 1
ǫ2
m log2 n) time. We discuss some

implementation details of Layering, AugDFS and AugPathDegRed, and analyse their contributions
to the total running time in a single run of AugPathDegRed.

(1) Layering.

For every instance of Layering, computing the forest {Ch
u}u∈V \(

⋃h
i=0 Bi)

can be done in a single

pass of breath-first search which takes O(m) time. Computing Bh+1, if necessary, is easily done
by scanning the edge set E which also takes O(m) time. As the while-loop iterates for at most
1+ log1+ǫ n times, and due to Lemma 12 Layering is invoked for at most 1+ log1+ǫ n times, the
overall contribution of Layering is O( 1

ǫ2
m log2 n).

(2) AugPathDegRed.

Excluding the contributions of AugDFS and Layering, all AugPathDegRed does is simply un-
tagging all vertices and edges, as well as scanning the edge set (u, v) ∈ E and deciding if
Ch
u 6= Ch

v . As tree components only get merged and never split, we can use the union-find data
structure to support querying whether Ch

u 6= Ch
v in O(α(n)) time. Hence, AugPathDegRed’s

exclusive contributions to the total running time would be O(1
ǫ
mα(n) log n).

(3) AugDFS.

Now we analyse the overall time complexity induced by AugDFS invoked on line-7 of Aug-

PathDegRed. There are three technical issues to be resolved.

(a) How to enumerate untagged vertices ∈ ρwi,zi ∩Bi−1 (line-5)?

For each u ∈ Bi,∀0 ≤ i ≤ h, assign u a weight of i; vertices that do not belong to any
Bi have weight h + 1. By Corollary 10, to enumerate vertices ∈ ρwi,zi ∩ Bi−1, it suffices
to enumerate the lightest vertices on ρwi,zi , which can be done using a link-cut tree data
structure [16] built on T, each enumeration taking O(log n) amortized time. When a vertex
gets tagged, we change its weight to h+1, and so future enumerations on ρwi,zi ∩Bi−1 may
skip this tagged vertex.

14



(b) How to enumerate unmarked z connected by an untagged edge (w, z) such that Ci−2
z 6= Ci−2

w

(line-7)?

Each w decrementally maintains a list of all its neighbours. While we scan the list, if the
next edge (w, z) satisfies both conditions that Ci−2

z 6= Ci−2
w and z is unmarked, then the

algorithm starts a new iteration and recur; either way we cross the edge (w, z) off the list.
In this way, every edge appears on line-7 for at most once. Thus the total time of this part
is O(mα(n)); the additional α(n) factor comes from the union-find data structure that
helps deciding if Ci−2

z 6= Ci−2
w .

(c) How to implement the tree modification from Lemma 8?

Every tree modification involves insertions and deletions of O(1
ǫ
log n) edges, as well as

merging O(1
ǫ
log n) pairs of some tree components Ci

u. Using the link-cut tree, every edge
insertion and deletion takes update time O(log n), and every component-merging takes
time O(α(n)). Since every tree modification merges two components in T\Sk (i.e., T\B0),
there can be at most O(n) tree modifications throughout AugPathDegRed. Therefore, the
overall contribution of tree modifications is O(1

ǫ
n log2 n).

The total time of (a)(b) is O(m log n) because every time a vertex is enumerated on line-5,
either it gets tagged or one of its edge gets tagged. Thus, the overall complexity of AugDFS is
O(m log n+ 1

ǫ
n log2 n).

Summing up (1)(2)(3), the total running time of is dominated by time complexity of Layering
which is O( 1

ǫ2
m log2 n).

4.2 Large-step phase

4.2.1 Algorithm description and running time

Algorithm largeStepScheduling deals with the case ∆ ≥ 10 logn
ǫ2

: it iterates over k = (1 − 2ǫ)∆ +
1, (1− 2ǫ)∆+2, · · · , (1− ǫ)∆ and if dk−1 ≤ 2dk it invoke AugPathDegRed with input k. During the
course, if one instance fails to reduce dk significantly, then the algorithm reports a lower bound on
∆∗ and terminates. Here is its pseudo-code 6.

Algorithm 6: LargeStepScheduling

1 input params: T with maximum tree degree ∆;
2 for k = (1− 2ǫ)∆ + 1, (1− 2ǫ)∆ + 2, · · · , (1 − ǫ)∆ do

3 if dk = 0 then

4 break;

5 else if dk−1 ≤ 2dk then

6 d′k ← dk;
7 run AugPathDegRed with input k;

8 if dk > (1− ǫ2

2 logn) · d
′
k then

9 return false;

10 return true;

15



From the previous subsection we already know AugPathDegRed runs in near-linear time, so
here we only need to upper bound the total number of times AugPathDegRed gets invoked before
the algorithm returns either true or false. We consider in each iteration, by how much would dk
decrease. There are two cases.

(1) If the branching condition on line-5 does not hold, then dk−1 > 2dk, and so dk has shrunk by
a factor of at most 1

2 .

(2) In the case where the branching condition holds, if the algorithm does not return false within

this iteration, then dk ≤ (1− ǫ2

2 logn) ·d
′
k; that is, dk has declined by a factor of at most 1− ǫ2

2 logn
during this iteration.

Summing up (1)(2), the value of dk would decrease by a factor of at most 1− ǫ2

2 logn in each iteration.

Then the for-loop would break when k ≥ (1−2ǫ)∆+ 2 log2 n
ǫ2

because by the time dk would decrease

to 0. Hence, the running time of LargeStepScheduling is bounded by O( 1
ǫ3
m log3 n).

A byproduct of the above observation is that, when ∆ ≥ 10 log2 n
ǫ3

, we have (1 − ǫ)∆ ≥ (1 −

2ǫ)∆+ 10 log2 n
ǫ2

, and thus if LargeStepScheduling eventually returns true, it must be d(1−ǫ)∆ = 0; in
other words, ∆ has been reduced by a factor of at most 1− ǫ.

4.2.2 Approximation guarantee

We prove when LargeStepScheduling returns false, it must be ∆ ≤ (1+ 8ǫ) ·∆∗. Consider the most
recent execution of AugPathDegRed before returning. By the previous subsection, this instance
of AugPathDegRed has created a sequence of disjoint vertex subsets B0, B1, · · · , B1+log1+ǫ n

that
satisfies the blocking property.

Let d′k−1, S
′
k−1 and S′

k be snapshots of dk−1, Sk−1 and Sk right before this instance of Aug-

PathDegRed started. Then d′k ≥
1
2d

′
k−1 ≥

1
ǫ(k−1)d

′
k−1 by the branching condition on line-5. Using

Lemma 15 and Lemma 14, we can derive a lower bound

∆∗ ≥ k(1− 4ǫ) ·

∑h
i=0 |Bi|∑h+1
i=0 |Bi|

,∀0 ≤ h ≤ log1+ǫ n

By the pigeon-hole principle, there exists an h such that
∑h

i=0 |Bi|
∑h+1

i=0 |Bi|
≥ 1

1+ǫ
, and hence

∆∗ ≥ k(1 − 4ǫ) ·
1

1 + ǫ
>

1− 6ǫ+ 8ǫ2

1 + ǫ
∆

or equivalently, ∆ ≤ 1+ǫ
1−6ǫ+8ǫ2

∆∗ < (1 + 8ǫ)∆∗ when ǫ ∈ (0, 1
48 ).

4.3 Small-step phase

4.3.1 Algorithm description and running time

Algorithm SmallStepScheduling only deals with 20 logn
ǫ2

≤ ∆ < 10 log2 n
ǫ3

. Set c = 12 + 6 log1+ǫ n and
define a potential function:

φ(T) =
∆∑

i=∆+1−logn

ci · |Ni|
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SmallStepScheduling works by repetitively selecting a degree k that maximizes ck · |Nk| and then
feed input k to AugPathDegRed until ∆ decreases; clearly k must be larger than ∆− log n > 19 logn

ǫ2
.

We formulate this procedure as pseudo-code SmallStepScheduling as shown in Algorithm 7 below.

Algorithm 7: SmallStepScheduling

1 input params: T with maximum tree degree ∆;
2 while ∆ has not changed do

3 pick a k ∈ argmaxi∈[∆+1−logn,∆]{c
i · |Ni|};

4 d′k ← dk;
5 run AugPathDegRed with input k;

6 if dk > (1− ǫ2

2 logn) · d
′
k then

7 return false;

8 return true;

Now let us bound the running time of SmallStepScheduling. We study how many rounds of
AugPathDegRed could be invoked before branching conditions on line-2 or line-6 can be triggered.
In fact, an instance of AugPathDegRed has not triggered the condition on line-6, then dk has
decreased by a factor of at most 1− ǫ2

2 logn . Let us analyse how φ(T) has decreased.

Let N ′
k, k ∈ [∆ + 1 − log n,∆] be snapshots of Nk right before we execute AugPathDegRed,

and denote the potential of T at that time by φ′(T) =
∑∆

i=∆+1−logn c
i · |N ′

k|. Every time a tree
modification to T was made on line-15 of AugDFS, at least one vertex in Sk would lose a tree edge
and at most 2 + log1+ǫ n vertices would gain a tree edge, and then the total loss of φ(T) would be
at least

(ck − ck−1)− (2 + log1+ǫ n) · (c
k−1 − ck−2) ≥ (ck−1 − ck−2)(c− 2− log1+ǫ n)

= ck · (1−
1

c
) · (1−

2 + log1+ǫ n

c
) ≥ ck · (1−

1

c
) ·

5

6
> 0.8 · ck

Note that dk has decreased by d′k − dk ≥
ǫ2

2 lognd
′
k ≥

ǫ2

2 logn · k|N
′
k|, and so there are at least

(d′k − dk)/(2k) ≥
ǫ2

4 logn · |N
′
k| such modifications to T, this is because a tree modification can at

most move two vertices from Sk to Sk−1 thus decreasing dk by 2k. Therefore,

φ(T) ≤ φ′(T)− (0.8 · ck) · (
ǫ2

4 log n
· |N ′

k|) ≤ (1−
0.2ǫ2

log2 n
)φ′(T)

The second inequality holds by maximality of ck · |N ′
k| which implies ck · |N ′

k| ≥
1

logn · φ
′(T)

In a nutshell, whenever AugPathDegRed returns true, φ(T) has decreases by a factor of at

most 1 − 0.2ǫ2

log2 n
. As long as ∆ has not changed, φ(T) belongs to the interval (c∆−1, n · c∆), and

consequently, φ(T) could suffer at most − log
1− 0.2ǫ2

log2 n

n · c = O( log
3 n
ǫ2

) rounds of AugPathDegRed

that returns true. Therefore, the overall running time of SmallStepScheduling before ∆ decreases
by 1 would be upper bounded by O( 1

ǫ3
m log5 n).
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4.3.2 Approximation guarantee

We prove when SmallStepScheduling returns false, it must be ∆ ≤ (1 + 8ǫ)∆∗ + log n. Consider
the most recent execution of AugPathDegRed before returning. By the previous subsection, this
instance of AugPathDegRed has created a sequence of disjoint vertex subsets B0, B1, · · · , B1+log1+ǫ n

that satisfies the blocking property.
Let d′k−1, S

′
k−1 and S′

k be snapshots of dk−1, Sk−1 and Sk right before this instance of Aug-

PathDegRed started. By maximality of ck · |N ′
k|, we have |N ′

k| ≥
1
c
· |N ′

k−1|. Then,

d′k
d′k−1

=

∑∆
i=k i|N

′
i |∑∆

i=k−1 i|N
′
i |

>
k|N ′

k|

k|N ′
k|+ (k − 1)|N ′

k−1|
≥

1

1 + c(k−1)
k

>
1

c+ 1
≥

1

ǫ(k − 1)

The last inequality holds by k ≥ 19 logn
ǫ2

and c = 6 log1+ǫ n+ 12 ≤ 18 log1+ǫ n.

As dk ≥ (1 − ǫ2

2 logn)d
′
k by the branching condition on line-6, using Lemma 15 and Lemma 14,

we can derive a lower bound

∆∗ ≥ k(1− 4ǫ) ·

∑h
i=0 |Bi|∑h+1
i=0 |Bi|

,∀0 ≤ h ≤ log1+ǫ n

By the pigeon-hole principle, there exists an h such that
∑h

i=0 |Bi|
∑h+1

i=0 |Bi|
≥ 1

1+ǫ
, and hence

∆∗ ≥ k(1 − 4ǫ) ·
1

1 + ǫ
>

1− 4ǫ

1 + ǫ
(∆ − log n)

or equivalently, ∆ ≤ 1+ǫ
1−4ǫ∆

∗ + log n < (1 + 8ǫ)∆∗ + log n for ǫ ∈ (0, 1
48 ).

4.4 Correctness of the main algorithm

As a conclusion we prove Theorem 2. If the main algorithm terminates in the large-step phase,
then in previous subsections, we have proved ∆ ≤ (1+8ǫ) ·∆∗; if it returns in the small-step phase ,
then either ∆ ≤ (1+8ǫ)∆∗+logn or ∆ < 10 logn

ǫ2
. So, in sum ∆ ≤ (1+8ǫ)∆∗+ 10 logn

ǫ2
. Reassigning

δ ← 8ǫ we can obtain the approximation guarantee promised in Theorem 2.
For the running time, the large-step phase can invoke at most O(1

ǫ
log n) rounds of LargeStep-

Scheduling because each invocation that returns true reduces ∆ by a factor of at most 1− ǫ; thus
the total running time of the first while-loop never exceeds O( 1

ǫ4
m log5 n). The small-step phase

can invoke at most O( log
2 n
ǫ3

) rounds of SmallStepScheduling because each invocation that returns

true reduces ∆ by at least 1; thus the total running time of the small-step phase is O( 1
ǫ6
m log7 n)

which is dominant. So the running time of the main algorithm is O( 1
ǫ6
m log7 n).
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