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Unconventional fermions with high degeneracies in three dimensions beyond Weyl and Dirac
fermions have sparked tremendous interest in condensed matter physics. Here, we study quantum
Hall effects (QHEs) in a two-dimensional (2D) unconventional fermion system with a pair of gapped
spin-1 fermions. We find that the original unlimited number of zero energy Landau levels (LLs)
in the gapless case develop into a series of bands, leading to a novel QHE phenomenon that the
Hall conductance first decreases (or increases) to zero and then revives as an infinite ladder of fine
staircase when the Fermi surface is moved toward zero energy, and it suddenly reverses with its
sign being flipped due to a Van Hove singularity when the Fermi surface is moved across zero. We
further investigate the peculiar QHEs in a dice model with a pair of spin-1 fermions, which agree
well with the results of the continuous model.

I. INTRODUCTION

One of the most important and intriguing phenom-
ena in condensed matter physics is the quantum Hall ef-
fect, the phenomenon that the Hall conductance becomes
quantized (i.e., σxy = −ne2/h with n being integer and e
being the electric charge) at low temperature in 2D elec-
tron gases subject to strong magnetic fields. This effect
is originated from the formation of LLs with a quantized
Thouless-Kohmoto-Nightingale-den Nijs (TKNN) num-
ber1 in these systems with magnetic fields. Each occu-
pied LL contributes a −e2/h Hall conductance and if no
LLs are occupied, the Hall conductance completely van-
ishes as shown in Fig. 1(a). Apart from the conventional
QHE in 2D electron gases with parabolic dispersion, the
unconventional QHE in 2D Dirac materials with relativis-
tic dispersion such as a single layer graphene and bilayer
graphene was discovered that the Hall conductance can
take only odd or even numbers2–7 (without considering
the spin freedom) as shown in Fig. 1(b) and (c). In ad-
dition, these materials always exhibit the nonzero QHE
plateaus because of the existence of zero energy LLs un-
less these zero energy levels are gapped and neither par-
ticle nor hole LLs are occupied.

Other than 2D, the study of relativistic fermions such
as Dirac and Weyl fermions in three-dimensional sys-
tems, a counterpart of Dirac fermions in graphene, has
seen a rapid progress8–16. Beyond these fermions permit-
ted in particle physics, a new fermion violating Lorentz
invariance17,18, which is called type-II Weyl fermions18

(also called structured Weyl fermions17), has been dis-
covered in superfluids17 and condensed matter mate-
rials18–21. Recently, another type of new fermions in
three dimensions beyond conventional fermions in par-
ticle physics were predicted in solid-state materials22–28;
they are named unconventional fermions with highly de-
generate points that are described by an effective Hamil-
tonian H = k · Ŝ with k being the momenta and Ŝ being
the angular momentum matrices. These highly degener-
ate fermions have also been studied in 2D systems29–48,

especially for spin-1 fermions, which can be realized in
the dice model29–37, Lieb model43–46, Kagome model47

and solid-state materials48. For massless spin-1 fermion
systems without gaps, QHEs have been investigated and
it has been found that each spin-1 point contributes an
integer Hall conductance39. The conductance vanishes
when the Fermi surface lies in the first gap of Landau
levels (LLs) (the gap between the zero energy and the
first nonzero energy levels) despite the existence of an
unlimited number of zero energy LLs. For the dice model
where there exist a pair of spin-1 points, the Hall con-
ductance takes even numbers, reminiscent of the bilayer
grephene36.

In this paper, we study the QHE in a 2D system with
a pair of spin-1 fermions with a mass term mzŜz. By
exploring a continuous model under magnetic fields, we
find that the infinite degeneracy of zero energy LLs in the
massless case is lifted in the massive case, and these LLs
develop into a series of nonzero energy levels. Interest-
ingly, these levels also contribute to the Hall conductance
as the Fermi surface lies in the gap among these levels,
leading to a novel QHE that the Hall conductance re-
vives in the opposite direction as an infinite ladder of fine
staircase when the Fermi surface is moved into the fine
structure developed from the original zero energy bands
and then experience a sudden reversal with its sign being
flipped due to a Van Hove singularity when the Fermi
surface is moved across zero energy. We further study
the QHE in the dice model with a pair of massive spin-1
fermions by calculating its LLs, Chern numbers and chi-
ral edge states. All these results are in good agreement
with the continuous model’s ones.

II. CONTINUOUS MODEL

We start by considering the following 2D continuous
model with a single spin-1 point

H = vp̂xŜx + vp̂yŜy +mzŜz, (1)
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FIG. 1. (Color online) The Hall conductance with respect to the chemical potential in a conventional 2D electron gas (a),
where B and m denote the magnetic field strength and the electron mass, respectively; in a single layer graphene (b) and
bilayer graphene (c); in a system with two triply degenerate points (d) with a zoomed in view in the inset. In (b), (c) and (d),
the red and black lines represent the massless and massive cases with the mass mz = 0 and mz = 0.5EB , respectively. Here,
EB = v

√
eB~ with v denoting the electron velocity.

where p̂ν = −i~∂ν with ν = x, y are momentum opera-
tors, v is a real parameter, mz is the mass term that can
open a gap, and Ŝν with ν = x, y, z denote the angular
momentum matrices for spin 1, given by

Ŝx =
1√
2

 0 1 0
1 0 1
0 1 0

 , Ŝy =
1√
2

 0 −i 0
i 0 −i
0 i 0

 ,

Ŝz =

 1 0 0
0 0 0
0 0 −1

 , (2)

which satisfy the angular momentum commutation rule.
The eigenenergy of this Hamiltonian is E(k) =

0,±
√
v2k2x + v2k2y +m2

z in the momentum space (kx, ky)

with a flat zero energy band. It is evident that, when
mz = 0, the system exhibits a triply degenerate point at
kx = ky = 0 as shown in Fig.2 (a), whose degeneracy can
be lifted by mz as shown in Fig.2 (b).

Since we will focus on the dice model that possesses
two triply degenerate points for a concrete realization, we
consider the following Hamiltonian with two degenerate
points

H = τz(vp̂xŜx + vp̂yŜy +mzŜz), (3)

where τz is a Pauli matrix and denotes two triply degen-
erate points. In the presence of magnetic fields along z
described by a vector potential A, we replace the mo-
mentum operators p̂ν with ν = x, y with the generalized
momentum operators π̂ν = p̂ν + eAν and write down the
Hamiltonian in the following form,

HM = τz(vπ̂xŜx + vπ̂yŜy +mzŜz). (4)

To solve the LLs, we define â = (π̂x − iπ̂y)v/(
√

2EB)
which satisfies [â, â†] = 1 and recast the Hamiltonian
into the form

HM = τz

 mz âEB 0
â†EB 0 âEB

0 â†EB −mz

 , (5)

where EB = v
√
eB~ with B being the magnetic field

strength. Its eigenstates can be written as Ψ =(
a|m− 1〉 b|m〉 c|m+ 1〉

)T
with a, b and c being the

parameters satisfying the normalization condition. For
clarity, let us first choose τz = 1 and focus on a single
degenerate point. When m = −1, we have a = b = 0
and c = 1 with energy being −mz; when m = 0, we have
a = 0 with energy being (−mz ±

√
m2
z + 4E2

B)/2; when
m > 0, the Hamiltonian is given by

H(m) =

 mz EB
√
m 0

EB
√
m 0 EB

√
m+ 1

0 EB
√
m+ 1 −mz

 . (6)

Without mz, energy reads Em = 0,±EB
√

2m+ 1.
Different from a single zero energy LL in a single
layer graphene and two zero energy levels in bilayer
graphene, there are infinite zero energy LLs in the
massless spin-1 system (each case when m = −1 or
m > 0 will contribute a zero energy level). How-
ever, these zero LLs do not contribute to the Hall con-
ductance in contrast to graphene systems39. In addi-
tion, the energy relation is distinct from ±EB

√
m in

a single layer graphene and ±EB
√
m(m− 1) in bilayer

graphene. With mz, the eigenenergy in a single layer
graphene and bilayer graphene reads ±EB

√
m+m2

z and

±EB
√
m(m− 1) +m2

z, respectively, implying that the
zero energy level is gapped with energy mz. In our sys-
tem, for m = −1, zero energy becomes −mz, and for
m > 0 new energy around zero can be approximated by
mz/(2m+1), which is the first order correction when mz

is relatively small. This indicates that the zero energy
LLs develop into a series of fine-structure levels in the
presence of a mass term.

Before displaying LL structures in detail, it would be
helpful to discuss LLs from the semiclassical quantization
rule49,50:

A(Em) = (m+ 1/2− Γ/2π)2πeB/~, (7)
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FIG. 2. (Color online) Eigenenergy of the Hamiltonian (1)
for mz = 0 in (a) and mz > 0 in (b) with zero energy states
denoted by the green plane. Energy of LLs as a function
of B for fixed mz (this mz is taken as the energy unit) in
(c) and mz for fixed B (with the corresponding EB taken as
the energy unit) in (d). In (c) and (d), the black and red
lines correspond to the results of two valleys with τz = 1
and τz = −1, respectively, and in the cyan region the Hall
conductance vanishes. (e) and (f) Zoomed in view of (c) and
(d), respectively. Here, B0 = m2

z/(e~v2).

where A(Em) is the momentum space area enclosed by
the closed cyclotron orbit and Γ is the Berry phase along
the orbit. For massless spin-1 fermions, we are able to
obtain the LLs by the above formula while setting Γ = 0.
For massive fermions, however, since cyclotron orbits do
not exist inside the gap, fine-structure levels can not be
predicted by the semiclassical theory.

In Fig. 2(c) and (d), we plot energy of LLs of the
Hamiltonian (5) with respect to the magnetic field
strength B for fixed mz and to mz for fixed B, respec-
tively. In (c), we see that the levels can be divided into
two groups: one corresponding to the states with the ab-
solute eigenenergy increasing with

√
B/B0 and the other

to those with constant energy for large B. In the lat-
ter group, there are two states with exact constant en-
ergy equal to ±mz and others split from zero energy and
reaching a constant value mz/(2m + 1) for large B. In-

−2 0 2
−4
−3
−2
−1

0
1
2
3
4

µ (E
B
)

σ xy
 (

−
e2 /h

)

−2 0 2

−8
−6
−4
−2

0
2
4
6
8

µ (E
B
)

 

 
(b)(a)

FIG. 3. (Color online) The Hall conductance of a single valley
for massless electrons with mz = 0 in (a) and massive ones
with mz = 0.5EB in (b). The black and red lines denote the
valley with τz = 1 and τz = −1, respectively.

terestingly, the state with energy ±mz crosses with an-
other state with energy ±(−mz +

√
m2
z + 4E2

B)/2 for
the other valley at B = 2B0. On the other hand, the
band structure of LLs as a function of mz in Fig. 2(d)
explicitly demonstrates that mz will break the degen-
eracy of two valleys and lift the infinite degeneracy of
zero energy LLs, leading to a series of bands around
zero. The crossing between states with energy ±mz and
±(−mz+

√
m2
z + 4E2

B)/2 for the other valley is also man-

ifested in this figure, which occurs at mz = EB/
√

2. In
both figures, we also explicitly display the region where
the Hall conductance vanishes; it increases (decreases) by
one as the Fermi surface moves up (down) across a LL.
For clarity, we plot the zoomed in figures of Fig. 2(c) and
(d) in Fig. 2(e) and (f), clearly showing the emergence
of a series of LLs around zero. In Fig. 2(e), as we raise
the magnetic field following the upper (lower) arrow, we
will see the change of the Hall conductance from 0 to
e2/h (from 0 to e2/h and finally to 2e2/h), suggesting an
experimental signature in terms of magnetic fields.

To calculate the Hall conductance of the system at zero
temperature, we employ the Kubo formula40,

σxy =
i~e2

Ω

∑
Ea<EF
Eb>EF

1

(Eb − Ea)2
(jabx j

ba
y − jaby jbax ), (8)

where Ea and Eb are eigenenergy of eigenstates |a〉 and
|b〉, respectively, jabν = 〈a|∂HM/∂pν |b〉 with ν = x, y are
current matrix elements between these eigenstates, EF is
the Fermi energy, and Ω is the area of the system.

In Fig. 1(d), we plot the Hall conductance of our sys-
tem calculated by the Kubo formula with respect to the
chemical potential. For massless electrons without mz,
the conductance (denoted by the red line) can take only
even numbers due to the degeneracy of two valleys’ LLs,
but drops to zero as the chemical potential is moved into
the gap between zero energy and the first nonzero en-
ergy LLs, reminiscent of massive bilayer graphene. For
massive electrons with mz, since the degeneracy of two
valleys is broken, the conductance can take both odd and
even numbers. Moreover, with the decline of the chem-



4

ical potential from the positive energy, the conductance
first decreases to zero and then rises dramatically in the
opposite direction as an infinite ladder of fine staircase;
with the further decline of the chemical potential across
zero, the conductance suddenly flips its sign due to a Van
Hove singularity51 at zero energy. The same phenomenon
also occurs for a negative chemical potential owing to the
antisymmetric Hall conductance with respect to zero en-
ergy.

To see the Hall conductance of each single valley, we
plot them in Fig. 3. For massless electrons without mz,
two valleys exhibit the same integer Hall conductance
due to the degeneracy of their LLs, giving rise to the to-
tal even number Hall conductance. For massive electrons
with mz, the degeneracy is broken, and their Hall con-
ductances are distinct and antisymmetric with respect
to zero energy. For the valley with τz = 1 (labeled by
the black line), as we decrease the chemical potential
from positive values toward zero, the Hall conductance
first drops to zero and then revives in the opposite di-
rection as an infinite ladder of fine staircase with the
chemical potential moved into the fine-structure LLs. As
the chemical potential is further moved across zero, the
conductance (in units of −e2/h) suddenly changes to 1
and then decreases. For the other valley, the same phe-
nomenon occurs but in an antisymmetric manner with
respect to zero energy. We note that no fractional Hall
conductance appears, which is in sharp contrast to a sin-
gle Dirac cone that can have a half Hall conductance.

III. DICE MODEL

We consider the dice model29 to realize this peculiar
QHE. In the model visualized in Fig. 4(a), a sublattice
denoted by B is added in the center of a regular hexagon
in a hexagonal lattice with the assumption that parti-
cles on the neighbor sites A and C can hop only to site
B, but not to each other, which may occur if there exist
high energy barriers between them31. Let us focus on the
spinless case and write down the tight-binding Hamilto-
nian in the real space,

Hdice = (−t
∑
〈i,j〉

B̂†i Âj − t
∑
〈i,j〉

B̂†i Ĉj +H.c.) +Hz, (9)

where D̂†i (D̂j) with D = A,B,C creates (annihilates)
a particle on sublattice D of site Ri, 〈〉 represents the

nearest-neighbor sites and t the tunneling strength, and

Hz = mz

∑
i(Â
†
i Âi−Ĉ

†
i Ĉi) is the mass term. Using peri-

odic boundary conditions, we can write down the Hamil-
tonian in the momentum space,

Hdice(k) =

 mz d(k) 0
d(k)∗ 0 d(k)

0 d(k)∗ −mz

 , (10)

where d(k) = 1 + e−ik·a1 + e−ik·a2 with k being the mo-
mentum and a1 and a2 being primitive vectors. Near
the K (K′) point in the Brillouin zone, the Hamilto-

nian is approximated by HTB(q) = v0[∓(qx+
√

3qy)Ŝx+

(−
√

3qx+ qy)Ŝy] +mzŜz with v0 = 3a/4 and a being the
lattice constant, where q is measured with respect to K1

(K2), thereby demonstrating the emergence of two triply
degenerate points located at K1 and K2 when mz = 0.

In a geometry with zigzag edges in the y direction and
periodic boundary conditions in the x direction, we cal-
culate the band structure of the tight-binding model and
plot them in Fig. 4(b) and (c), corresponding to the case
without and with mz, respectively. In (c) with mz, we see
that there emerge three particle and three valence edge
state bands denoted by the red lines: Two of particle
(hole) bands have dispersion and the other one connect-
ing two energy minima (maxima) is flat and dispersion-
less. When the band gap decreases, one particle (hole)
edge bands shrink into zero energy and completely mix
with the zero energy bulk state when the band gap van-
ishes, as shown in Fig. 4(b). Additionally, the other two
particle (hole) edge bands become degenerate; this de-
generacy only exists for zigzag boundaries and does not
hold under armchair boundary conditions. For the latter,
we present the band structure in Fig. 5(b) and (c), show-
ing that there are two particle (hole) edge states with one
being dispersionless for massive electrons, which will mix
into the zero energy bulk states for massless electrons.
In the massless case, the particle (hole) edge state with
dispersion is not degenerate, different from the zigzag
scenario.

In the presence of magnetic fields along the z direction,
if choosing a unit cell as shown in Fig. 4(a), we write down
the Hamiltonian using the Peierls substitution

HM =−t
∑
m,n

[
eiα(−m+1/6)πÂ†m,nB̂m,n + eiα(m+1/6)πĈ†m,nB̂m,n + e−iα(m+1/6)πĈ†m,n−1B̂m,n

+eiα(m−1/6)πÂ†m,n+1B̂m,n + Ĉ†m−1,nB̂m,n + Â†m+1,nB̂m,n +H.c.
]

+Hz (11)

in the Landau gauge: Ax = 0 and Ay = Bx, where α = φ/φ0 with φ0 = h/e and φ being the magnetic flux
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FIG. 4. (Color online) (a) Schematics of a lattice structure of a tight-binding model with a pair of triply degenerate points.
Each unit cell consists of three sites: A, B and C, represented by cyan, black and green solid circles, respectively. There is
no hopping between A and C sublattices. The black line shows the zigzag boundary condition. The right one in (a) displays
the Brillourn zone with b1 and b2 being the reciprocal vectors. Band structure of our tight-binding model subject to zigzag
boundary conditions without magnetic fields in (b) with mz = 0 and in (c) with mz = 0.5t, and with magnetic fields in (d)
with mz = 0 and in (e) with mz = 0.5t, where the red lines denote the edge states. (f) is the zoomed in view of (e) around
zero energy and (g) plots the corresponding Hall conductance. In (d-f), the flat black lines represent the LLs. The dashed blue
lines in (d-f) are associated with the states located at the same edge and hence not chiral. Here, we use 240 unit cells with the
magnetic flux per unit cell being 1/60φ0.

per unit cell.

Because the quantized Hall conductance is equal to the
number of chiral edge states originated from the topo-
logical property of LLs, we can visualize the Hall con-
ductance by displaying the energy spectra under open
boundary conditions. For zigzag boundaries, the spectra
is shown in Fig. 4(d-f), where the black and red lines rep-
resent the LLs and edge states, respectively. We see from
(d) that there emerge even numbers of chiral edge states
for massless electrons with mz = 0 in the gaps except
the first gap, where no chiral edge states exist. This im-
plies that the Hall conductance takes even numbers and
becomes zero when the Fermi surface lies in the first gap
as shown in Fig. 4(g), which is in agreement with our
continuous model’s results. It is different from a spinless
single layer graphene and bilayer graphene, where there
exist one and two chiral edge states in the first gap52,53,
respectively. We see the same chiral edge state behavior
under armchair boundary conditions in Fig. 5(d).

For massive electrons with mz, the double degener-
acy of each Landau level with nonzero energy due to the
existence of two valleys is lifted, so that the number of
chiral edge states can increase (decrease) by one with the
change of the chemical potential as shown in Fig. 4(e).
This suggests that the Hall conductance can take both

even and odd integer values as shown in Fig. 4(g). Ad-
ditionally, the LLs with zero energy develop into a series
of bands around zero. In the gaps between these LLs, re-
markably, there appear chiral edge states and their num-
ber increases as energy moves toward zero, giving rise to
the revival of QHE as illustrated in Fig. 4(g). Since the
chirality of the edge states with positive (negative) energy
around zero is opposite to that of the other states with
positive (negative) energy, the Hall conductance changes
its sign during the revival. Furthermore, the chirality
of the edge states flips its sign as energy moves across
zero, the Hall conductance will accordingly experience a
sudden sign reversal during the process because of a Van
Hove singularity at zero energy. All these results agree
well with our continuous model’s results. We see the
same chiral edge state behavior under armchair bound-
ary conditions in Fig. 5(e) and (f).

Furthermore, the Hall conductance in the lattice model
can be calculated by the formula

σxy = −e
2

h
CF (EF ), (12)

where CF (EF ) =
∑
En<EF

Cn with Cn denoting the
Chern number of the LL with energy En. We employ
the method proposed in Ref.54 to compute CF (EF ) in
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FIG. 5. (Color online) (a) Schematics of a lattice structure with armchair boundaries denoted by the black line. (b-f) The
band structure obtained by using the same parameters as those in Fig. 4(b-f), but with armchair boundary conditions.

the discretized Brillouin zone meshed as {kl}49,54,

CF =
1

2πi

∑
l

F12(kl), (13)

where

F12(k) = ln [D1(k)D2(k + δk1)/D1(k + δk2)D2(k)] ,
(14)

Dµ(k) = detUµ(k)/|detUµ(k)|, (15)

Uµ(k) = ψ†(k)ψ(k + δkµ), (16)

ψ(k) = [ u1(k) u2(k) . . . uN (k) ], (17)

with δkν = |δkν |bν/|bν | (ν = 1, 2), un(k) being the nth
eigenstate of HM and uN being the highest eigenstate
below the Fermi surface.

We perform the calculation of the Hall conductance in
the dice model using the above approach and plot it in
Fig. 4(g). It is evident that the Hall conductance takes
the same value as the number of chiral edge states as
shown in Fig. 4(d-f) and Fig. 5(d-f).

IV. CONCLUSION

We have studied QHEs in a 2D massive spin-1 fermion
system and found that the Hall conductance first revives

as an infinite ladder of fine staircase after it crosses the
zero plateau when the chemical potential is moved toward
zero energy and then suddenly reverses with its sign being
flipped when the chemical potential is moved across zero,
in sharp contrast to the conventional QHE in normal ma-
terials or the unconventional QHE for Dirac fermions.
Although the sudden jump of the Hall conductance also
happens in lattice models, e.g. graphene, at high en-
ergy, our results show that this phenomenon occurs in
a continuous massive spin-1 fermion model around zero
energy. Moreover, we have explored the peculiar QHEs
in a gapped dice model and found the same phenomena
as the continuous spin-1 fermion model. The dice model
may be realized in cold atom systems with an appropri-
ate potential being generated by lasers31 and an artifi-
cial magnetic fields being engineered by the laser-assisted
tunneling technology that has implemented strong mag-
netic fields in square optical lattices55,56.
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Rev. B 95, 035414 (2017).
38 H. Watanabe, Y. Hatsugai, and H. Aoki, J. Phys.: Conf.

Ser. 334, 012044 (2011).
39 Z. Lan, N. Goldman, A. Vermudez, W. Lu, and P. Öhberg,
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