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PERSPECTIVE

Hamiltonian tomography: the quantum (system)measurement
problem
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Abstract
Toharness the power of controllable quantum systems for information processing or quantum
simulation, it is essential to be able to accurately characterise the systemʼsHamiltonian. Although in
principle this requires determining less parameters than full quantumprocess tomography, a general
and extendablemethod for reconstructing a general Hamiltonian has been elusive. In their recent
paper,Wang et al (2015New J. Phys. 17 093017) apply dynamical decoupling to the problemof
Hamiltonian tomography and showhow to reconstruct a generalmany-bodyHamiltonian comprised
of arbitrary interactions between qubits.

Since the development of quantummechanics, writing down theHamiltonian of a systemhas been the first step
in understanding its quantumproperties. A case in point is the hydrogen atom.While every physics
undergraduate is familiar with the Laguerre polynomials and spherical harmonic functions used to solve this
problem, there is amore subtle point to bemade here. A hydrogen atom is a hydrogen atom is a hydrogen atom.
They are all the same. TheHamiltonian is defined by the electrostatic interaction between an electron and a
proton. This is also true formany other quantummechanical problems. TheHamiltonian can and has been
written down from fundamental physics principles.

However, over the last few decades, the focus of quantumphysics hasmoved away from solving the classic
problems (somemight argue because they have all been solved). Now the current challenge is to design, build
and control novel quantum systems. Formany, a quantum computer and quantum information processing in
general is the epitome of this concept.While a quantum computer is still a long term goal, technology based on
controllable (typically nanoscale) quantumdevices has already resulted in advances in telecommunication,
metrology, sensing, and data storage, to name a few. As quantum technology develops, we come up against a
problem that is both obvious and subtle.What exactly is theHamiltonian of the systemwe have fabricated?
While there is a always an ideal design, nanoscale fabrication is still imperfect. Each devicemust be calibrated. In
short, theHamiltonian of each new quantumdevicemust bemeasured.

This problemhas long been studied in control engineering and is termed system identification. It is the
methods and techniques used to obtain an appropriatemathematical model of a dynamic system on the basis of
observed time series and prior knowledge of the system [1]. However, as always in quantummechanics, there are
complications. Unlike a classical system, the state of a quantum system cannot bemeasuredwithout that state
being altered.More importantly, from a system identification point of view, the size of the quantummechanical
state space grows exponentially with the number of degrees of freedomof the underlying system.

A commonmethod formeasuring a quantummechanical state or process is called quantum state (or
process) tomography [2, 3]. This technique involves preparing a complete set of input states and thenmeasuring
the system in an equivalently complete set ofmeasurement bases. This technique is particularly well suited to
optical implementations [4] but it requires a large number of different combinations of input andmeasurement
settings, and it scales exceptionally badly as the number of qubits increases.Worse, the set of input states and
measurements over-constrains the resulting densitymatrix or processmap, whichmeans techniques such as the
maximum-likelihoodmethod are required.

OPEN ACCESS

PUBLISHED

30 September 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/10/101001
mailto:jared.cole@rmit.edu.au
http://dx.doi.org/10.1088/1367-2630/17/9/093017
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/10/101001&domain=pdf&date_stamp=2015-09-30
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/10/101001&domain=pdf&date_stamp=2015-09-30
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Although a full reconstruction of the state of the system (the densitymatrix) requires determination ofmany
different parameters, the complete densitymatrix is not always required. If the system is sufficiently coherent
that noise processes can be ignored, then reconstructing theHamiltonian is enough. The problem then boils
down to system identification—variously referred to asHamiltonian identification,Hamiltonian
characterisation orHamiltonian tomography.

The simplest version of this problem is: howdoes one characterise a single qubitHamiltonian? Taking
systematicmeasurements fromknown input states as a function of time allows theHamiltonian to be
reconstructed in its entirety [5, 6]. These early approaches have been extended to include corrections due to
decoherence [7–9] additional levels [10] or limited accessibility [11–14] as well as including improved analysis
techniques, such a Bayesian analysis [15–17] or compressed sensing [18]. The approach ofmeasuring time traces
becomes significantlymore complexwhen considering two-qubits and all possible interactions between them,
evenwhen complete control over both qubits is assumed [15, 19–22].

Although the problemof characterisingHamiltonians is of fundamental importance, progress has been slow
compared tomore brute force process tomographymethods. Thework ofWang et al [23] has completely
rewritten the playbook onHamiltonian tomography by incorporating another common technique from
quantum control, dynamical decoupling.

Dynamical decoupling (DD) [24–28] involves applying a series of control pulses to the system to decouple it
from its environment. This can be thought of as amore sophisticated version of the standardHahn-echo pulses
at the heart ofMRI andNMR. The breakthrough thatWang et al havemade is the realisation that by applying
DD to all but two of the qubits in the system, the problemof characterisation of the system is reduced to
characterisation of each pair of qubits separately. This greatly simplifies the process andmeans that some of the
simplest time-domainHamiltonian identification techniques developed in themid-2000s can be applied
directly [5, 19, 20]. TheDDbased approach also allows for the full reconstruction of the relative phases of the
pairwise interaction terms. A tailored set ofDD sequences is used to reconstruct each of the XX, XY, YZ etc
contributions to theHamiltonian component for a given pair of qubits. This process is then repeated for all
relevant pairs within the system. In situations where there are strong symmetry arguments to limit the number
of options, either in terms of phases or pairwise interactions, then these contributions do not need to be
measured. This results in a very robust, scalable and efficientmeasurement protocol.

Although thework ofWang et al is amajor step forward, there are still open questions. How to account for
decoherence at short timescales or imperfections in theDDpulses? CanBayesian analysis or other statistical
techniques reduce the total number ofmeasurements required? For an issue that is usually completely side-
stepped in quantummechanics textbooks,measuring theHamiltonian continues to be an interesting and
important problem.
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