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Abstract

Depth first search (DFS) tree is one of the most well-known data structures for designing
efficient graph algorithms. Given an undirected graph G = (V, E) with n vertices and m edges,
the textbook algorithm takes O(n + m) time to construct a DFS tree. In this paper, we study
the problem of maintaining a DFS tree when the graph is undergoing incremental updates.
Formally, we show:

Given an arbitrary online sequence of edge or vertex insertions, there is an algo-
rithm that reports a DFS tree in O(n) worst case time per operation, and requires
O (min{mlogn,n?}) preprocessing time.

Our result improves the previous O(n log® n) worst case update time algorithm by Baswana
et al. [I] and the O(nlogn) time by Nakamura and Sadakane [I5], and matches the trivial Q(n)
lower bound when it is required to explicitly output a DFS tree.

Our result builds on the framework introduced in the breakthrough work by Baswana et
al. [I], together with a novel use of a tree-partition lemma by Duan and Zhang [9], and the
celebrated fractional cascading technique by Chazelle and Guibas [0, [7].

Introduction

Depth First Search (DFS) is one of the most renowned graph traversal techniques. After Tarjan’s
seminal work [21], it demonstrates its power by leading to efficient algorithms to many fundamental
graph problems, e.g., biconnected components, strongly connected components, topological sorting,
bipartite matching, dominators in directed graph and planarity testing.

Real world applications often deal with graphs that keep changing with time. Therefore it

is natural to study the dynamic version of graph problems, where there is an online sequence of
updates on the graph, and the algorithm aims to maintain the solution of the studied graph problem
efficiently after seeing each update. The last two decades have witnessed a surge of research in
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this area, like connectivity [10, [12], (13| [14], reachability [18] 20], shortest path [8 [19], bipartite
matching [3, [16], and min-cut [22].

We consider the dynamic maintenance of DFS trees in undirected graphs. As observed by
Baswana et al. [I] and Nakamura and Sadakane [15], the incremental setting, where edges/vertices
are added but never deleted from the graph, is arguably easier than the fully dynamic setting where
both kinds of updates can happen — in fact, they provide algorithms for incremental DFS with
O(n) worst case update time, which is close to the trivial Q(n) lower bound when it is required to
explicitly report a DFS tree after each update. So, is there an algorithm that requires nearly
linear preprocessing time and space, and reports a DFS tree after each incremental
update in O(n) time? In this paper, we study the problem of maintaining a DFS tree in the
incremental setting, and give an affirmative answer to this question.

1.1 Previous works on dynamic DFS

Despite the significant role of DF'S tree in static algorithms, there is limited progress on maintaining
a DFS tree in the dynamic setting.

Many previous works focus on the total time of the algorithm for any arbitrary updates. Fran-
ciosa et al. [I1] designed an incremental algorithm for maintaining a DFS tree in a DAG from a given
source, with O(mn) total time for an arbitrary sequence of edge insertions; Baswana and Choud-
hary [2] designed a decremental algorithm for maintaining a DFS tree in a DAG with expected
O(mnlogn) total time. For undirected graphs, Baswana and Khan [4] designed an incremental
algorithm for maintaining a DFS tree with O(n?) total time.

These algorithms used to be the only results known for the dynamic DFS tree problem. However,
none of these existing algorithms, despite that they are designed for only a partially dynamic
environment, achieves a worst case bound of o(m) on the update time.

That barrier is overcome in the recent breakthrough work of Baswana et al. [I], they provide,
for undirected graphs, a fully dynamic algorithm with worst case O(y/mn log?® n) update time, and
an incremental algorithm with worst case O(n log? n) update time. Due to the rich information in
a DFS tree, their results directly imply faster worst case fully dynamic algorithms for subgraph
connectivity, biconnectivity and 2-edge connectivity.

The results of Baswana et al. [I] suggest a promising way to further improve the worst case
update time or space consumption for those fully dynamic algorithms by designing better dynamic
algorithms for maintaining a DFS tree. In particular, based on the framework by Baswana et
al. [1], Nakamura and Sadakane [I5] propose an algorithm which takes O(y/mn log!™ n/\/loglogn)
time per update in the fully dynamic setting and O(nlogn) time in the incremental setting, and
O(mlogn) bits of space.

1.2 Our results

In this paper, following the approach of [I], we improve the update time for the incremental setting,
also studied in [I], by combining a better data structure, a novel tree-partition lemma by Duan
and Zhang [9] and the fractional-cascading technique by Chazelle and Guibas [6] [7].

For any set U of incremental updates (insertion of a vertex/an edge), we let G + U denote the
graph obtained by applying the updates in U to the graph G. Our results build on the following
main theorem.



Theorem 1.1. There is a data structure with O(min{mlogn,n?}) size, and can be built in O(min{m logn, n*})
time, such that given a set U of k insertions, a DFS tree of G+ U can be reported in O(n + k)
time.

By the above theorem combined with a de-amortization trick in [I], we establish the following
corollary for maintaining a DF'S tree in an undirected graph with incremental updates.

Corollary 1.2 (Incremental DFS tree). Given a sequence of online edge/vertex insertions, a
DF'S tree can be maintained in O(n) worst case time per insertion.

1.3 Organization of the Paper

In Section 2 we introduce frequently used notations and review two building blocks of our algorithm
— the tree partition structure [9] and the fractional cascading technique [0 [7]. In Section 3, we
consider a batched version of the incremental setting, where all incremental updates are given at
once, after which a single DF'S tree is to be reported. Given an efficient scheme to answer queries
of form Q(T(+),-,-), we prove Theorem [L.1] which essentially says there is an efficient algorithm,
which we call Batchlnsert, for the batched incremental setting. In Section 4, we elaborate on
the implementation of the central query subroutine Q(7'(+),-,-) used in the batched incremental
algorithm. We first review a standard de-amortization technique, applying which our algorithm
for the batched setting directly implies the efficient algorithm for the incremental setting stated
in Corollary We then, in Sections and respectively, introduce (1) an optimized data
structure that takes O(mlogn) time for preprocessing and answers each query in O(logn) time,
and (2) a relatively simple data structure that takes O(n?) time for preprocessing and answers
each query in O(1) time. One of these two structures, depending on whether mlogn > n? or
not, is then used in Section to implement a scheme that answers each query in amortized O(1)
time. This is straightforward when the (n?,1) structure is used. When instead the (mlogn,logn)
structure is used, we apply a nontrivial combination of the tree partition structure and the fractional
cascading technique to bundle queries together, and answer each bundle using a single call to
the (mlogn,logn) structure. We show that the number of such bundles from queries made by
Batchlnsert cannot exceed O(n/logn), so the total time needed for queries is O(n). This finishes
the proof of Theorem and Corollary and concludes the paper.

2 Preliminaries

Let G = (V, E) denote the original graph, 7" a corresponding DFS tree, and U a set of inserted
vertices and edges. We first introduce necessary notations.

e T'(z): The subtree of T rooted at z.

path(x,y): The path from z to y in T.

par(v): The parent of v in T.

N(x): The adjacency list of z in G.
e L(x): The reduced adjacency list for vertex x, which is maintained during the algorithm.

e T*: The newly generated DFS tree.



e par*(v): The parent of v in T™.

Our result uses a tree partition lemma in [9] and the famous fractional cascading structure in
[6, [7], which are summarized as the following two lemmas.

Lemma 2.1 (Tree partition structure [9]). Given a rooted tree T' and any integer parameter k such
that 2 < k < n = |V(T)|, there exists a subset of vertices M C V(T'), |M| < 3n/k — 5, such that
after removing all vertices in M, the tree T 1is partitioned into sub-trees of size at most k. We
call every v € M an M -marked vertex, and M a marked set. Also, such M can be computed in
O(nlogn) time.

Lemma 2.2 (Fractional cascading [6] [7]). Given k sorted arrays {A;}icy) of integers with total

size Ele |A;| = m. There exists a data structure which can be built in O(m) time and using O(m)
space, such that for any integer x, the successors of x in all A;’s can be found in O(k+logm) time.

3 Handling batch insertions

In this section, we study the dynamic DFS tree problem in the batch insertion setting. The goal
of this section is to prove Theorem Our algorithm basically follows the same framework
for fully dynamic DFS proposed in [I]. Since we are only interested in the dynamic DFS tree
problem in the batch insertion setting, the algorithms Batchlnsert and DFS presented below is a
moderate simplification of the original algorithm in [I], by directly pruning those details unrelated



to insertions.

Algorithm 1: Batchlnsert
Data: a DFS tree T of GG, set of insertions U
Result: a DFS tree T* of G + U

1 Add each inserted vertex v into T', set par(v) = r;

2 Initialize L(v) to be () for each v;

3 Add each inserted edge (u,v) to L(u) and L(v);

4 Call DFS(r);

Algorithm 2: DFS
Data: a DFS tree T of GG, the entering vertex v
Result: a partial DFS tree
1 Let u=v;
2 while par(u) is not visited do
L Let u = par(u);
Mark path(u,v) to be visited;
Let (wy,...,w) = path(u,v);
for i € [t| do
if ¢ # ¢ then
L Let par*(w;) = wit1;
for child x of w; in T except w;1q do
10 L Let (y,z) = Q(T(x), u,v), where y € path(u,v);
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11 Add z into L(y);

12 for ¢ € [t] do

13 for z € L(w;) do

14 if z is not visited then
15 Let par*(z) = wy;
16 L Call DFS(z);

In Algorithm Batchlnsert, we first attach each inserted vertex to the super root r, and pretend
it has been there since the very beginning. Then only edge insertions are to be considered. All
inserted edges are added into the reduced adjacency lists of corresponding vertices. We then use
DFS to traverse the graph starting from r based on T, L, and build the new DFS tree while
traversing the entire graph and updating the reduced adjacency lists.

In Algorithm DFS, the new DFS tree is built in a recursive fashion. Every time we enter an
untouched subtree, say T'(u), from vertex v € T'(u), we change the root of T'(u) to v and go
through path(v,u); i.e., we wish to reverse the order of path(u,v) in T*. One crucial step behind
this operation is that we need to find a new root for each subtree T'(w) originally hanging on
path(u,v). The following lemma tells us where the 7'(w) should be rerooted on path(u,v) in T*.

Lemma 3.1 ([1]). Let T* be a partially constructed DF'S tree, v the current vertex being visited, w
an (not necessarily proper) ancestor of v in tree T*, and C' a connected component of the subgraph
induced by unvisited vertices. If there are two edges e and €' from C incident on v and w, then it
is sufficient to consider only e during the rest of the DFS traversal.



Let Q(T'(w),u,v) be the edge between the highest vertex on path(u,v) incident to a vertex in
subtree T'(w), and the corresponding vertex in T(w). Q(T(w),u,v) is defined to be Null if such
an edge does not exist. By Lemma [3.1], it suffices to ignore all other edges but just keep the edge
returned by Q(T(w), u,v); this is because we have reversed the order of path(u,v) in T* and thus
Q(T(w),u,v) connects to the lowest possible position in 7. Hence T(w) should be rerooted at
Q(T(w),u,v).

Denote (z,y) to be the edge returned by Q(T'(w),u,v) where = € path(u,v), and then we add
y into L(x). After finding an appropriate entering edge for each hanging subtree, we process each
vertex v € path(u,v) in ascending order of depth (with respect to tree T'). For every unvisited
w € L(v), we set par*(w) = v, and recursively call DFS(w).

Theorem 3.2. Batchinsert correctly reports a feasible DF'S tree T* of graph G + U.

Proof. We argue that in a single call DFS(v), where u is the highest unvisited ancestor of v, every
unvisited (at the moment of being enumerated) subtree T'(w) hanging from path(u,v), as well as
every vertex on path(u,v) except v, will be assigned an appropriate parent such that these parent-
child relationships constitute a DF'S tree of G at the termination of Batchlnsert. When the traversal
reaches v, the entire T'(u) is untouched, or else u would have been marked by a previous visit to some
vertex in T'(u). We could therefore choose to go through path(v,u) to reach u first. By Lemma[3.1]
if a subtree T'(w) is reached from some vertex on path(u,v), it suffices to consider only the edge
Q(T(w),u,v). After adding the query results of all hanging subtrees into the adjacency lists of
vertices on path(u,v), every hanging subtree visited from some vertex x on path(u,v) should be
visited in a correct way through edges in L(x) solely. Since every vertex will eventually be assigned
a parent, Batchlnsert does report a feasible DFS tree of graph G + U. O

For now we have not discussed how to implement Q (7 (w),u,v) and the above algorithm only
assumes blackbox queries to Q(T(+), -, ). The remaining problem is to devise a data structure D to
answer all the queries demanded by Algorithm DFS in O(n) total time. We will show in the next
section that there exists a data structure D with the desired performance, which is stated as the
following lemma.

Lemma 3.3. There exists a data structure D with preprocessing time O (min{m log n,n2}) time
and space complezity O (min{m logn, nz}) that can answer all queries Q(T'(w), x,y) in a single run
of Batchlnsert in O(n) time.

Proof of Theorem[1.1, By Lemma the total time required to answer queries is O(n). The
total size of reduced adjacency lists is bounded by O(n + |U|), composed by O(|U|) edges added
in Batchlnsert and O(n) added during DFS. Thus, the total time complexity of Batchlnsert is

O(n +|U)).
During preprocessing, we use depth first search on G to get the initial DFS tree 7', and build
D in time O (min{mlogn,n?}). The total time for preprocessing is O (min{mlogn,n?}). O

4 Dealing with queries in Batchlnsert

In this section we prove Lemma Once this goal is achieved, the overall time complexity of
batch insertion taken by Algorithm Batchlnsert would be O(n + |U]).



In the following part of this section, we will first devise a data structure in Section [A.I} that
answers any single query Q(7T'(w), u,v) in O(logn) time, which would be useful in other parts of the
algorithm. We will then present another simple data structure in Section which requires O(n?)
preprocessing time and O(n?) space and answers each query in O(1) time. Finally, we propose a
more sophisticated data structure in Section which requires O(mlogn) preprocessing time and
O(mlogn) space and answer all queries Q(T'(w), z,y) in a single run of Batchlnsert in O(n) time.
Hence, we can always have an algorithm that handles a batch insertion U in O(n + |U]) time using
O(min{m logn,n?}) preprocessing time and O(min{m logn,n?}) space, thus proving Theorem
We can then prove Corollary using the following standard de-amortization argument.

Lemma 4.1. (Lemma 6.1 in [1]) Let D be a data structure that can be used to report the solution of
a graph problem after a set of U updates on an input graph G. If D can be initialized in O(f) time
and the solution for graph G +U can be reported in O(h+ |U| X g) time, then D can be modified to
report the solution after every update in worst-case O (\/E—l- h) update time after spending O(f)

time in initialization, given that \/f/g < n.

Proof of Corollary[1.3. Taking f = min{mlogn,n?}, g =1, h = n and directly applying the above
lemma will yield the desired result. O

4.1 Answering a single query in O(logn) time

We show in this subsection that the query Q(T(:),-,-) can be reduced efficiently to the range
successor query (see, e.g., [I7], for the definition of range successor query), and show how to answer
the range successor query, and thus any individual query Q(7(+),-,-), in O(logn) time.

To deal with a query Q(T'(w),x,y), first note that since T' is a DFS tree, all edges not in T
but in the original graph G must be ancestor-descendant edges. Querying edges between T'(w) and
path(z,y) where z is an ancestor of y and T'(w) is hanging from path(z,y) is therefore equivalent to
querying edges between T'(w) and path(z, par(w)), i.e., Q(T'(w),z,y) = Q(T (w), z, par(w)). From
now on, we will consider queries of the latter form only.

Consider the DFS sequence of T', where the i-th element is the i-th vertex reached during the
DFS on T'. Note that every subtree T'(w) corresponds to an interval in the DFS sequence. Denote
the index of vertex v in the DFS sequence by first(v), and the index of the last vertex in T'(v) by
last(v). During the preprocessing, we build a 2D point set S. For each edge (u,v) € E, we add a
point p = (first(u), first(v)) into S. Notice that for each point p € S, there exists exactly one edge
(u,v) associated with p. Finally we build a 2D range tree on point set S with O(mlogn) space and
O(mlogn) preprocessing time.

To answer an arbitrary query Q (T (w), x, par(w)), we query the point with minimum z-coordinate
lying in the rectangle Q = [first(x), first(w) — 1] x [first(w), last(w)]. If no such point exists, we
return Null for Q(T'(w), z, par(w)). Otherwise we return the edge corresponding to the point with
minimum z-coordinate.

Now we prove the correctness of our approach.

e If our method returns Null, Q(T'(w), x, par(w)) must equal Null. Otherwise, suppose Q(T'(w), z, par(w)) =
(u,v). Noticing that (first(u), first(v)) is in €2, it means our method will not return Null in
that case.

e If our method does not return Null, denote (u’,v") to be the edge returned by our method.
We can deduce from the query rectangle that v € T(z)\T(w) and v € T(w). Thus,



Q(T(w), z, par(w)) # Null. Suppose Q(T'(w), z, par(w)) = (u,v). Notice that (first(u), first(v))
is in ©, which means first(u’) < first(u). If ' = u, then our method returns a feasible solu-
tion. Otherwise, from the fact that first(u’) < first(u), we know that v’ is an ancestor of u,
which contradicts the definition of Q(T'(w), x, par(w)).

4.2 An O(n?)-space data structure

In this subsection we propose a data structure with quadratic preprocessing time and space com-
plexity that answers any Q(T'(-), -, ) in constant time.

Since we allow quadratic space, it suffices to precompute and store answers to all possible queries
Q(T(w),u, par(w)). For preprocessing, we enumerate each subtree T'(w), and fix the lower end of
the path to be v = par(w) while we let the upper end u go upward from v by one vertex at a time
to calculate Q(T'(w), u,v) incrementally, in order to get of the form Q(7T'(w), -, -) in O(n) total time.

As u goes up, we check whether there is an edge from 7'(w) to the new upper end u in O(1) time;
for this task we build an array (based on the DFS sequence of T') for each vertex, and insert an 1
into the appropriate array for each edge, and apply the standard prefix summation trick to check
whether there is an 1 in the range corresponding to 7'(w). To be precise, let A, : [n] — {0, 1} denote
the array for vertex u. Recall that first(v) denotes the index of vertex v in the DFS sequence, and
last(v) the index of the last vertex in T'(v). For a vertex u, we set A, [first(v)] to be 1 if and only
if there is an edge (u,v) where u is the higher end. Now say, we have the answer to Q(T'(w),u, v)
already, and want to get Q(T'(w), v’,v) in O(1) time, where v/ = par(u). If there is an edge between
T'(w) and ', then it will be the answer. Or else the answer to Q(T (w), v’,v) will be the same as to
Q(T(w), u,v). In order to know whether there is an edge between T'(w) and u’, we check the range
[first(w), last(w)] in A,s, and see if there is an 1 in O(1) time using the prefix summation trick.

Lemma 4.2. The preprocessing time and query time of the above data structure are O(n?) and
O(1) respectively.

Proof. The array A, and its prefix sum can be computed for each vertex u in total time O(n?). For
each subtree T'(w), we go up the path from w to the root 7, and spend O(1) time for each vertex u
on path(r,w) to get the answer for Q(T'(w), u, par(w)). There are at most n vertices on path(r, w),
so the time needed for a single subtree is O(n), and that needed for all subtrees is n-O(n) = O(n?)
in total. On the other hand, for each query, we simply look it up and answer in O(1) time. Hence
we conclude that the preprocessing time and query time are O(n?) and O(1) respectively. O

4.3 An O(mlogn)-space data structure

Observe that in Batchlnsert (and DFS), a bunch of queries {Q(7(w;), z,y)} are always made simul-
taneously, where {T'(w;)} is the set of subtrees hanging from path(z,y). We may therefore answer
all queries for a path in one pass, instead of answering them one by one. By doing so we confront
two types of hard queries.

First consider an example where the original DFS tree T is a chain L where a; is the root of
L and for 1 <i <n—1, a;j41 is the unique child of a;. When we invoke DFS(ay) on L, path(u,v)
is the single node a;. Thus, we will call Q(T(a2),a1,a;) and add the returned edge into L(ay).
Supposing there are no back-edges in this graph, the answer of Q(7T'(a2),a1,a;) will be the edge
(a1,a2). Therefore, we will recursively call the DFS(az) on the chain (ag,a,). Following further
steps of DFS, we can see that we will call the query Q(T'(w),x,y) for (n) times. For the rest of



this subsection, we will show that we can deal with this example in linear time. The idea is to
answer queries involving short paths in constant time. For instance, in the example shown above,
path(u,v) always has constant length. We show that when the length of path(u,v) is smaller than
2logn, it is affordable to preprocess all the answers to queries of this kind in O(mlogn) time and
O(nlogn) space.

re

Figure 1: In this example, if we stick to the 2D-range-based data structure introduced before,
then computing all Q(T'(a;),r,r") would take as much as O(nlogn) time.

The second example we considered is given as Figure In this tree, the original root is r.
Suppose the distance between r and 7’ is n/2. When we invoke DFS(7’), path(u,v) the path from
r to r/. Thus, we will call T'(ay,r,r’), T(ag,r, "), ..., T(an—2,7,1"), which means we make Q(n)
queries. In order to deal with this example in linear time, the main idea is using fractional cascading
to answer all queries Q(T'(w), x,y) with a fixed path(u,v), for all subtrees T'(w) with small size.

In the examples shown above, all subtrees cut off path(u,v) have constant size and thus the
total time complexity for this example is O(n). We will finally show that, by combining the two
techniques mentioned above, it is enough to answer all queries Q(T'(w),z,y) in linear time, thus
proving Lemma [3.3]

Data structure
The data structure consists of the following parts.

(i) Build the 2D-range successor data structure that answers any Q(7'(+),-,-) in O(logn) time.

(ii) For each ancestor-descendent pair (u,v) such that u is at most 2logn hops above v, precom-
pute and store the value of Q(T'(v),u, par(v)).

(iii) Apply Lemma [2.1] with parameter k = logn and obtain a marked set of size O(n/logn). Let
M be the set of all marked vertices x such that |T'(x)| > logn. For every v ¢ M, let anc, € M
be the nearest ancestor of v in set M.
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(b) In this picture, sets M and X U {r} are drawn as
blue nodes and black nodes respectively, and each yel-
low triangle is a subtree rooted at a leaf of T[X], which
has size > logn. Note that every ancestor-descendent
tree path between two black nodes contains a blue

node.

Next we build a fractional cascading data structure for each u € M in the following way.
Let M, be the set of all vertices in T'(u) whose tree paths to u do not intersect any other
vertices ' # u from M, namely M, = {v | anc, = u}; see Figure [2a] for an example. Then,
apply Lemma on all N(v),v € M, where N(v) is treated as sorted array in an ascending
order with respect to depth of the edge endpoint opposite to v; this would build a fractional
cascading data structure that, for any query encoded as a w € V, answers for every v € M,
its highest neighbour below vertex w in total time O(|M,| + logn).

Here is a structural property of M that will be used when answering queries.

Lemma 4.3. For any ancestor-descendent pair (u,v), if path(u,v) N M = 0, then path(u,v) has
< 2logn hops.

Proof. Suppose otherwise. By definition of marked vertices there exists a marked vertex w €
path(u,v) that is < logn hops below w. Then since path(u,v) has > 2logn many hops, it must be
T(w) > logn which leads to w € M, contradicting path(u,v) N M = (). O

Preprocessing time

First of all, for part (i), as discussed in a previous subsection, 2D-range successor data structure
takes time O(m log n) to initialize. Secondly, for part (iii), on the one hand by Lemma[2.1]computing
a tree partition takes time O(nlogn); on the other hand, by Lemma initializing the fractional
cascading with respect to u € M costs O(3_, ¢y, [IV(v)]) time. Since, by definition of M,, each
v € V is contained in at most one M,,u € M, the overall time induced by this part would be
O ent Sucns, IN@)[) = O(m).

Preprocessing part (ii) requires a bit of cautions. The procedure consists of two steps.
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(1) For every ancestor-descendent pair (u,v) such that u is at most 2logn hops above v, we mark
(u,v) if u is incident to T'(v).

Here goes the algorithm: for every edge (u,w) € E (u being the ancestor), let z € path(u,w) be
the vertex which is 2log n hops below u (if path(u, w) has less than 2logn hops, then simply let
z = w); note that this z can be found in constant time using the level-ancestor data structure
[5] which can be initialized in O(n) time. Then, for every vertex v € path(u, z), we mark the
pair (u,v). The total running time of this procedure is O(mlogn) since each edge (u,w) takes
up O(logn) time.

(2) Next, for each v € V', we compute all entries Q(7'(v), u, par(v)) required by (ii) in an incremen-
tal manner. Let ui,ug, -+ ,u210gn be the nearest 2logn ancestors of v sorted in descending

order with respect to depth, and then we directly solve the recursion Q(7'(v), uit+1, par(v)) =
T ; ; i t ked
QT (v), ui, par(v)) (.UZH’U) 15 1o m:'ir ¢ for all 0 < i < 2logn in O(logn) time. The
Uit1 i =0 or (ujt1,v) is marked
total running time would thus be O(nlogn).

Summing up (i)(ii)(iii), the preprocessing time is bounded by O(mlogn).

Query algorithm and total running time

We show how to utilize the above data structures (i)(ii)(iii) to implement Q(7'(-),-,-) on line 9-11
in Algorithm DFS such that the overall time complexity induced by this part throughout a single
execution of Algorithm Batchlnsert is bounded by O(n).

Let us say we are given (w1, ws, -+ ,w;) = path(u,v) and we need to compute Q(T'(z),u,v) for
every subtree T'(x) that is hanging on path(u,v). There are three cases to discuss.

(1) If path(u,v) "M = 0, by Lemma[4.3] we claim path(u,v) has at most 2logn hops, and then we
can directly retrieve the answer of Q(T'(z),u,v) from precomputed entries of (ii), each taking
constant query time.

(2) Second, consider the case where path(u,v) N M # (). Let s1,82,---, 8,1 > 1 be the consecutive
sequence (in ascending order with respect to depth in tree T') of all vertices from M that are on
path(u,v). For those subtrees T'(x) that are hanging on path(u, par(s1)), we can directly retrieve
the value of Q(T'(x),u, par(x)) from (ii) in constant time, as by Lemma path(u, par(sy))
has at most 2logn hops.

(3) Third, we turn to study the value of Q(T'(z), u, par(x)) when par(x) belongs to a path(s;, par(si+1)),i <
[ or path(s;,v). The algorithm is two-fold.

(a) First, we make a query of u to the fractional cascading data structure built at vertex s;
(1 < < 1), namely part (iii), which would give us, for every descendent y € M., the
highest neighbour of y below u. Using this information we are able to derive the result of
Q(T(x),u,v) if |T(x)| < logn, since in this case T'(x) N M = () and thus T'(z) C Ms,.

By Lemma [2.2] the total time of this procedure is O(|Mj,| + logn).

(b) We are left to deal with cases where |T'(x)| > logn. In this case, we directly compute
Q(T(z),u,v) using the 2D-range successor built in (i) which takes O(logn) time.
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Correctness of the query algorithm is self-evident by the algorithm. The total query time is
analysed as following. Throughout an execution of Algorithm Batchlnsert, (1) and (2) contribute
at most O(n) time since each T'(z) is involved in at most one such query Q(T'(x), u,v) which takes
constant time. As for (3)(a), since each marked vertex s € M lies in at most one such path
(w1, wa, -+ ,w) = path(u,v), the fractional cascading data structure associated with Mj is queried
for at most once. Hence the total time of (3)(a) is O(>_ /(| Ms| 4 logn)) = O(n + |M|logn) =
O(n); the last equality holds by [M| < O(n/logn) due to Lemma [2.1]

Finally we analyse the total time taken by (3)(b). It suffices to upper-bound by O(n/logn) the
total number of such = with the property that |T'(x)| > logn and path(u, par(x)) "M # (. Let X
be the set of all such x’s.

Lemma 4.4. Suppose x1,x9 € X and 1 is an ancestor of xo in tree T. Then path(xz1,x2) VM # ().

Proof. Suppose otherwise path(x1,z9) N M = (). Consider the time when query Q(T(x2),u,v) is
made and let path(u,v) be the path being visited by then. As zy € X, by definition it must be
path(u, par(zs)) N M # (. Therefore, path(u,z2) is a strict extension of path(z1,x2), and thus
x1, par(xy) € path(u,xz), which means 1 and par(x;) become visited in the same invocation of
Algorithm DFS. This is a contradiction since for any query of form Q(7T(x1),-,-) to be made, by
then par(x1) should be tagged “visited” while 1 is not. O

Now we prove | X| = O(n/logn). Build a tree T[X] on vertices X U{r} in the natural way: for
each x € X, let its parent in T[X] be z’s nearest ancestor in X U {r}. Because of

|.X| < 2#tleaves of T'[X] + #vertices with a unique child in T[X]

it suffices to bound the two terms on the right-hand side: on the one hand, the number of leaves
of T'[X] is at most n/logn since for each leave x it has |T'(x)| > logn; on the other hand, for each
x € T[X] with a unique child y € T[X], by Lemma path(x,y) N M # (b, and so we can charge
this « to an arbitrary vertex in path(z,y)N M, which immediately bounds the total number of such
x’s by |[M| = O(n/logn); see Figure 2b| for an illustration. Overall, | X| < O(n/logn).
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