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ABSTRACT
We develop the theory of holographic algorithms. We de-
fine a basis manifold and give characterizations of algebraic
varieties of realizable symmetric generators and recognizers
on this manifold. We present a polynomial time decision
algorithm for the simultaneous realizability problem. Using
the general machinery we are able to give unexpected holo-
graphic algorithms for some counting problems, modulo cer-
tain Mersenne type integers. These counting problems are
#P-complete without the moduli. Going beyond symmetric
signatures, we define d-admissibility and d-realizability for
general signatures, and give a characterization of
2-admissibility.

Categories and Subject Descriptors:
F. Theory of Computation.
F.2 Analysis of Algorithms and Problem Complexity.
General Terms:
Algorithms, Theory.
Keywords:
Holographic algorithms, matchgates, signatures.

1. INTRODUCTION
It has become more or less an article of faith among theo-

retical computer scientists that the conjecture P �= NP holds.
Certainly there are good reasons to believe this assertion,
not the least of which is the fact that the usual algorith-
mic paradigms seem unable to handle any of the NP-hard
problems. Such statements are made credible by decades of
in-depth study of these methodologies.

To be sure, there are some “surprising” polynomial time
algorithms for problems which, on appearance, would seem
to require exponential time. One such example is to count
the number of perfect matchings in a planar graph (the
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FKT method) [18, 19, 25]. In [27, 29] Valiant introduced
holographic algorithms—a truly original algorithmic design
technique. Computation in these algorithms is expressed
and interpreted through a choice of linear basis vectors in
an exponential “holographic” mix, and then it is carried out
by the FKT method via the Holant Theorem. This method-
ology has produced polynomial time algorithms for a variety
of problems ranging from restrictive versions of Satisfiabil-
ity, Vertex Cover, to other graph problems such as edge
orientation and node/edge deletion. No polynomial time al-
gorithms were known for any of these problems, and some
minor variations are known to be NP-hard.

These holographic algorithms are quite unusual compared
to other kinds of algorithms (except perhaps quantum algo-
rithms). At the heart of the computation is a process of
introducing and then canceling exponentially many compu-
tational fragments. Invariably the success of this methodol-
ogy on a particular problem boils down to finding a certain
“exotic” object represented by a signature.

For example, Valiant showed [32] that the restrictive SAT
problem #7Pl-Rtw-Mon-3CNF (counting the number of sat-
isfying assignments of a planar read-twice monotone 3CNF
formula, modulo 7) is solvable in P. The same problem
#Pl-Rtw-Mon-3CNF without mod 7 is known to be #P-
complete; the problem mod 2, #2Pl-Rtw-Mon-3CNF, is known
to be ⊕P-complete (thus NP-hard). The surprising tractabil-
ity mod 7 is due to the existence of an unexpected signature
over Z7.

These signatures are specified by families of algebraic equa-
tions. These families of equations are typically exponen-
tial in size. Finding a solution will imply the solvability of
a problem in P. In his “Accidental Algorithm” paper [32]
Valiant makes the case that “the situation with the P = NP
question is not dissimilar to that of other unresolved enu-
merative conjectures in mathematics. The possibility that
accidental or freak objects in the enumeration exist cannot
be discounted.” However, dealing with such algebraic equa-
tions can be difficult due to the exponential size. So far the
successes have been an expression of artistic inspirations.

To sustain our belief in P �= NP, we must start to develop
a systematic understanding of the capabilities of holographic
algorithms. Some may consider the problems such as #7Pl-
Rtw-Mon-3CNF that have been solved in this framework a
little contrived. But the point is that when we surveyed po-
tential algorithmic approaches with P vs. NP in mind, these
algorithms were not part of the repertoire. Presumably the
same “intuition” for P �= NP would have applied equally to
#7Pl-Rtw-Mon-3CNF and to #2Pl-Rtw-Mon-3CNF. Thus,
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Valiant suggested in [29], “any proof of P �= NP may need
to explain, and not only to imply, the unsolvability” of NP-
hard problems using this approach.

While finding “exotic” solutions such as the signature for
#7Pl-Rtw-Mon-3CNF is inspired artistry, the situation with
ever more complicated algebraic constraints on such signa-
tures (for other problems) can quickly overwhelm such an
artistic approach (as well as a computer search). At any
rate, failure to find such solutions to a particular algebraic
system yields no proof that such solutions do not exist, and
it generally does not give us any insight as to why. We need
a more scientific understanding. The aim of this paper is to
build toward such an understanding.

We have achieved a complete account of the realizable
symmetric signatures. Using this we can show why the mod-
ulus 7 happens to be the modulus that works for #7Pl-Rtw-
Mon-3CNF. Underlying this is the fact that 7 is 23 − 1, and
for any odd prime p, any prime factor q of the Mersenne
number 2p − 1 has q ≡ ±1 mod 8, and therefore 2 is a
quadratic residue in Zq . Generalizing this, we show that
#2k−1Pl-Rtw-Mon-kCNF is in P for all k ≥ 3 (the problem
is trivial for k ≤ 2). Furthermore, no suitable signatures
exist for any modulus other than factors of 2k − 1 for this
problem.

When designing a holographic algorithm for any particu-
lar problem, the essential step is to decide whether there is
a basis for which certain signatures of both generators and
recognizers can be simultaneously realized (a quick review
of terminologies is given in Section 2.) Frequently these
signatures are symmetric signatures. Our understanding of
symmetric signatures has advanced to the point where it is
possible to give a polynomial time algorithm to decide the
simultaneous realizability problem. If a matchgate has arity
n, the signature has size 2n. However for symmetric sig-
natures we have a compact form, and the running time of
the decision algorithm is measured in n. Followed from this
structural understanding we can give (i) a complete account
of all the previous successes of holographic algorithms using
symmetric signatures [29, 5, 32]; (ii) generalizations such as
#2k−1Pl-Rtw-Mon-kCNF and a similar problem for Vertex
Cover, when this is possible; and (iii) a proof when this is
not possible. This should be considered an important step
in our understanding of holographic algorithms, from art to
science.

In order to investigate realizability of signatures, we found
it useful to introduce a basis manifold M, which is defined
to be the set of all possible bases modulo an equivalence
relation. This is a useful language for the discussion of
symmetric signatures; it becomes essential for the general
signatures. We define the notions of d-admissibility and d-
realizability. To be d-admissible is to have a d-dimensional
solution subvariety in M, satisfying all the parity require-
ments. These are part of the requirements for the bases to
satisfy in order to be realizable. To be d-realizable is to have
a d-dimensional solution subvariety in M for all realizability
requirements, which include the parity requirements as well
as the useful Grassmann-Plücker identities [5, 28], called the
matchgate identities. To have 0-realizability is a necessary
condition. But to get holographic algorithms one needs si-
multaneous realizability of both generators and recognizers.
This is accomplished by having a non-empty intersection of
the respective subvarieties for the realizability of generators
and recognizers. And this tends to be accomplished by hav-

ing d-realizability (which implies d-admissibility), for d ≥ 1,
on at least one side. Therefore it is important to investi-
gate d-realizability and d-admissibility for d ≥ 1. We give
a complete characterization of 2-admissibility. We also have
some general results concerning 1-admissibility and on 1- or
2-realizable families. These will be reported in the future.

This paper is organized as follows. In Section 3 we de-
fine the basis manifold M which will be used to express our
results throughout. In Section 4 we describe our results on
simultaneous realizability of recognizers and generators, cul-
minating in the polynomial time decision procedure. In Sec-
tion 5 we describe our results on #2k−1Pl-Rtw-Mon-kCNF
and on Vertex Cover. Further illustrations of the power of
the general machinery are given in Section 6. In Section 7
we go beyond symmetric signatures, and give some general
results regarding d-admissibility and d-realizability.

2. SOME BACKGROUND
In this section we review some definitions and results.

More details can be found in [27, 29, 28, 5, 4, 3, 30, 31].
Let G = (V, E, W ), G′ = (V ′, E′, W ′) be weighted undi-

rected planar graphs. A generator matchgate Γ is a tuple
(G, X) where X ⊂ V is a set of external output nodes. A
recognizer matchgate Γ′ is a tuple (G′, Y ) where Y ⊂ V ′ is a
set of external input nodes. The external nodes are ordered
counter-clock wise on the external face. Γ is called an odd
(resp. even) matchgate if it has an odd (resp. even) number
of nodes.

Each matchgate is assigned a signature tensor. A genera-
tor Γ with m output nodes is assigned a contravariant tensor
G ∈ V m

0 of type
`

m
0

´
. This tensor under the standard basis

b has the formX
Gi1i2...imbi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where Gi1i2...im = PerfMatch(G − Z), is the sum of prod-
ucts of matching edge weights over all perfect matchings
PerfMatch(G − Z) =

P
M

Q
(i,j)∈M wij , and Z is the sub-

set of the output nodes having the characteristic sequence
χZ = i1i2 . . . im. Similarly a recognizer Γ′ with m input
nodes is assigned a covariant tensor R ∈ V 0

m of type
`

0
m

´
.

This tensor under the standard (dual) basis b∗ has the formX
Ri1i2...imbi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where Ri1i2...im = PerfMatch(G′ − Z), and Z is the subset
of the input nodes having χZ = i1i2 . . . im.

In particular, G transforms as a contravariant tensor, and
R transforms as a covariant tensor, under a basis transfor-
mation.

A signature is symmetric, if each entry only depends on
the Hamming weight of the index. This notion is invari-
ant under basis transformations. A symmetric signature is
denoted by [σ0, σ1, . . . , σm].

A matchgrid Ω = (A,B, C) is a weighted planar graph
consisting of a disjoint union of: a set of g generators A =
(A1, . . . , Ag), a set of r recognizers B = (B1, . . . , Br), and a
set of f connecting edges C = (C1, . . . , Cf ), where each Ci

edge has weight 1 and joins an output node of a generator
with a input node of a recognizer, so that every input and
output node in every constituent matchgate has exactly one
such incident connecting edge.

Let G =
Ng

i=1 G(Ai) be the tensor product of all the
generator signatures, and let R =

Nr
j=1 R(Bj) be the tensor
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product of all the recognizer signatures. Then Holant(Ω) is
defined to be the contraction of the two product tensors,
under some basis β, where the corresponding indices match
up according to the f connecting edges in C.

The remarkable Holant Theorem is

Theorem 2.1 (Valiant). For any matchgrid Ω over
any basis β, let G be its underlying weighted graph, then

Holant(Ω) = PerfMatch(G).

A development of Valiant’s framework with covariant and
contravariant tensors and a proof of the Holant Theorem
using these concepts can be found in [4].

The FKT algorithm can compute the perfect matching
polynomial PerfMatch(G) for a planar graph in polynomial
time. This algorithm gives an orientation of the edges of the
planar graph, which assigns a ±1 factor to each edge weight.
It then evaluates the Pfaffian of the skew-symmetric matrix
of the graph.

Pfaffians satisfy the Grassmann-Plücker identities [24]. A
set of so-called useful Grassmann-Plücker identities have
been proved to characterize planar matchgate signatures [28,
3, 5]. These are called Matchgate Identities.

Matchgate computations also have interesting connections
to quantum computing, in particular, what fragments of
quantum computation can be simulated classically (cf. [27]
and Knill-Gottesman theorem [13]. See also [1, 21, 10].) In
this paper we will not discuss this connection.

We state some theorems from [6], which will be used.

Theorem 2.2. (Thm. 3 in [6], p. 436) A symmetric
signature [x0, x1, . . . , xn] for a recognizer is realizable under

the basis β = [n, p] =

»„
n0

n1

«
,

„
p0

p1

«–
iff it takes one of the

following forms:
Form 1: there exist (arbitrary) constants λ, s, t and ε where
ε = ±1, such that for all i, 0 ≤ i ≤ n,

xi = (sn0 +tn1)
n−i(sp0 +tp1)

i +ε(sn0−tn1)
n−i(sp0−tp1)

i.
(1)

Form 2: there exist (arbitrary) constants λ,such that for all
i, 0 ≤ i ≤ n,

xi = λ[(n − i)n0(p1)
i(n1)

n−1−i + ip0(p1)
i−1(n1)

n−i]. (2)

Form 3: there exist (arbitrary) constants λ,such that for all
i, 0 ≤ i ≤ n,

xi = λ[(n − i)n1(p0)
i(n0)

n−1−i + ip1(p0)
i−1(n0)

n−i]. (3)

A similar theorem for generators (Thm. 4 in [6], p. 437)
will also be used, but we omit the statement here.

Theorem 2.3. (Thm. 5 in [6], p. 438) A symmetric
signature [x0, x1, · · · , xn] is realizable on some basis of size
1 iff there exists three constants a, b, c(not all zero), such
that ∀k, 0 ≤ k ≤ n − 2,

axk + bxk+1 + cxk+2 = 0. (4)

The following two simple lemmas are used in the proof of
Lemma 4.5 and 4.6. We omit their proofs.

Lemma 2.1. Suppose a sequence xi (i = 0, 1, . . . , n, where
n ≥ 3) has the following form: xi = Aαi + Bβi, (AB �=
0, α �= β), then the representation is unique. That is, if
xi = A′(α′)i + B′(β′)i, (i = 0, 1, . . . , n, n ≥ 3), then A′ =
A, B′ = B, α′ = α, β′ = β or A′ = B, B′ = A,α′ = β, β′ =
α.

Lemma 2.2. Suppose a sequence xi (i = 0, 1, . . . , n, where
n ≥ 3) has the following form: xi = Aiαi−1 + Bαi, (A �=
0), then the representation is unique. That is, if xi =
A′i(α′)i−1 + B′(α′)i, (i = 0, 1, . . . , n, n ≥ 3), then A′ =
A, B′ = B, α′ = α.

3. THE BASIS MANIFOLD
In holographic algorithms, computations are expressed in

terms of a set of linear basis vectors of dimension 2k, where
k is called the size of the basis. In almost all cases [29, 3],
the successful design of a holographic algorithm was accom-
plished by a basis of size 1. In [32], initially Valiant used a
basis of size 2 to show #7Pl-Rtw-Mon-3CNF ∈ P. Then it
was pointed out in [6] that even in that case the same can
be done with a basis of size 1. Subsequently we were able
to prove that every holographic algorithm using a basis of
size 2 can be efficiently simulated by another holographic
algorithm using a basis of size 1 [7].

However trying to extend this collapse to arbitrary di-
mensions we encountered significant difficulties, mainly due
to matchgate identities. (At the time of submission of the
present paper, we thought we had overcome that difficulty;
but we didn’t.) Finally this universal collapse was achieved [8].
(See also [9].) The final proof uses many crucial ideas from [7],
but we had to do much more. The upshot is that higher
dimensional bases do not extend the reach of holographic
algorithms. Therefore, we will develop our theory exclu-
sively with bases of size 1; but our results are universally
applicable.

We will identify the set of 2-dim bases

»„
n0

n1

«
,

„
p0

p1

«–
with GL2(F). Over the complex field F = C, it has (com-
plex) dimension 4. Similarly for F = R. However, the fol-
lowing simple Proposition 4.3 of [29] shows that the essential
underlying structure has only dimension 2.

Proposition 3.1 (Valiant). [29] If there is a gen-
erator (recognizer) with certain signature for size one basis
{(n0, n1), (p0, p1)} then there is a generator (recognizer) with
the same signature for size one basis { (xn0, yn1), (xp0,yp1)}
or {(xn1, yn0), (xp1, yp0) for any x, y ∈ F, and xy �= 0.

This leads to the following definition of an equivalence
relation:

Definition 3.1. Two bases β = [n, p] =

»„
n0

n1

«
,

„
p0

p1

«–

and β′ = [n′, p′] =

»„
n′

0

n′
1

«
,

„
p′
0

p′
1

«–
are equivalent, denoted

by β ∼ β′, iff there exist x, y ∈ F∗ such that n′
0 = xn0, p

′
0 =

xp0, n
′
1 = yn1, p

′
1 = yp1 or n′

0 = xn1, p
′
0 = xp1, n

′
1 =

yn0, p
′
1 = yp0.

Theorem 3.1. GL2(F)/ ∼ is a two dimensional mani-
fold (for F = C or R).

We call this the basis manifold M. For F = R, it can be
shown that topologically M is a Möbius strip. From now

403



on we identify a basis β with its equivalence class contain-
ing it. When it is permissible, we use the dehomogenized

coordinates

„
1 x
1 y

«
to represent a point (i.e., a basis class)

in M. We will assume char.F �= 2.

4. SIMULTANEOUS REALIZABILITY OF
SYMMETRIC SIGNATURES

In [6], we gave a complete characterization of all the re-
alizable symmetric signatures (Thm. 3, 4, 5 in [6]). These
tell us exactly what signatures can be realized over some
bases. However, to construct a holographic algorithm, one
needs to realize some generators and recognizers simultane-
ously. In terms of M, a given generator (recognizer) defines
a (possibly empty) subvariety which consists of all the bases
over which it is realizable. Then simultaneous realizability is
equivalent to a non-empty intersection of these subvarieties.
Thus we have to go beyond [6]. For every signature which is
realizable according to Theorem 2.3, we need to determine
the subvariety where it is realizable.

Definition 4.1. Let Bgen(G) (resp. Brec(R)) be the set
of all possible bases in M for which a symmetric signature
G for a generator (resp. R for a recognizer) is realizable.

Since the identical zero signature is realizable in every ba-
sis, we will assume the signature is non-zero in the following
discussion.

4.1 Realizability of Recognizers
The following Lemmas give a complete and mutually ex-

clusive list of realizable symmetric signatures for recognizers.

Lemma 4.1.

Brec([a
n, an−1b, . . . , bn]) =

j »„
a
n1

«
,

„
b
p1

«–
∈ M

˛̨̨
˛ n1, p1 ∈ F

ff
.

Remark: Every signature of arity 1 is in this form.
Proof: If n = 1, the standard signature can and can only
be (λ, 0) or (0, λ) (where λ is arbitrary). So the signature

over the basis

»„
n0

n1

«
,

„
p0

p1

«–
is (λn0, λp0) or (λn1, λp1).

Since we require the signature to be (a, b), all the possible

bases as expressed in M are

»„
a
n1

«
,

„
b
p1

«–
, where n1, p1

are arbitrary, except ap1 − bn1 �= 0.
Now we assume n > 1, then it is easy to show that this

signature must be generated from Form 1 of Theorem 2.2.
In this form, we must have b(sn0 + tn1) = a(sp0 + tp1) and
b(sn0 − tn1) = a(sp0 − tp1). It follows that bsn0 = asp0

and btn1 = atp1. Because at least one of a, b is non-zero, if
st �= 0, we have n0p1 − n1p0 = 0. But this is not allowed.
So we must have s = 0 or t = 0, (but not both s = 0 and
t = 0, o.w., the signature is identically 0). In either cases,

all the possible bases are

»„
a
n1

«
,

„
b
p1

«–
∈ M, where n1, p1

are arbitrary, subject to ap1 − bn1 �= 0.

Lemma 4.2.

Brec([x0, x1, x2]) =

j»„
n0

n1

«
,

„
p0

p1

«–
∈ M |

x0p
2
1 − 2x1p1n1 + x2n

2
1 = 0, x0p

2
0 − 2x1p0n0 + x2n

2
0 = 0

or x0p0p1 − x1(n0p1 + n1p0) + x2n0n1 = 0

ff
.

Proof: Under the equivalence relation, we can assume
n0p1 − n1p0 = 1.

Then

»„
n0

n1

«
,

„
p0

p1

«–−1

=

»„
p1

−n1

«
,

„−p0

n0

«–
. So the

standard signature of [x0, x1, x2] is [x0p
2
1 − 2x1p1n1 + x2n

2
1,

x0p0p1 −x1(n0p1 +n1p0) +x2n0n1, x0p
2
0 − 2x1p0n0 +x2n

2
0].

The fact that the only constraint of a standard signature of
arity 2 is the parity constraint completes the proof.

In the following the matchgate arity n is ≥ 3.

Lemma 4.3. Let λ1 �= 0. Suppose p = char.F � |n, then

Brec([0, 0, . . . , 0, λ1, λ2]) =

j»„
0

nλ1

«
,

„
1
λ2

«–ff
.

For p|n and λ2 = 0,

Brec([0, . . . , 0, λ1, 0]) =

j »„
0
n1

«
,

„
1
p1

«–
∈ M

˛̨̨
˛ n1, p1 ∈ F

ff
.

For p|n and λ2 �= 0, Brec([0, 0, . . . , 0, λ1, λ2]) = ∅.
Proof: Its reversal signature [λ2, λ1, 0, . . . , 0] is a special
case of Lemma 4.6 (setting α = 0 in Lemma 4.6).

Lemma 4.4. For any scalars α, A, B, where AB �= 0,

Brec([A, Aα, Aα2, . . . , Aαn + B]) =j »„
1
1

«
,

„
α + ω
α − ω

«–˛̨̨
˛ ωn = ±B

A

ff
.

Proof: Its reversal signature [Aαn +B, Aαn−1, . . . , Aα, A]
is a spacial case of Lemma 4.5. (This proof assumes α �= 0.
For α = 0, it can be directly verified.)

Other cases of Theorem 2.3 have the property that the a, b
and c (in the statement of Theorem 2.3) are unique up to a
scaling factor and c �= 0. So we have a unique characteristic
equation cx2+bx+a = 0, which has two roots α and β. (For
arbitray a, b, c, α and β are general too.) Corresponding to
α �= β, we have the following lemma:

Lemma 4.5. For any scalars α, β, A and B, where AB �=
0 and α �= β,

Brec([Aαi + Bβi|i = 0, 1, . . . , n]) =j »„
1 + ω
1 − ω

«
,

„
α + βω
α − βω

«–˛̨̨
˛ ωn = ±B

A

ff
.

Remark: We denote 00 = 1.
Proof: From A + B = x0, Aα + Bβ = x1, we can solve
uniquely for A and B. We have AB �= 0; otherwise {xi} has
the form {aibn−i}, which has been dealt with in Lemma 4.1.
So from Lemma 2.1, we know that the representation is
unique. But from form 1 of Theorem 2.2, we know that

xi = (sn0+tn1)
n

„
sp0 + tp1

sn0 + tn1

«i

+ε(sn0−tn1)
n

„
sp0 − tp1

sn0 − tn1

«i

.

So (sn0+tn1)
n = A, sp0+tp1

sn0+tn1
= α, ε(sn0−tn1)

n = B, sp0−tp1
sn0−tn1

= β, (exchanging notations A with B, and α with β if

necessary.) So

»„
sn0

tn1

«
,

„
sp0

tp1

«–
=

»„
a + b
a − b

«
,

„
aα + bβ
aα − bβ

«–
,

where an = A, bn = B. Since α �= β, we know st �= 0.

So

»„
n0

n1

«
,

„
p0

p1

«–
∼

»„
sn0

tn1

«
,

„
sp0

tp1

«–
. This completes the

proof.
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Corresponding to α = β, we have the following lemma:

Lemma 4.6. For any scalars α, A and B, let p = char.F
and let A �= 0.
Case 1: p = 0 or p � |n.

Brec([Aiαi−1 + Bαi]) =

j»„
1
B

«
,

„
α

nA + Bα

«–ff
.

Case 2: p|n and x0 = 0. In this case, B = 0 and the
signature is of the form [Aiαi−1] = [0, A, 2Aα, . . .]. Then,

Brec([Aiαi−1]) =

j »„
1
n1

«
,

„
α
p1

«–
∈ M

˛̨̨
˛ n1, p1 ∈ F

ff
.

Case 3: p|n and x0 �= 0. Then it is not realizable.

Remark: If α = 0, and i = 0, we still denote iαi−1 = 0.
Also αi = 00 = 1.
Proof: In Case 1, from B = x0, A+Bα = x1, we can solve
uniquely for A, B. We have A �= 0, so Lemma 2.2 applies.
From Lemma 2.2, we know that the representation is unique.
From form 2 of Theorem 2.2 (form 3 will give an equiva-

lent basis), we know that xi = (n1p0 − n0p1)n
n
1 i

“
p1
n1

”i−1

+

nnn−1
1

“
p1
n1

”i

. So (n1p0 − n0p1)n
n
1 = A, p1

n1
= α, nn0n

n−1
1 =

B. Since n1 �= 0, under the equivalence relation, we can let
n1 = 1, then we have the unique solution n0 = B/n, p1 =
α, p0 = A + Bα

n
. We omit the proofs for Case 2 and 3.

4.2 Realizability of Generators
The following Lemmas give a complete and mutually ex-

clusive list of realizable symmetric signatures for generators.
They can be proved similarly.

Lemma 4.7.

Bgen([an, an−1b, · · · , bn]) =

j »„
n0

−b

«
,

„
p0

a

«–˛̨̨
˛ n0, p0 ∈ F

ff
.

Lemma 4.8.

Bgen([x0, x1, x2]) =

j »„
n0

n1

«
,

„
p0

p1

«–
∈ M

˛̨̨
˛

x0n
2
0 + 2x1n0p0 + x2p

2
0 = 0, x0n

2
1 + 2x1n1p1 + x2p

2
1 = 0

or x0n0n1 + x1(n0p1 + n1p0) + x2p0p1 = 0

ff
.

Lemma 4.9. Let λ1 �= 0. Suppose p = char.F � |n,

Bgen([0, 0, · · · , 0, λ1, λ2]) =

j»„−λ2

1

«
,

„
nλ1

0

«–ff
.

For p|n and λ2 = 0,

Bgen([0, . . . , 0, λ1, 0]) =

j »„
1
n1

«
,

„
0
p1

«–
∈ M

˛̨̨
˛ n1, p1 ∈ F

ff
.

For p|n and λ2 �= 0, [0, 0, . . . , 0, λ1, λ2] is not realizable.

Lemma 4.10. For any scalars α, A and B, AB �= 0,

Bgen([A,Aα, Aα2, · · · , Aαn + B]) =j »„
ω − α
−α − ω

«
,

„
1
1

«–˛̨̨
˛ ωn = ±B

A

ff
.

Lemma 4.11. For any scalars α, β, A and B, where AB �=
0 and α �= β,

Bgen({Aαi + Bβi|i = 0, 1, · · · , n}) =j »„
βω − α
−α − βω

«
,

„
1 − ω
1 + ω

«–˛̨̨
˛ ωn = ±B

A

ff
.

Lemma 4.12. For any scalars α, A and B, let p = char.F
and let A �= 0.
Case 1: p = 0 or p � |n.

Bgen([Aiαi−1 + Bαi]) =

j»„
nA + Bα

−α

«
,

„−B
1

«–ff
.

Case 2: p|n and x0 = 0, in this case, the signature is of the
form [Aiαi−1].

Bgen([Aiαi−1]) =

j »„−α
n1

«
,

„
1
p1

«–
∈ M

˛̨̨
˛ n1, p1 ∈ F

ff
.

Case 3: p|n and x0 �= 0. Then it’s not realizable.

4.3 Simultaneous Realizability

Definition 4.2. The Simultaneous Realizability Problem
(SRP):
Input: A set of symmetric signatures for generators and/or
recognizers.
Output: A common basis of these signatures if any; “NO”
if they are not simultaneously realizable.

Algorithm:
For every signature [x0, x1, . . . , xn], check if it satisfies The-
orem 2.3. If not, output “NO” and halt.
Otherwise find Bgen([x0, x1, . . . , xn]) or Brec([x0, x1, . . . , xn])
according to Lemmas 4.7 to 4.12 or Lemmas 4.1 to 4.6, re-
spectively. Check if these subvarieties have a non-empty
intersection.

Theorem 4.1. This is a polynomial time algorithm for
SRP. (If p = char.F is a large prime and is considered part
of the input, i.e., input size includes log p, then the problem
is in RP.)

Proof: Checking whether every input signature satisfies
Theorem 2.3 can obviously be done in polynomial time. To
find the right form and then the right Lemma for a signature
which satisfies Theorem 2.3 can also be done in polynomial
time as they are mutually exclusive.

Every subvariety of bases from Lemma 4.1 to 4.6 and from
Lemma 4.7 to 4.12 is of one of three kinds: a finite set of
points (of linear size), a line or a quadratic curve. More
precisely, consider recognizers; the situation for generators
is similar. Express things in terms of the manifold M shows
that: For Lemma 4.1 we get a line with x = const. For
Lemma 4.2 we get a union of two sets. The first is finite,
where both x and y satisfy a quadratic polynomial (and by
projective closure). Therefore there are at most 4 points in
M. The second set is defined by an equation of the form
Axy + B(x + y) + C = 0, (and by projective closure) where
A, B, C are known constants. Note that if we had two sets
of this type (from Lemma 4.2 and/or Lemma 4.8) we can
eliminate A and get a linear equation.

For Lemma 4.3 we have either a single point for p|n or a
line “at infinity”. Lemma 4.6 is similar, where we have either
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a point or a line x = const. For Lemma 4.4, we get at most
n points from the equation ωn = const. If we are in C (more
precisely in Q or an algebraic extension field of Q) then the
computation is clearly in P. For fields of finite characteristic,
since n is given in unary, the computation is in P, provided
p is fixed (or at most O(log n)). For large p (the field size
is exponential in n), this can be done in RP. We need to be
able to factor the polynomial Xn = const. so that we can do
symbolic calculations with a minimal polynomial [2].

5. SOME NOT SO ACCIDENTAL
ALGORITHMS

In [32], Valiant gave polynomial time algorithms for #7Pl-
Rtw-Mon-3CNF and #7Pl-3/2Bip-VC, and he called them
“accidental algorithms”. In this section, we show how such
algorithms can be developed almost “mechanically”. This
approach has the advantage that one gains more understand-
ing of what can or cannot be accomplished. With this ma-
chinery we are able to generalize his result to Pl-Rtw-Mon-
kCNF and Pl-k/2Bip-VC, for a general k. We show that
there is a unique modulus 2k − 1 for which we can design
such a holographic algorithm which counts the number of
solutions. In the case of k = 3, this shows why 7 is special.

5.1 #2k−1Pl-Rtw-Mon-kCNF
For #Pl-Rtw-Mon-kCNF, we are given a planar formula [16]

in kCNF form, where each variable appears positively, and
each appears in exactly 2 clauses. The problem is to count
the number of satisfying assignments. As noted earlier, this
counting problem is #P-complete already for k = 3.

Now we wish to replace each variable by a generator with
signature [1, 0, 1], and each clause by a recognizer with [0, 1, 1, · · · , 1]
(with k 1’s). The symmetric signature [1, 0, 1] corresponds
to a consistent truth assignment on two edges leading to
clauses, and [0, 1, 1, · · · , 1] corresponds to a Boolean OR for
the clause. If we connect the generators and recognizers in
a natural way, by the Holant Theorem [29] this would solve
#Pl-Rtw-Mon-kCNF in polynomial time (if the signatures
are realizable over Q).

Then the question boils down to whether there is a basis
in M where [1, 0, 1] for a generator and [0, 1, 1, · · · , 1] (with
k 1’s) for a recognizer can be simultaneously realized. For
this, we use our machinery.

From Lemma 4.5, with A = 1, B = −1, α = 1, β = 0, we
have

Brec([0, 1, 1, · · · , 1]) =

j »„
1 + ω
1 − ω

«
,

„
1
1

«–˛̨̨
˛ ωk = ±1

ff
.

We look for some ωk = ±1, such that

»„
1 + ω
1 − ω

«
,

„
1
1

«–
∈

Bgen([1, 0, 1]).
According to Lemma 4.8, we want (1 + ω)2 + 1 = (1 −

ω)2 + 1 = 0 or (1 + ω)(1 − ω) + 1 = 0.
The first case is impossible, and in the second case we

require ω2 = 2. Together with the condition ωk = ±1, we
have 2k −1 = 0. From this we can already see that for every
prime p|2k−1, #pPl-Rtw-Mon-kCNF is computable in poly-
nomial time. In particular this is true for every Mersenne
prime 2q − 1. More generally we have:

Theorem 5.1. There is a polynomial time algorithm for
#2k−1Pl-Rtw-Mon-kCNF. Furthermore, any modulus m for

which the appropriate signatures exist must be a divisor of
2k − 1.

Proof: Our discussion above already shows that the mod-
ulus 2k − 1 is the best we can do. (Formally speaking we
should present a generalization of the Holant Theorem [29]
over a ring such as Z2k−1, which we will omit here.) We
now give the polynomial algorithms in two cases:
Case 1: k is even.
Over the complex numbers C, from Lemma 4.8, Lemma 4.4,
we can see that a generator for [1, 0, 1] and a recognizer for

[1 + ε2k/2, 1, 1, · · · , 1] (where there are k 1’s, and ε = ±1)

are simultaneously realizable in β =

»„
1 +

√
2

1 −√
2

«
,

„
1
1

«–
.

Setting ε = 1 and replacing each variable by a genera-
tor and each clause by a recognizer with the corresponding
signatures, we obtain a matchgrid Ω with the underlying
weighted planar graph G. Then the Holant Theorem [29]
tells us

Holant(Ω) = PerfMatch(G). (5)

We will denote this value by X.
From the left hand side of (5) we know that X is an inte-

ger because every entry in the signatures of generators and
recognizers is an integer. Furthermore we have

X ≡ #Pl-Rtw-Mon-kCNF (mod 1 + 2k/2).

From the right hand side of (5) we know that X can be
computed in polynomial time using the FKT algorithm for
perfect matchings of a planar graph. The planar graph has
weights from the subfield Q(

√
2) ⊂ C, which poses no prob-

lem to the Pfaffian evaluation of FKT in polynomial time.
Therefore #2k/2+1Pl-Rtw-Mon-kCNF can be computed in

polynomial time. Similarly, setting ε = −1, we can compute
#2k/2−1Pl-Rtw-Mon-kCNF in polynomial time.

Since (2k/2+1, 2k/2−1) = 1 and 2k−1 = (2k/2+1)((2k/2−
1), we can apply Chinese remaindering to get a polynomial
time algorithm for #2k−1Pl-Rtw-Mon-kCNF.
Case 2: k is odd.
Consider the ring Z2k−1, and let r = 2(k+1)/2 ∈ Z2k−1.

Then r satisfies r2 = 2 in Z2k−1. We denote this r by
√

2.

Then 1 − (
√

2)k = 1 − (2k)(k+1)/2 = 0 in Z2k−1.
Therefore over this ring Z2k−1 and with the basis β =»„
1 +

√
2

1 −√
2

«
,

„
1
1

«–
=

»„
1 + 2(k+1)/2

1 − 2(k+1)/2

«
,

„
1
1

«–
, we have a

generator for [1, 0, 1] and a recognizer for [0, 1, 1, · · · , 1] (with
k 1’s) according to Lemma 4.8 and 4.4. As a result, we have
a polynomial time algorithm for #2k−1Pl-Rtw-Mon-kCNF.
(It is in this case where k is odd, we need 2 as a quadratic
residue in Zp for primes p|2k − 1, as discussed in Section 1.)

5.2 #2k−1Pl-k/2Bip-VC
In this problem, we are given a planar bipartite graph

with left degree k and right degree 2. We wish to count the
number of Vertex Covers mod 2k−1. The counting problem
for this class of graphs mod 2 is ⊕P-complete and thus NP-
hard [32]. Consider an arbitrary subset S of vertices from
the right. Every vertex v on the left either has all its k
adjacent vertices in S, in which case there are exactly two
choices to extend at v to a Vertex Cover, or has some of its k
adjacent vertices not in S, in which case there is exactly one

406



choice to extend at v to a Vertex Cover. Thus, following
the general recipe for holographic algorithms, we want to
construct a generator with signature [1, 0, 1] and a recognizer
with signature [2, 1, 1, · · · , 1] (with k 1’s) simultaneously.

From Lemma 4.5, where A = 1, B = 1, α = 1, β = 0, we
have:

Brec([2, 1, 1, · · · , 1]) =

j »„
1 + ω
1 − ω

«
,

„
1
1

«–˛̨̨
˛ ωk = ±1

ff
.

This set is exactly the same as Brec([0, 1, 1, · · · , 1]). Then
the proof in Section 5.1 gives us:

Theorem 5.2. There is a polynomial time algorithm for
#2k−1Pl-k/2Bip-VC. Furthermore, any modulus m for which

the appropriate signatures exist must be a divisor of 2k − 1.

Our general machinery not only can find the required sig-
natures when they exist, but also can prove certain desired
signatures do not exist or can not be simultaneously real-
ized. As an example, one may wish to extend the previous
two problems to allow variables to be read more than twice.
This calls for a simultaneous realizability of [1, 0, 0, · · · , 0, 1]
(l − 1 0’s, l > 2) and [0, 1, 1, · · · , 1] (k 1’s). This can be
shown to result in an empty intersection on M.

6. SOME MORE EXAMPLES
In [29] Valiant gave a list of combinatorial problems all

of which can be solved by holographic algorithms. In each
case, a “magic” design of matchgates and signatures were
presented to derive the algorithm. With our machinery, we
can show all these problems can be systematically derived.
In particular, we will see how the two somewhat mysterious
bases b1 and b2 show up naturally. The framework here
can handle all the problems from [29]. (But for PL-FO-
2-COLOR, which uses a basis of three vectors, it is more
naturally dealt with in the context of more general bases.)

6.1 Not-All-Equal Gate
In [29], four problems employ the NAE (Not-All-Equal)

gate [0, 1, 1, 0]. They are #PL-3-NAE-SAT, #PL-3-NAE-
ICE, #PL-3-(1,1)-CYCLECHAIN and
PL-NODE-BIPARTITION (this last one uses a generator
with signature [x, 1, 1, x].)

Notice that they have a common restriction of “maxi-
mum degree 3”. This is necessary because if k > 3, then
[0, 1, 1, · · · , 1, 0] (k − 1 1’s) is not realizable. This is a result
of [5], but it’s easy to see now.

For the case of degree 3, by Lemma 4.5, take α, β to be
the two roots of x2 − x + 1 = 0 and A/B = −1, we have

Brec([0, 1, 1, 0]) =

j »„
1 + ω
1 − ω

«
,

„
α + βω
α − βω

«–˛̨̨
˛ ω3 = ±1

ff
.

Notice that α3 = −1 and αβ = 1, let ω = α, we have
(using ∼ on M)»„

1 + ω
1 − ω

«
,

„
α + βω
α − βω

«–
=»„

1 + α
1 − α

«
,

„
α + βα
α − βα

«–
=

»„
1
1

«
,

„
1
−1

«–
.

This is b2 in [29]. Actually for each of the four problems,
in order to intersect with the subvarieties of other genera-
tors and recognizers, this is the only choice. Due to space
limitation, we omit the details.

6.2 #k+12/k-X-Matchings
Input: A planar bipartite graph G = (V1, V2, E). Nodes in
V1 and V2 have degrees 2 and k respectively.
Output: The number mod (k + 1) of all (not necessarily
perfect) matchings.

This problem is a slight variation on #X-Matchings [29],
which has general weights on edges and uses an unsymmet-
ric signature. (We will discuss unsymmetric signatures in
Section 7.) The case k = 4 was explicitly stated in [29],
but the proof there clearly also handles general k. Jer-
rum [17] showed that counting matchings for planar graphs
is #P-complete. Vadhan [26] showed that this remains #P-
complete for planar bipartite graphs of degree 6.

For this problem we are looking for a generator with sig-
nature [1, 1, 0] and a recognizer with signature [1, 1, 0, · · · , 0]
(k− 1 0’s) simultaneously. From Lemma 4.6, with A = B =

1, α = 0, we have: [Brec([1, 1, 0, · · · , 0]) =

j»„
1
1

«
,

„
0
k

«–ff
.

We hope that

»„
1
1

«
,

„
0
k

«–
∈ Bgen([1, 1, 0]).

From Lemma 4.8, we must have k+1 = 0. So we can only
work inside the ring Zk+1.

Remark: In Zk+1, this basis

»„
1
1

«
,

„
0
k

«–
in M under the

equivalence relation ∼ is exactly b1 in [29].

Theorem 6.1. There is a polynomial time algorithms for
#k+12/k-X-Matchings. Any modulus m for which the ap-
propriate signatures exist must be a divisor of k + 1.

Note that being able to compute mod k + 1 implies being
able to compute mod m for any divisor m|k + 1. Thus the
above characterization is exact.

We omit the discussion of ⊕PL-EVEN-LIN2, the last prob-
lem from [29]. It can also be treated naturally in our frame-
work.

7. BEYOND SYMMETRIC SIGNATURES
The theory of symmetric signatures has been satisfacto-

rily developed. Symmetric signatures are particularly useful
because they have clear combinatorial meanings. However
general (i.e. unsymmetric) signatures have also been used
before. To understand completely the power of holographic
algorithms, we must study unsymmetric signatures as well.
(In the following, we discuss generators only; the situation
for recognizers is similar.)

Following the framework in [4], a generator is a contravari-
ant tensor of the form G = (gi1i2...in) where i1i2 . . . in ∈
{0, 1}. We also denote G = (gS) where S ⊂ [n], and

gS = gχS(1)χS(2)...χS(n). A generator signature G is real-
izable on a basis β iff the standard signature G′ = β⊗nG
can be realized by some planar matchgate. There are two
conditions for a standard signature to be realizable:

Parity Constraint: Either g′S = 0 for all |S| even, or
g′S = 0 for all |S| odd.
Matchgate Identities: G′ satisfies all the useful Grassmann-
Plücker identities (see [3, 5, 28]).

Definition 7.1. A tensor G is admissible as a generator
on a basis β iff G′ = β⊗nG satisfies the Parity Constraint.
Let Bp

gen(G) denote the subset of M for which G is admis-
sible as a generator.
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By definition we have Bgen(G) ⊆ Bp
gen(G) for all G.

For symmetric signatures, we already observed that there
are some different levels of realizability. Some signatures are
realizable on isolated points, while others are realizable on
lines or curves. Success at getting a holographic algorithm
typically results from either a generator or a recognizer hav-
ing more than isolated points of realizability. In terms of
M, this refers to the dimension of the subvariety Bgen(G).
More precisely,

Definition 7.2. A generator G is called d-realizable (resp.
d-admissible) for an integer d ≥ 0 iff Bgen(G) ⊂ M (resp.
Bp

gen(G) ⊂ M) is a (non-empty) algebraic subset of dimen-
sion at least d. (The notation ⊂ allows equality.)

By definition, if a generator G is d-realizable, then it is
d-admissible.

Remark: Since M has dimension two, 2-realizability is uni-
versal realizability which means that G is realizable on any
basis. This is because the conditions defining realizability
are polynomial equations (with coefficients from (gS), and
variables on M). If there is at least one polynomial which
is not identically 0, the algebraic set has dimension ≤ 1.
Therefore using any 2-realizable signature is a freebie in the
design of holographic algorithms; it places no restriction on
the rest of the design. Therefore they are particularly desir-
able.

The following theorem is a complete characterization of 2-
admissibility (over fields of characteristic 0. The treatment
of fields of positive characteristic will be reported in the
future.) The proof uses rank estimates related to the Kneser
Graph KG2k+1,k [20, 22, 23, 11, 12, 14, 15].

Theorem 7.1. G is 2-admissible iff (1) n = 2k is even;
(2) all gS = 0 except for |S| = k; and (3) for all T ⊂ [n]
with |T | = k + 1, X

S⊂T,|S|=k

gS = 0. (6)

The solution space is a linear subspace of dimension 1
2k

`
2k
k

´
(the Catalan number).

Consider all subsets of [n] of a certain cardinality. Let 0 ≤
k ≤ 	 ≤ n, and let Ak,�,n denote the

`
n
k

´×`
n
�

´
Boolean matrix

indexed by (A, B), where A, B ⊂ [n] and |A| = k, |B| = 	,
and the entry at (A, B) is χ[A⊂B]. It is known that over

the rationals Q, the rank rk(Ak,�,n) = min{`
n
k

´
,
`

n
�

´} [11,
12, 14, 15]. (The situation with finite characteristic p is
interesting and is more involved. For example, Linial and
Rothschild [15] gave exact rank formulae for characteristic
2 and 3. The rank “defect” compared to the characteristic
0 case provides more admissible signatures. This will be
discussed in future work.) We restate the definition of d-
admissibility in more detail.

Definition 7.3. G = (gS)S⊂[n] is called d-admissible if
the following algebraic variety V has dimension at least d,
where V = V0 ∪V1 ⊂ M, and V0 (resp. V1) is defined by the
set of all parity requirements for the generator signature of
an odd (resp. even) matchgate.

Consider V0. We take a point (in dehomogenized coor-

dinates)

„
1 x
1 y

«
∈ M. Also denote x0 = x, x1 = y. Let

T ⊂ [n] with |T | even. Then we require*
nO

σ=1

[1, x[σ∈T ]], G

+
= 0.

Similarly we define V1, where we require that all |T | odd.
Note that*

nO
σ=1

[1, x[σ∈T ]], G

+
=

X
0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyj
X

A ⊂ Tc, |A| = i
B ⊂ T, |B| = j

gA∪B.

(7)
If dim(V ) = 2, then either dim(V0) = 2 or dim(V1) = 2.

For dim(V0) = 2, we have the following: For all T ⊂ [n] with
|T | even, and for all 0 ≤ i ≤ n − |T | and 0 ≤ j ≤ |T |,X

A⊂Tc,B⊂T,|A|=i,|B|=j

gA∪B = 0. (8)

(If there is one equation not satisfied, then there is at least
one non-trivial polynomial among the parity requirements,
which implies dim(V0) ≤ 1.) For dim(V1) = 2, the above
holds for all |T | odd. Continuing with dim(V0) = 2, by
taking i = 0, we get for all T ⊂ [n] with |T | even, j ≤ |T |,X

S⊂T,|S|=j

gS = 0. (9)

Also by taking j = 0, we get for all i ≤ n − |T |,X
S⊂Tc,|S|=i

gS = 0.

If S ⊂ [n] with |S| even, then we may take T = S and
j = |T |, and it follows that

gS = 0.

If n is odd, then T is even and T c is odd, and together
they range over all possible subsets of [n]. It follows that

gS = 0,

for all S ⊂ [n]. That is, G is trivial.
An identical argument also shows that for dim(V1) = 2

and n odd, the trivial G ≡ 0 is the only possibility.
Now we assume n = 2k is even, and continuing with

dim(V0) = 2. Both T and T c are even. Pick any T even
and i = n − |T |, we getX

A⊂Tc,B⊂T,|A|=i,|B|=j

gA∪B =
X

S⊃Tc,|S|=i+j

gS = 0.

i.e. for all even T ′ ⊂ [n] and all i ≥ |T ′|,X
S⊃T ′,|S|=i

gS = 0. (10)

If |S| = i < k, we form the following system of equations
from (9), X

S⊂T,|S|=i

gS = 0,

where T ranges over all subsets of [n] with |T | = t, and t = i
or i+1, whichever is even. This linear system has rank

`
n
i

´
.

It follows that gS = 0 for all |S| < k.
Similarly if |S| = i > k, we can use (10) with |T | = i

or i − 1, whichever is even, and summing over all subsets
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S containing T . This linear system also has rank
`

n
i

´
. It

follows that gS = 0 for all |S| > k.
Therefore the only non-zero entries of G are among gS

with half weight |S| = k. Also with dim(V0) = 2, we may
assume k is odd. Otherwise, we already know gS = 0 for all
|S| even.

A similar argument for V1 shows that, in order for dim(V1)
= 2, we must have n = 2k even, all gS = 0 except for |S| = k
and k is even. Summarizing, we have

Lemma 7.1. If G is 2-admissible, then n = 2k is even,
all gS = 0 except for |S| = k. If k is odd (resp. even) then
the only possibility is dim(V0) = 2 (resp. dim(V1) = 2).
Moreover, for all T ⊂ [n] with |T | = k + 1,X

S⊂T,|S|=k

gS = 0. (11)

Next we prove that the conditions in Lemma 7.1 are also
sufficient for G being 2-admissible, i.e., we prove (8), thus
all the polynomials in (7) are identically zero.

Suppose k odd. We prove dim(V0) = 2. A similar argu-
ment does for k even and dim(V1) = 2. We only need to
verify (8) for all i + j = k, namely for all T ⊂ [n] with |T |
even, and for all 0 ≤ i ≤ n − |T |, and 0 ≤ j = k − i ≤ |T |,X

A⊂Tc,B⊂T,|A|=i,|B|=k−i

gA∪B = 0. (12)

Denote by t = |T | and s = n−|T |. By symmetry of T and T c

(both being even subsets of [n]) we may assume s ≤ t. Since
k is odd, we have the strict s < t, for otherwise s = t = k
would be odd.

We prove (12) by induction on i ≥ 0. For the base case
i = 0, j = k, we consider all U ⊂ T with |U | = k + 1. Note
that as t ≥ k + 1, such U exists. By (11) we haveX

S⊂U,|S|=k

gS = 0.

Summing over all such U , and consider how many times each
S ⊂ [n] with |S| = k appears in the sum, we get

X

A ⊂ T c, |A| = 0
B ⊂ T, |B| = k

g
A∪B =

X

S⊂T,|S|=k

g
S =

1
“

t−k
1

”
X

U ⊂ T
|U| = k + 1

X

S⊂U,|S|=k

g
S

(13)

which is 0.
Inductively we assume (12) has been proved for i − 1, for

some i ≥ 1. Consider i and j = k − i. We may assume
i ≤ s; otherwise we are done. Also k − i + 1 ≤ t. Consider
all subsets U = U1 ∪U2 ⊂ [n], where U1 ⊂ T c, U2 ⊂ T , with
|U1| = i and |U2| = k − i + 1. Note that |U | = k + 1. We
have

0 =
X

S⊂U,|S|=k

gS =
X

A⊂U1,|A|=i−1

gA∪U2+
X

B⊂U2,|B|=k−i

gU1∪B ,

as all sets S ⊂ U with |S| = k are classified into two classes
according to whether |S ∩ U1| = i − 1 or i. Then summing
over all such U ,

0 =
X
U

X
S⊂U,|S|=k

gS =
“s − (i − 1)

1

” X

A ⊂ T c, |A| = i − 1
B ⊂ T, |B| = k − i + 1

gA∪B

+
“t − (k − i)

1

” X

A ⊂ T c, |A| = i
B ⊂ T, |B| = k − i

gA∪B,

by considering how many times each S of the two classes
appears in the sum

P
U

P
S . Since the first sum is 0 by

inductive hypothesis, and t − k + i ≥ 1, the second sum is
also zero. Thus X

A⊂Tc,B⊂T,|A|=i,|B|=k−i

gA∪B = 0.

This proves Theorem 7.1.
The next theorem shows that any basis transformation on

a 2-admissible G is just a scaling. The proof is omitted here.

Theorem 7.2. If G is 2-admissible with arity 2k, then

∀β =

„
n0 p0

n1 p1

«
∈ M, β⊗2kG = (n0p1 − n1p0)

kG.

Corollary 7.1. If G is 2-admissible and realizable on
some basis (e.g. on the standard basis), then it is 2-realizable.

For n = 6, all 2-admissible G’s form a 5 dimensional linear
space. Applying the Matchgate Identities, we find that there
are 5 different 2-realizable signatures (up to scaling). Let G1

and G2 be the following

gα
1 =

8><
>:

1, α ∈ {000111, 011001, 101010, 110100},
−1, α ∈ {111000, 100110, 010101, 001011},

0, otherwise,

gα
2 =

8><
>:

1, α ∈ {010101, 011010, 100110, 101001},
−1, α ∈ {101010, 100101, 011001, 010110},

0, otherwise.

Then all the 2-realizable signatures are obtained by cycli-
cally rotating the indices of G1 or G2. (Rotating 3 bits on
G1 is G1 itself up to a scaling factor −1; rotating 2 bits on
G2 gives G2 back. So there are 3 different 2-realizable sig-
natures from rotating G1 and 2 different ones from rotating
G2.)

It turns out that all of these can be obtained from a planar
tensor product operation.

Definition 7.4. Let Rotr(G) be the tensor obtained by
circularly rotating clockwise the coordinates of G by r bits.
Let G⊗G′ be the tensor product with all indices of G before
all indices of G′. A planar tensor product is a finite sequence
of operations of Rotr(G) and G ⊗ G′.

Theorem 7.3.

Bgen(Rotr(G)) = Bgen(G),

and

Bgen(G1 ⊗ G2) = Bgen(G1) ∩ Bgen(G2).

Thus a planar tensor product preserves Bgen.

The proof uses direct constructions and Matchgate Iden-
tities, and is omitted here.

Theorem 7.4. Each of the five 2-realizable signatures for
n = 6 is obtainable as a planar tensor product from (0, 1,−1, 0).

From (0, 1,−1, 0), we can construct a family of 2-realizable
signatures for any arity 2k by planar tensor product.

In subsequent work we will report further developments
along this direction.
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Definition 7.5. A signature G is called prime iff it can-
not be decomposed as a tensor product of two signatures of
positive arity.

In particular (0, 1,−1, 0) is a prime 2-realizable signature.
Some results on prime signatures will be reported in forth-

coming papers.
We can also prove that 1-admissibility (resp. 1-realizability)

is strictly weaker than 2-admissibility (resp. 2-realizability).
We have some constructions of 1-admissible and 1-realizable
families which are not in general 2-admissible or 2-realizable.
These are in fact prime signatures. These results are omit-
ted here.
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