
Theoretical Computer Science 410 (2009) 1099–1108

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A note on universal composable zero-knowledge in the common
reference string modelI

Andrew C.C. Yao a, Frances F. Yao b, Yunlei Zhao c,∗
a Institute for Theoretical Computer Science, Tsinghua University, Beijing, China
b Department of Computer Science, City University of Hong Kong, China
c Software School, Fudan University, Shanghai, China

a r t i c l e i n f o

Keywords:
Cryptographic protocols
Universal composability
Zero-knowledge
Proof of knowledge
Common reference string

a b s t r a c t

Pass observed that universal composable zero-knowledge (UCZK) protocols in the common
reference string (CRS) model lose deniability that is a natural security property and
implication of the ZK functionality in accordancewith the UC framework. An open problem
(or, natural query) raised in the literature is: are there any other essential security
properties, other than the well-known deniability property, that could be lost by UCZK
in the CRS model, in comparison with the ZK functionality in accordance with the UC
framework? In this work, we answer this open question (or, natural query), by showing
thatwhen running concurrentlywith other protocols UCZK in the CRSmodel can lose proof
of knowledge (POK) property that is very essential and core security implication of the
ZK functionality. This is demonstrated by concrete attack against naturally existing UCZK
protocols in the CRS model. Then, motivated by our attack, we make further clarifications
of the underlying reasons beneath the concrete attack, and investigate the precise security
guarantee of UC with CRS.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Universal composability (UC) is a powerful notion proposed by Canetti [6] to describe cryptographic protocols that
behave like ideal functionality, and can be composed in arbitrary way. The salient feature of UC secure protocols is that
their security preserves even when it is composed with any arbitrary protocols (captured by unpredictable environment)
concurrently in asynchronous networks (like the Internet). In such settings, a protocol executionmay run concurrently with
an unknown number of other protocols. These arbitrary protocols may be executed by the same parties or other parties, they
may have potentially related inputs and the scheduling of message delivery may be adversarially coordinated. Furthermore, the
local outputs of a protocol execution may be used by other protocols in an unpredictable way [19].
In the framework of UC security, a generic definition is given for what it means for a protocol to ‘‘securely realize a

given ideal functionality". Here, an ‘‘ideal functionality" is a set of instructions for a ‘‘trusted party" that obtains the inputs
of the participants and provides them with the desired outputs. Informally, a protocol securely carries out a given ideal
functionality if no adversary can gain more advantages from an attack on a real execution of the protocol, than from an
attack on an ideal process where the parties merely hand their inputs to a trusted party with the appropriate functionality

I Thisworkwas supported in part by a grant from the ResearchGrants Council of theHong Kong Special Administrative Region, China (No. CityU 122105),
CityU Research Grant (No. 9380039) and a grant from the Basic Research Development (973) Program of China (No. 2007CB807901). The third author is
also supported by NSFC (No. 60703091), the Pujiang Program of Shanghai and a grant from MSRA.
∗ Corresponding author.
E-mail addresses: andrewcyao@tsinghua.edu.cn (A.C.C. Yao), csfyao@cityu.edu.hk (F.F. Yao), ylzhao@fudan.edu.cn (Y. Zhao).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.10.027

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:andrewcyao@tsinghua.edu.cn
mailto:csfyao@cityu.edu.hk
mailto:ylzhao@fudan.edu.cn
http://dx.doi.org/10.1016/j.tcs.2008.10.027

1100 A.C.C. Yao et al. / Theoretical Computer Science 410 (2009) 1099–1108

and obtain their outputs from it (without any other interactions). In other words, it is required that a real execution can be
emulated in the ideal process.
Traditionally, emulation means that for any probabilistic polynomial-time (PPT) adversary A attacking a real protocol

execution, in which A controls the communication channels and potentially corrupts parties, there should exist an ‘‘ideal
process adversary" or simulator S that causes the outputs of the parties in the ideal process to be essentially the same as the
outputs of the parties in a real execution. In the UC framework, an additional adversarial entityZ, called the environment, is
introduced. As is hinted by its name, Z represents the external environment that consists of arbitrary protocol executions
running concurrently with the given protocol. This environment generates the inputs to all parties, reads all outputs, and
in addition interacts with the adversary in an arbitrary way throughout the computation. Then, a protocol is said to UC
realize a given ideal functionality F if for any ‘‘real-life" adversaryA there exists an ‘‘ideal-process adversary" S, such that
no environment Z can tell whether it is interactingwithA and parties running the protocol, or with S and parties interacting
withF in the ideal process. In a sense, hereZ serves as an ‘‘interactive distinguisher" between a run of the protocol and the
ideal process with access to F . One salient and frequently claimed security goal of UC security is the implication of concurrent
general composability (CGC), i.e., composability concurrently with arbitrary protocols.
Zero-knowledge (ZK) protocols allowaprover to validate theorems to a verifierwithout giving away any other knowledge

other than the theorems being true (i.e., existing witnesses). This notion was introduced by Goldwasser, Micali and Rackoff
[24] and its generality was demonstrated by Goldreich, Micali and Wigderson [23]. Since its introduction ZK has found
numerous and extremely useful applications, and by now has been playing the central role in modern cryptography.
The concept of ‘‘proof of knowledge (POK)" was informally introduced in [24], and was formally treated in [4,20,5].

POK systems, especially zero-knowledge POK (ZKPOK) systems, play a fundamental role in the designing of cryptographic
schemes and protocols, and enable a formal complexity theoretic treatment of what does it mean for a machine to ‘‘know’’
something. Very roughly, by ‘‘proof of knowledge" we mean that a possibly malicious prover can convince that an N P
statement is true if and only if it, in fact, ‘‘knows" (i.e., possesses) a witness to the statement (rather than only convincing
the language membership of the statement, i.e., the fact that a corresponding witness exists).
Clearly, achieving US secure protocols, in particular UCZK protocols, would be highly desirable in modern cryptography,

especially for cryptographic protocols running over Internet. In general, it has been shown that any ideal functionality can be
UC realized, as long as a majority of players are assumed to be honest [6]. But, for the more general case where a majority of
playersmay be corrupted (in particular, for the important case of two-party protocols where each player wishes tomaintain
its security even if the other player is corrupted), it is shown that large classes of functionalities, in particularmost two-party
protocols, cannot be UC realized in the plain model where no trusted setup is assumed [6,9,10,29,31]. The impossibility
results of [6,9,10] are further shown to be hold for any definition that implies security under the composition operation
considered by the UC framework. Therefore, in the natural setting of no trusted setup and no honest majority (including the
important two-party case), it is impossible to obtain security in a setting where protocols are run concurrently with arbitrary
other protocols. Therefore, whenever this level of security is desired, some setup assumptions (or relaxed definitions of
security) are necessary.
The typical setup assumption (in particular, considered in this work) is the common reference string (CRS) model. In the

CRSmodel all parties are given a common (public) reference string that is ideally and trustily chosen froma given distribution.
A large number of round-efficient UC-secure protocols have been developed in the CRS model. In this work, we focus on UC
security for (round-efficient) ZK protocols in the CRS model.
Pass observed that (not necessarily universal composable) zero-knowledge protocols in the common reference string

model lose deniability that is a natural security property and implication of the ZK functionality in accordance with the UC
framework. An open problem (or, natural query) raised in the literature is: are there any other essential security properties,
other than the well-known deniability property, that could be lost by UCZK in the CRS model, in comparison with the ZK
functionality in accordance with the UC framework? In this work, we answer this open question (or, natural query), by
showing that when running concurrently with other protocols UCZK in the CRS model can lose the proof-of-knowledge
property that is very essential and core security implication of the ZK functionality. This is demonstrated by concrete attack
against naturally existing UCZK protocols in the CRS model. Then, motivated by our attack, we make further clarifications
of the underlying reasons beneath the concrete attack, and investigate the precise security guarantee of UC with CRS.

1.1. Related works

Very recently,wenoted the related independent work of [8]. Thework of [8] clarifies the potentialweakness of UC security
with global setup in general, with deniability loss as an illustrative example for UCZK in the CRS model. In a sense, our
work could also be viewed to exemplify, in another essential way (other than the well-known deniability loss), the general
theme observed in the independent work of [8] on UC with global setup. Some further investigations about the precise
interpretation of the GUC security guarantee are presented in [35].

2. Preliminaries

We briefly recall preliminaries in this section. We assume the reader is familiar with some basic definitions: witness

A.C.C. Yao et al. / Theoretical Computer Science 410 (2009) 1099–1108 1101

indistinguishability, argument/proof of knowledge, commitments, public-key encryption and signatures, etc. Some of them
are recalled in Appendix.

2.1. Σ-protocols,Ω-protocols and the OR-proofs

Definition 2.1 (Σ-Protocol [13]). A 3-round public-coin protocol 〈P, V 〉 is said to be a Σ-protocol for a relation R if the
following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.
• Special soundness. From any common input x of length n and any pair of accepting conversations on input x, (a, e, z) and
(a, e′, z ′)where e 6= e′, one can efficiently compute outw such that (x, w) ∈ R. Here a, e, z stand for the first, the second
and the third message, respectively, and e is assumed to be a string of length k (that is polynomially related to n) selected
uniformly at random in {0, 1}k.
• Special honest verifier zero-knowledge (SHVZK). There exists a PPT simulator S, which on input x (where there exists a
w such that (x, w) ∈ R) and a random challenge string ê, outputs an accepting conversation of the form (â, ê, ẑ), with
the probability distribution indistinguishable from that of the real conversation (a, e, z) between the honest P(w) and V
on input x. AΣ-protocol is called perfect/statisticalΣ-protocol, if it is of perfect/statistical SHVZK, i.e., the distribution of
the simulated transcript is identical or statistically close to that of the real conversation.

Σ-protocols are very useful cryptographic tools. A very large number ofΣ-protocols have beendeveloped in the literature. In
particular, (the parallel repetition of) Blum’s protocol for DHC [3] is a computationalΣ-protocol forN P , andmost practical
Σ-protocols for number-theoretical languages (e.g., DLP and RSA [34,25], etc.) are of perfect SHVZK property. More details
aboutΣ-protocols and their applications can be found in [16].

The OR-proof of Σ-protocols [14]. One basic construction with Σ-protocols allows a prover to show that given two
inputs x0, x1, it knows aw such that either (x0, w) ∈ R0 or (x1, w) ∈ R1, but without revealing which is the case (i.e., witness
indistinguishable WI). Specifically, given two Σ-protocols 〈Pb, Vb〉 for Rb, b ∈ {0, 1}, with random challenges of, without
loss of generality, the same length k, consider the following protocol 〈P, V 〉which we callΣOR. The common input of 〈P, V 〉
is (x0, x1) and P has a private inputw such that (xb, w) ∈ Rb.

• P computes the first message ab in 〈Pb, Vb〉, using xb, w as private inputs. P chooses e1−b at random, runs the SHVZK
simulator of 〈P1−b, V1−b〉 on input (x1−b, e1−b), and lets (a1−b, e1−b, z1−b) be the output. P finally sends (a0, a1) to V .
• V chooses a random k-bit string e and sends it to P .
• P sets eb = e⊕ e1−b and computes the answer zb to challenge eb using (xb, ab, eb, w) as input. It sends ((e0, z0), (e1, z1))
to V .
• V checks that e = e0 ⊕ e1 and that conversations (a0, e0, zo), (a1, e1, z1) are accepting conversations with respect to
inputs x0, x1, respectively.

Theorem 2.1 ([14]). The protocol ΣOR above is a Σ-protocol for ROR, where ROR = {((x0, x1), w)|(x0, w) ∈ R0 or (x1, w) ∈
R1}. Moreover,ΣOR-protocols are witness indistinguishable (WI) proof of knowledge systems.

Ω-protocols [19]. AnΩ-protocol is a Σ-protocol in the common reference string (CRS) model, with a special straight-
line simulation/extraction property. Specifically, anΩ-protocol 〈P, V 〉[σ] for anN P -relation R and common reference string
σ , is aΣ-protocol for relation Rwith the following additional properties:

• For a given distribution ensemble D , on security parameter 1n a common reference string σ is drawn from Dn. The
players take σ as an additional input (to generate messages from them). Naturally, the simulator S in the definition of
Σ-protocol may also take σ as an additional input.
• There exists a polynomial-time extractor E = (E1, E2) such that the first element of the output of E1(1n) is statistically
indistinguishable fromDn. Furthermore, given (σ , τ)← E1(1n), if there exist two accepting conversations (a, e, z) and
(a, e′, z ′)with e 6= e′ on common input x and CRS σ , then E2(x, τ , (a, e, z)) outputsw such that (x, w) ∈ R.

Notice that the above second property is similar to the special soundness ofΣ-protocols. For aΣ-protocol, there could
exist an accepting conversation even for an invalid proof, but two accepting conversations (with the same first-round
message but different second-round challenges) guarantee that the proof is valid. Here, for aΩ-protocol, the extractor E can
always extract something from any conversation, but it might not be the witness if there is only one accepting conversation.
However, having two different accepting conversations guarantees the extracted value is indeed a witness.
A natural way to constructΩ-protocols is as follows: the common reference string will consist of a random public-key

pk for a semantically-secure encryption scheme. Then for (x, w) ∈ R, we construct an encryption c of w under public-key
pk, and then construct aΣ-protocol to prove that the value encrypted in c is indeed a witnessw such that (x, w) ∈ R.
As withΣ-protocol, we can construct the OR-proof combining aΩ-protocol and aΣ-protocol.

1102 A.C.C. Yao et al. / Theoretical Computer Science 410 (2009) 1099–1108

2.2. The universal composability framework and ZK functionalities

We briefly summarize the UC framework (thematerial in this section is almost verbatim from [19,6,12,7], and the reader
is referred to these references for further details).

Communication model:We assume an asynchronous network, without guaranteed delivery of messages. Further, we
assume that the messages are authenticated, since authentication can be added in standard ways (i.e., theFAUTH-model [6]).

Entities: The basic entities involved are n parties P1, . . . , Pn, an adversary A, and an environment Z. All entities are
modelled as probabilistic interactive Turing machines.

Session IDs and sub-session IDs: Each message also carries a session ID (sid), and (if the message is for a multi-session
functionality) an additional sub-session ID (ssid). These IDs are used to ensure the uniqueness of the sessions. It is required
that no two instances of protocols have same ID, and this is enforced by protocols at a higher level. In other words, only
when the uniqueness of sid/ssid are established is the security of the protocols guaranteed.

Corruptions: We will specify either static or adaptive corruptions. In the static case, the adversary corrupts parties
only at the onset of the computation; in the adaptive case, the adversary chooses which parties to corrupt as the
computation evolves. Once the adversary corrupts a party, it learns all its internal information, including the private input,
the communication history, and the random bits used, except the information explicitly erased by the party before the
corruption. Once they are corrupted, the behavior of the corrupted parties is arbitrary or malicious.

Real-life execution: At a high level, the execution of a protocol π , run by the parties in the presence of A and an
environmentZwith input z, ismodelled as a sequence of activities of the entities, withZ activated first.WhenZ is activated,
it may write messages on the other entities’ input tapes (and thus activate them next), and read messages from the other
entities’ output tapes. WhenA is activated, it may read messages from a party’s outgoing communication tapes, and write
a message to a party’s incoming communication tapes, thus activating the party. It may also corrupt parties, as discussed
above. When a party is activated, it runs the protocol π . Finally, the environment Z outputs one bit and halts.
For security parameter 1n, and input z ∈ {0, 1}∗ toZ, let REALπ,A,Z denote the distribution ensemble of randomvariables

describing Z’s output when interacting with adversaryA and parties running protocol π , with input z, security parameter
1n, and uniformly-chosen random tapes for all the entities.

Ideal process: The security of the protocol is defined by comparing the real execution of the protocol (as described above)
to an ideal process in which an additional entity, the ideal functionality F , is introduced; Essentially, F is an incorruptible
trusted party that is programmed to produce the desired functionality of the given task. Additionally, the parties are replaced
by dummyparties, who do not communicatewith each other, but instead have access toF . In this idealized execution, again
the environment is activated first, generating the inputs. Whenever a dummy party is activated, it forwards its input to F .
Let S denote the adversary in this idealized execution. S can see the destinations of the messages between the parties and
F , but not the contents. As in the real-life execution, at some point the environment outputs one bit and halts.
Let IDEALF ,S,Z denote the distribution ensemble of random variables describing Z’s output after interacting with

adversary S in the ideal process for F , with input z, security parameter 1n, and uniformly-chosen random tapes for all
the participating entities.

Security: In this framework, a protocol π securely realizes an ideal functionality F , if for any real-life adversaryA there
exists an ideal-process adversary S such that no environment Z, on any input, can tell with non-negligible probability
whether it is interacting withA and parties running π in the real-life execution, or with S in the ideal process for F . More
precisely, two corresponding binary distribution ensembles, REALπ,A,Z and IDEALF ,S,Z, are indistinguishable.

The hybrid model: Protocols typically would invoke other sub-protocols. The hybrid model is like a real-life execution,
except that some invocations of the sub-protocols are replaced by the invocation of an instance of an ideal functionality F ;
this is called the ‘‘F -hybrid model". Specifically, the model is identical to the real-life model, with the addition that besides
sendingmessages to each other, the partiesmay exchangemessages with an unbounded number of copies ofF , where each
copy is identified via a unique session identifier (sid). The communication between the parties and each one of those copies
mimics the ideal execution.
Let HYBF

π,A,Z denote the distribution ensemble of random variables describing the output of Z, after interacting withA
and parties running protocol π in the F -hybrid model. Now, let ρ be a protocol that securely realizes F . The composed
protocol πρ is constructed by replacing the first message to F in π by an invocation of a new copy of ρ, with fresh random
input, the same sid, and with the contents of that message as input; each subsequent message to that copy of F is replaced
with an activation of the corresponding copy of ρ, with the contents of the message as new input to ρ.

The universal composition theorem: The composition theorem [6] basically says that if ρ securely realizes F in the
G-hybrid model, for some functionality G, then an execution of the composed protocol πρ , running in the G-hybrid model,
‘‘emulates" an execution of protocol π in F -hybrid model. That is, no environment machineZ can distinguish whether it is
interacting withA and πρ in the G-hybrid model, or it is interacting with S and π in the F -hybrid model. In other words,
the two distribution ensembles, HYBG

πρ ,A,Z and HYB
F
π,S,Z, are indistinguishable.

The zero-knowledge functionality: The ZK functionality F R
ZK, parameterized by a relation R, is presented in Fig. 1. In

the functionality, the prover sends to the functionality the input x together with a witness w. If R(x, w) holds, then the
functionality forwards x to the verifier. As pointed in [6], this is actually a proof of knowledge in that the verifier is assured
that the prover actually knowsw.

A.C.C. Yao et al. / Theoretical Computer Science 410 (2009) 1099–1108 1103

Fig. 1. The zero-knowledge functionality (for relation R).

Fig. 2. The multi-session ZK functionality (for relation R).

One shortcoming of the above formulation is that wewill be designing and analyzing protocols in the common reference
string model, and so they will be operating in the F D

CRS-hybrid model, where F D
CRS is the CRS generation functionality that,

for a given security parameter 1n, chooses a string from distributionDn and hands it to all parties and the adversary (but not
directly to the environment). However, directly realizing F R

ZK in the F D
CRS-hybrid model and using the universal composition

theorem would result in a composed protocol where a new instance of the reference string is needed for each proof. This is
extremely inefficient and does not reflect the notion of the CRS model, where an unbounded number of protocol instances
would use the same copy of the string. Canetti and Rabin [12] suggested the following notion to cope with this problem:

• Universal composition with joint state: Let F and G be ideal functionalities, and let F̂ denote the ‘‘multi-session
extension ofF ", in which F̂ will runmultiple copies ofF , where each copy is identified by a special sub-session identifier
(ssid). Now, let π be a protocol in the F -hybrid model, and let ρ̂ be a protocol that securely realizes F̂ in the G-hybrid
model. Then, construct the composedprotocolπ [ρ̂] by replacing all the copies ofF inπ by a single copy of ρ̂. The universal
composition with joint state theorem of [12] states that π [ρ̂], running in the G-hybrid model, correctly emulates π in the
F -hybrid model.

The definition F̂ R
ZK, the multi-session extension of F

R
ZK, is presented in Fig. 2. Note that there are two types of indices:

the sid differentiates messages to F̂ R
ZK frommessages sent to other functionalities; and the sub-session ID ssid is unique per

input message (or proof).

3. Concurrent general composition attack on UCZK in the common reference string model

In this section, we present a concurrent general composition attack on the protocol of [19] that is UCZK in the common
reference string model.

3.1. The protocol structure of UCZK of [19]

We first recall the protocol structure of the UCZK protocol of [19].

Common reference string: (verk, σ ′), where verk is a randomverification key of a signature scheme secure against chosen
message attacks, σ ′ is the public reference string for the underlyingΩ-protocol (typically, σ ′ is a random public-
key of semantically-secure PKE).

Common input: x ∈ L, where L is anN P -language withN P -relation RL.
Auxiliary date: An auxiliary data aux that may contain any arbitrary public values.
Prover’s private input: w s.t. (x, w) ∈ RL.
Main-proof stage: consists of three phases (in real implementation, phases are combined):

Phase-1: Prover P generates a key-pair (vk, sk) for a one-time strong signature, sends vk to the verifier V .

1104 A.C.C. Yao et al. / Theoretical Computer Science 410 (2009) 1099–1108

Phase-2: Give a OR-proof: oneΩ-proof for showing the knowledge ofw (typically, send a encryption c ofw using
σ ′, and prove byΣ-protocol that the encrypted value is indeed awitness for x ∈ L); oneΣ-protocol for showing
the knowledge of a signature on vk under verk. We denote by a = (aL, avk), e, and z = ((eL, zL), (evk, zvk))
the first-round, second-round and the third-round message of the OR-proof, respectively, where (aL, eL, zL)
constitute the (partial) conversation of theΩ-protocol (specifically, the conversation of theΣ-protocol in the
Ω-protocol for showing the knowledge of the value encrypted in c is indeed a valid witness for x ∈ L), and
(avk, evk, zvk) constitutes the conversation of theΣ-protocol for showing the knowledge of the signature on vk
under verk, and e = eL ⊕ evk.

Phase-3: The prover P applies sk on the whole transcript to get a one-time strong signature s, and sends s to V .

Notes: The above protocol is shown to be UCZK in the common reference string model, assuming static corruptions
[19]. For UCZK with adaptive corruptions, the above protocol is augmented as follows: In Phase-2, the prover does not send
a = (aL, avk) directly. Rather, it first commits to a and the auxiliary information aux by using a special trapdoor commitment
scheme, called simulation-sound trapdoor commitments (SSTC), following the paradigm of [15]. Then, in the third-round of
the OR-proof of Phase-2, the prover decommits accordingly and reveals a. The following CGC attack is described against the
above UCZK with static corruption, but it can be trivially extended to work on the augmented adaptive-corruption version
as well.

3.2. The CGC attack

To present a CGC attack, we need to first design a (different) protocol, and then show that when composed with the
designed protocol the UCZK protocol of [19] is not secure. We present a natural and also very useful protocol, and show
that when composed with this natural and practical protocol, a malicious adversary can convince the honest verifier of any
statement in the original UCZK protocol of [19] but without knowing any witness for the statement being proved. This shows
that, when concurrently composing with other protocols, UCZK protocols in the common reference string model can lose
the POK property that is the very essential and core security implication of the ZK functionality in accordance with the UC
framework.We suggest that such a security lossmight bemore harmful, in comparisonwith the loss of deniability observed
in [33].

The encrypt/commit-then-proof protocol. The protocol to be composed with the UCZK of [19] is the natural and very
useful encrypt/commit-then-proof protocol 〈P ′, V ′〉, described as follows.

Common input: x ∈ L.
Prover’s private input: w s.t. (x, w) ∈ RL.
Main-proof stage: consists of two phases:

Phase-1: The verifier V ′ generates and sends to the prover P ′ a random public-key σ ′ for a semantically-secure
PKE scheme. Here, σ ′ can also be viewed as the first-round message of a commitment scheme.

Phase-2: The prover P ′ encrypts (i.e., commits) w to c using the public-key σ ′. Then, P ′ proves to V ′ that the
value committed is indeed a witness for x ∈ L, by executing a Σ-protocol with V ′. We denote by aL, eL, zL the
first-round, second-round and third-round message of theΣ-protocol.

We remark that the above encrypt/commit-then-proof protocol is a natural and very useful protocol in practice. The
encrypt/commit-then-proof paradigm has been employed in a number of works for various cryptographic tasks and settings
(e.g., [28,30,11,1], etc.). When the protocol works in the public-key model with σ ′ as the verifier’s public-key, such protocol
is also a common paradigm for achieving plaintext-aware (interactive and verifiable) encryption (e.g., [27]), which is also
used in group signature and group encryption systems.

Message schedule of the CGC attack.Wenowdescribe themessage schedule of the CGC attack, that enables an adversary
to convince the honest verifier of any statement in the original UCZKprotocol of [19] butwithout knowing any corresponding
N P -witness.
The adversaryA runs the UCZK protocol of [19] and the above commit-then-proof protocol concurrently, by playing the

role of prover in the UCZK protocol of [19] and playing the role of verifier in the commit-then-proof protocol. In other words,
the adversaryA corrupts and controls the prover P of UCZK of [19] and the verifier V ′ of the commit-then-proof protocol at
the onset of the computation.A schedules the messages as follows.

(1) A first executes the UCZK with V on common input x and the common reference string (verk, σ ′). For presentation
simplicity, we refer to such execution of UCZK as the first session. Specifically, it generates a key-pair (vk, sk) for a one-
time strong signature, sends vk to the verifier V , just as the honest prover does.When it moves into Phase-2 of the UCZK,
A suspends the first session.

(2) A executes the commit-then-prove protocol with P ′ on common input x (x could be set by A via the environment).
For presentation simplicity, we call the execution of the commit-then-prove protocol the second session. Specifically,A
sends σ ′ (got from the CRS of the first session) to P ′ as the Phase-1 message of the second session. After receiving from
P ′ the first-round message of Phase-2 of the second session, A suspends the second session. Note that the first-round
message of Phase-2 of the second session from P ′ consists of c (that encrypts w) and the first-round message aL of the
underlyingΣ-protocol executed in Phase-2 of the second session.

A.C.C. Yao et al. / Theoretical Computer Science 410 (2009) 1099–1108 1105

(3) Now, A continues the first session, and works as follows. On (vk, verk), it generates a simulated conversation
(avk, evk, zvk) for the Σ-protocol of Phase-2 of the first session (that is used to prove the knowledge of a signature of
vk under verk), by running the underlying SHVZK simulator. Then,A sends (c, aL, avk) to V as the first-round message
of Phase-2 of the first session. After receiving from V the random challenge e (i.e., the second-round message of the
OR-proof of Phase-2 of the first session), A sets eL = e ⊕ evk and suspends the first session again. Note that (c, aL) are
got from the second session.

(4) A continues the second session again, sends eL = e ⊕ evk to P ′ as the second-round message of Phase-2 of the second
session. After receiving from P ′ the last-round message eL of the second session,A stops the second session.

(5) A continues the first-session again, sends z = ((eL, zL), (evk, zvk)) to V as the last-round message of the OR-proof of
Phase-2 of the first session.

(6) Finally,A applies the one-time strong signing key sk on the whole transcript of the first session to get a valid signature
s, and sends s to V . Note thatA can do this, as the one-time strong key pair (vk, sk) are generated by itself.

Note that (c, aL, eL, zL) is an accepting conversation of the Ω-protocol for showing x ∈ L, (avk, evk, zvk) is an accepting
conversation for showing the knowledge of the signature of vk under verk, and also e = eL⊕ evk. Furthermore, the one-time
strong signature s is also valid. This means that, from the viewpoint of V ,A has successfully convinced V of the statement
‘‘x ∈ L’’ in the first session with the UCZK protocol of [19], butA actually does not know any correspondingN P -witness! It is
also easy to see that the above CGC attack schedule can be trivially extended to the augmented adaptive corruption version
of the UCZK of [19].

Notes: The adversaryA does not use the same CRS in the second session, but a part of the CRS. Also, the commit-then-
proof protocol is run in the plain model. We remark that A can potentially use a completely different (but maliciously
related to CRS) message in Phase-1 of the second session. In general, A can potentially malleate the CRS of one session into
some message of another concurrent session that is completely different from (but maliciously related with) the CRS. We also
note that it is impossible to prevent transparent adversaries. Specifically, an adversary runs the same protocol twice in two
sessions (in one session, the same CRS could be sent by a player in the plain model), and forwards the messages from one
session to another session (i.e., the transcripts of the two sessions are identical). Such transparent adversary is impossible to
prevent, and is not viewed as a harmful adversarial activity by definition, analogue to the definition of non-malleability [17].

4. On the precise security guarantee of UC with CRS

We remark that the above concrete attack contradicts our intuition, as well as some (informal) interpretations frequently
stated in existing works, about the security guarantee of universal composability. We remark that the UCZK functionality
does guarantee the POK property. The problem with UC in the common reference string model is that: in security analysis
the simulator in the ideal-processworld can set the CRS by itself, thus learning the corresponding trapdoor information. This
does not capture the real ability of the adversary in the real-life world. But, this does not violate the security formulation
of UC, as the environment does not directly access and invoke the CRS and thus it is oblivious of the cases of real CRS and
simulated CRS. In other words, in contrast to the common intuition and expectation for UC, the adversary considered in the
UC framework actually has access to very limited (external) arbitrary protocols, in the sense that the arbitrary (external)
protocols are implicitly required to be ‘‘independent" of the challenge protocol (i.e., sharing no state information with the
challenge protocol). This is clearly unrealistic to reflect the actual adversarial activities conducted in asynchronous and open
networks like the Internet.
Our work may trigger the curiosity about the precise security guarantee of UC in the CRS model. Due to the high system

complexity and subtle nature of UC both for security formulation and for security analysis, from our view, it is important to
interpret the precise security guarantee of existing UC feasibility results, especially for non-experts of UC and practitioners
who apply the theory and implementations of UC in practice. It turns out that the interpretation itself can be subtle and
error-prone. For example, the goal of ‘‘composability with arbitrary protocols’’ and the reuse feature of CRS are both stated
in many existing works establishing UC feasibility with CRS, which may raise confusion to the literature (especially for non-
experts of UC).
For the precise security guarantee of UC with CRS, our work (and the independent work [8]) show that nothing may

be guaranteed, in general, when the CRS is reused (which is however the natural scenario and practice for cryptography
with CRS). In particular, we note that UC with reusable CRS might not, automatically and generally, imply concurrent self
composability (where only the same protocol is run concurrently). Furthermore, even with fresh and independent CRS for
each session of the challenge protocol, UC with fresh CRS still does not achieve the goal of ‘‘composability with arbitrary
external protocols’’. Specifically, even for UC with fresh CRS, the arbitrary external protocols are still implicitly assumed to
be ‘‘independent’’ of the challenge protocol, i.e., sharing no arbitrary (other than some well-predefined) state information
with the challenge protocol.1 This situation may, more or less, violate the common intuition and expectation, as well as
some frequent informal interpretations, about the UC security. Our this work is thus helpful for a precise understanding of
UC with CRS, and for preventing potential misinterpretations and/or misuses in practice.

1 As noted in [8], the approach proposed in [12] for handling universal compositionwith joint state (JUC) also does not fullywork in this case. Specifically,
the JUC approach only allows for the constructions of protocols that share state information amongst themselves (rather than sharing arbitrary state
information with arbitrary external protocols).

1106 A.C.C. Yao et al. / Theoretical Computer Science 410 (2009) 1099–1108

Acknowledgements

We thank Ran Canetti for kind clarifications about UC in the CRS model, and referring us to [8].

Appendix. Basic definitions

We use standard notations and conventions below for writing probabilistic algorithms, experiments and interactive
protocols. If A is a probabilistic algorithm, then A(x1, x2, . . . ; r) is the result of running A on inputs x1, x2, . . . and coins
r . We let y ← A(x1, x2, . . .) denote the experiment of picking r at random and letting y be A(x1, x2, . . . ; r). If S is a finite
set then x ← S is the operation of picking an element uniformly from S. If α is neither an algorithm nor a set then x ← α
is a simple assignment statement. By [R1; . . . ; Rn : v] we denote the set of values of v that a random variable can assume,
due to the distribution determined by the sequence of random processes R1, R2, . . . , Rn. By Pr[R1; . . . ; Rn : E] we denote
the probability of event E, after the ordered execution of random processes R1, . . . , Rn.
Let 〈P, V 〉 be a probabilistic interactive protocol, then the notation (y1, y2) ← 〈P(x1), V (x2)〉(x) denotes the random

process of running interactive protocol 〈P, V 〉 on common input x, where P has private input x1, V has private input x2, y1 is
P ’s output and y2 is V ’s output. We assume w.l.o.g. that the output of both parties P and V at the end of an execution of the
protocol 〈P, V 〉 contains a transcript of the communication exchanged between P and V during such execution.

Definition A.1 ((Public-Coin) Interactive Argument/Proof System). A pair of interactive machines, 〈P, V 〉, is called an
interactive argument system for a language L if both are probabilistic polynomial-time (PPT) machines and the following
conditions hold:

• Completeness. For every x ∈ L, there exists a stringw such that for every string z, Pr[〈P(w), V (z)〉(x) = 1] = 1.
• Soundness. For every polynomial-time interactive machine P∗, and for all sufficiently large n’s and every x /∈ L of length
n and everyw and z, Pr[〈P∗(w), V (z)〉(x) = 1] is negligible in n.

An interactive protocol is called a proof for L, if the soundness condition holds against any (even power-unbounded) P∗
(rather than only PPT P∗). An interactive system is called a public-coin system if at each round the prescribed verifier can
only toss coins and send the coin-tossing outcome to the prover.

Definition A.2 (Statistically/Perfectly Binding Bit Commitment Scheme). A pair of PPT interactive machines, 〈P, V 〉, is called a
statistically/perfectly binding bit commitment scheme, if it satisfies the following:

Completeness. For any security parameter n, and any bit b ∈ {0, 1}, it holds that Pr[(α, β)← 〈P(b), V 〉(1n); (t, (t, v))←
〈P(α), V (β)〉(1n) : v = b] = 1.

Computationally hiding. For all sufficiently large n’s, any PPT adversary V ∗, the following two probability distributions are
computationally indistinguishable: [(α, β)← 〈P(0), V ∗〉(1n) : β] and [(α′, β ′)← 〈P(1), V ∗〉(1n) : β ′].

Statistically/perfectly binding. For all sufficiently large n’s, and any adversary P∗, the following probability is negligible
(or equals 0 for perfectly-binding commitments): Pr[(α, β)← 〈P∗, V 〉(1n); (t, (t, v))← 〈P∗(α), V (β)〉(1n);
(t ′, (t ′, v′)) ← 〈P∗(α), V (β)〉(1n) : v, v′ ∈ {0, 1}

∧
v 6= v′]. That is, no (even computational power unbounded)

adversary P∗ can decommit the same transcript of the commitment stage both to 0 and 1.

Below, we recall some classic perfectly-binding commitment schemes.
One-round perfectly-binding (computationally-hiding) commitments can be based on any one-way permutation OWP

[2,23]. Loosely speaking, given a OWP f with a hard-core predict b (cf. [20]), on a security parameter n one commits a bit σ
by uniformly selecting x ∈ {0, 1}n and sending (f (x), b(x) ⊕ σ) as a commitment, while keeping x as the decommitment
information.
Statistically-binding commitments can be based on any one-way function (OWF) but run in two rounds [32,26]. On a

security parameter n, let PRG : {0, 1}n −→ {0, 1}3n be a pseudorandom generator, the Naor’s OWF-based two-round public-
coin perfectly-binding commitment scheme works as follows: In the first round, the commitment receiver sends a random
string R ∈ {0, 1}3n to the committer. In the second round, the committer uniformly selects a string s ∈ {0, 1}n at first; then
to commit a bit 0 the committer sends PRG(s) as the commitment; to commit a bit 1 the committer sends PRG(s) ⊕ R as
the commitment. Note that the first-round message of Naor’s commitment scheme can be fixed once and for all and, in
particular, can be posted as a part of public-key in the public-key model.

A.C.C. Yao et al. / Theoretical Computer Science 410 (2009) 1099–1108 1107

Definition A.3 (Witness Indistinguishability WI [18,20]). Let 〈P, V 〉 be an interactive system for a language L ∈ N P , and
let RL be the fixed N P witness relation for L. That is, x ∈ L if there exists a w such that (x, w) ∈ RL. We denote by
viewP(w)V∗(z)(x) a random variable describing the transcript of all messages exchanged between a (possibly malicious) PPT
verifier V ∗ and the honest prover P in an execution of the protocol on common input x, when P has auxiliary input w
and V ∗ has auxiliary input z. We say that 〈P, V 〉 is witness indistinguishable for RL if for every PPT interactive machine
V ∗, and any two sequences W 1 = {w1x }x∈L and W

2
= {w2x }x∈L for sufficiently long x, so that (x, w

1
x) ∈ RL and (x, w

2
x) ∈

RL, the following two probability distributions are computationally indistinguishable by any non-uniform polynomial-

time algorithm: {x, viewP(w
1
x)

V∗(z) (x)}x∈L,z∈{0,1}∗ and {x, view
P(w2x)
V∗(z) (x)}x∈L,z∈{0,1}∗ . Namely, for every non-uniformpolynomial-time

distinguishing algorithm D, every polynomial p(·), all sufficiently long x ∈ L, and all z ∈ {0, 1}∗, it holds that

| Pr[D(x, z, viewP(w
1
x)

V∗(z) (x) = 1] − Pr[D(x, z, view
P(w2x)
V∗(z) (x) = 1]| <

1
p(|x|)

.

Definition A.4 (System for Argument/Proof of Knowledge [4,20,5]). Let R be a binary relation and κ : N → [0, 1]. We say that
a probabilistic polynomial-time interactive machine V is a knowledge verifier for the relation R with knowledge error κ if
the following two conditions hold:

• Non-triviality: There exists an interactive machine P such that for every (x, w) ∈ R all possible interactions of V with P
on common input x and auxiliary inputw are accepting.
• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle machine K such that for every interactive
machine P∗, every x ∈ LR, and everyw, r ∈ {0, 1}∗, machine K satisfies the following condition:
Denote by p(x, w, r) the probability that the interactive machine V accepts, on input x, when interacting with the

prover specified by P∗x,w,r (where P
∗
x,w,r denotes the strategy of P

∗ on common input x, auxiliary input w and random-
tape r). If p(x, w, r) > κ(|x|), then, on input x and with oracle access to P∗x,w,r , machine K outputs a solution w

′
∈ R(x)

within an expected number of steps bounded by

q(|x|)
p(x, w, r)− κ(|x|)

.

The oracle machine K is called a knowledge extractor.

An interactive argument/proof system 〈P, V 〉 such that V is a knowledge verifier for a relation R and P is amachine satisfying
the non-triviality condition (with respect to V and R) is called a system for argument/proof of knowledge (AOK/POK) for the
relation R.

Blum’s protocol for DHC [3]. The n-parallel repetitions of Blum’s basic protocol, for proving the knowledge of directed
Hamiltonian cycle (DHC) on a given directed graph G [3], is just a 3-round public-coin witness indistinguishable proof of
knowledge (WIPOK) system for N P (with knowledge error 2−n) under any one-way permutation (as the first round of
it involves one-round perfectly-binding commitments of a random permutation of G). But it can be easily modified into
a 4-round public-coin WIPOK for N P under any OWF by employing Naor’s two-round (public-coin) perfectly-binding
commitment scheme [32]. The following is the description of Blum’s basic protocol for DHC:

Common input. A directed graph G = (V , E)with q = |V | nodes.
Prover’s private input. A directed Hamiltonian cycle CG in G.
Round-1. The prover selects a random permutation, π , of the vertices V , and commits (using a perfectly-binding

commitment scheme) the entries of the adjacency matrix of the resulting permutated graph via π . That is, it
sends a q-by-q matrix of commitments so that the (π(i), π(j))th entry is a commitment to 1 if (i, j) ∈ E, and
is a commitment to 0 otherwise.

Round-2. The verifier uniformly selects a bit b ∈ {0, 1} and sends it to the prover.
Round-3. If b = 0 then the prover sends π to the verifier along with the revealing of all commitments (and the verifier

checks that the revealed graph is indeed isomorphic to G via π); If b = 1, the prover reveals to the verifier only
the commitments to entries (π(i), π(j))with (i, j) ∈ CG (and the verifier checks that all revealed values are 1 and
the corresponding entries form a simple q-cycle).

We remark that theWI property of Blum’s protocol for DHC relies on the hiding property of the underlying perfectly-binding
commitment scheme used in its first-round.

References

[1] B. Barak, M. Prabhakaran, A. Sahai, Concurrent non-malleable zero-knowledge, Cryptology ePrint Archive, Report No. 2006/355, Extended abstract
appears in FOCS 2006.

[2] M. Blum, Coin flipping by telephone, in: Proc. IEEE Spring COMPCOM, 1982, pp. 133–137.
[3] M. Blum, How to prove a theorem so no one else can claim it, in: Proceedings of the International Congress of Mathematicians, Berkeley, California,
USA, 1986, pp. 1444–1451.

1108 A.C.C. Yao et al. / Theoretical Computer Science 410 (2009) 1099–1108

[4] M. Bellare, O. Goldreich, On defining proofs of knowledge, in: E.F. Brickell (Ed.), Advances in Cryptology-Proceedings of CRYPTO 1992, in: LNCS, vol.
740, Springer-Verlag, 1992, pp. 390–420.

[5] M. Bellare, O. Goldreich, On probabilistic versus deterministic provers in the definition of proofs of knowledge, Electronic Colloquium on
Computational Complexity, 13 (136), 2006, Available also from Cryptology ePrint Archive, Report No. 2006/359.

[6] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in: IEEE Symposium on Foundations of Computer Science,
2001, pp. 136–145.

[7] R. Canetti, Security and composition of cryptographic protocols: A tutorial, Distributed Computing Column of SIGACT News 37 (3–4) (2006) Available
also from Cryptology ePrint Archive, Report 2006/465.

[8] R. Canetti, Y. Dodis, R. Pass, S. Walfish, Universal composable security with global setup, in: S. Vadhan (Ed.), Theory of Cryptography (TCC) 2007,
in: LNCS, vol. 4392, Springer-Verlag, 2007, pp. 61–85.

[9] R. Canetti, M. Fischlin, Universal composable commitments, in: Advances in Cryptology-Proceedings of CRYPTO 2001, in: LNCS, vol. 2139, Springer-
Verlag, 2001, pp. 19–40.

[10] R. Canetti, E. Kushilevitz, Y. Lindell, On the limitations of universal compositionwithout set-up assumptions, in: E. Biham (Ed.), Advances in Cryptology-
Proceedings of EUROCRYPT 2003, in: LNCS, vol. 2656, Springer-Verlag, 2003, pp. 68–86.

[11] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, Universally composable two-party and multi-party secure computation, in: ACM Symposium on Theory
of Computing, 2002, pp. 494–503.

[12] R. Canetti, T. Rabin, Universal composition with joint state, in: Advances in Cryptology-Proceedings of CRYPTO 2002, in: LNCS, vol. 2729, Springer-
Verlag, 2003, pp. 265–281.

[13] R. Cramer, Modular design of secure, yet practical cryptographic protocols, Ph.D. Thesis, University of Amsterdam, 1996.
[14] R. Cramer, I. Damgard, B. Schoenmakers, Proofs of partial knowledge and simplified design of witness hiding protocols, in: Y. Desmedt (Ed.), Advances

in Cryptology-Proceedings of CRYPTO 1994, in: LNCS, vol. 893, Springer-Verlag, 1994, pp. 174–187.
[15] I. Damgard, Efficient concurrent zero-knowledge in the auxiliary stringmodel, in: B. Preneel (Ed.), Advances in Cryptology-Proceedings of EUROCRYPT

2000, in: LNCS, vol. 1807, Springer-Verlag, 2000, pp. 418–430.
[16] I. Damgard, Lecture notes on cryptographic protocol theory, BRICS, Aarhus University, 2003.
[17] D. Dolev, C. Dwork,M. Naor, Non-malleable cryptography, SIAM Journal on Computing 30 (2) (2000) 391–437. Preliminary version in ACMSymposium

on Theory of Computing, pages 542–552, 1991.
[18] U. Feige, A. Shamir, Witness indistinguishable and witness hiding protocols, in: ACM Symposium on Theory of Computing, 1990, pp. 416–426.
[19] J.A. Garay, P. MacKenzie, K. Yang, Strengthening zero-knowledge protocols using signatures, Journal of Cryptology 19 (2) (2006) 169–209. Preliminary

version appears in E. Biham (Ed.), Advances in Cryptology-Proceedings of EUROCRYPT 2003, LNCS 2656, Springer-Verlag, 2003, pp. 177–194.
[20] O. Goldreich, Foundation of Cryptography-Basic Tools, Cambridge University Press, 2001.
[21] O. Goldreich, S. Micali, A. Wigderson, Proofs that yield nothing but their validity and a methodology of cryptographic protocol design, in: IEEE

Symposium on Foundations of Computer Science, 1986, pp. 174–187.
[22] O. Goldreich, S. Micali, A. Wigderson, How to prove all N P -statements in zero-knowledge, and a methodology of cryptographic protocol design,

in: A.M. Odlyzko (Ed.), Advances in Cryptology-Proceedings of CRYPTO 1986, in: LNCS, vol. 263, Springer-Verlag, 1986, pp. 104–110.
[23] O. Goldreich, S. Micali, A. Wigderson, Proofs that yield nothing but their validity or all language in N P have zero-knowledge proof systems, Journal

of the Association for Computing Machinery 38 (1) (1991) 691–729. Preliminary version appears in [21,22].
[24] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof-systems, in: ACM Symposium on Theory of Computing, 1985, pp.

291–304.
[25] L. Guillou, J.J. Quisquater, A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory,

in: C.G. Gnther (Ed.), Advances in Cryptology-Proceedings of EUROCRYPT 1988, in: LNCS, vol. 330, Springer-Verlag, 1988, pp. 123–128.
[26] J. Hastad, R. Impagliazzo, L.A. Levin, M. Luby, Construction of a pseudorandom generator from any one-way function, SIAM Journal on Computing 28

(4) (1999) 1364–1396.
[27] J. Katz, Efficient and non-malleable proofs of plaintext knowledge and applications, in: E. Biham (Ed.), Advances in Cryptology-Proceedings of

EUROCRYPT 2003, in: LNCS, vol. 2656, Springer-Verlag, 2003, pp. 211–228.
[28] J. Kilian, Uses of Randomness in Algorithms and Protocols, MIT Press, Cambridge, MA, 1990.
[29] Y. Lindell, General composition and universal composability in secure multi-party computation, in: IEEE Symposium on Foundations of Computer

Science, 2003, pp. 394–403.
[30] Y. Lindell, Parallel coin-tossing and constant-round secure two-party computation, Journal of Cryptology 16 (3) (2003) 143–184. Preliminary version

appears in Crypto 2001, LNCS 2139, pages 171-189, Springer-Verlag, 2001.
[31] Y. Lindell, Lower bounds for concurrent self composition, in: M. Naor (Ed.), Theory of Cryptography (TCC) 2004, in: LNCS, vol. 2951, Springer-Verlag,

2004, pp. 203–222.
[32] M. Naor, Bit commitment using pseudorandomness, Journal of Cryptology 4 (2) (1991) 151–158.
[33] R. Pass, On deniability in the common reference string and random oracle models, in: D. Boneh (Ed.), Advances in Cryptology-Proceedings of CRYPTO

2003, in: LNCS, vol. 2729, Springer-Verlag, 2003, pp. 316–337.
[34] C. Schnorr, Efficient signature generation by smart cards, Journal of Cryptology 4 (3) (1991) 24.
[35] A.C.C. Yao, F.F. Yao, Y. Zhao, A note on the feasibility of generalized universal composability, in: J. Cai, S.B. Cooper, H. Zhu (Eds.), Theory and Applications

of Models of Computation-Proceedings of TAMC 2007, in: LNCS, vol. 4484, Springer-Verlag, 2007, pp. 474–485.

	A note on universal composable zero-knowledge in the common reference string model
	Introduction
	Related works

	Preliminaries
	Σ-protocols, Ω-protocols and the OR-proofs
	The universal composability framework and ZK functionalities

	Concurrent general composition attack on UCZK in the common reference string model
	The protocol structure of UCZK of GMY03
	The CGC attack

	On the precise security guarantee of UC with CRS
	Acknowledgements
	Basic definitions
	References

