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We propose a QKD protocol for trusted node relays. Our protocol shifts the communication and
computational weight of classical post-processing to the end users by reassigning the roles of error
correction and privacy amplification, while leaving the exchange of quantum signals untouched. We
perform a security analysis for this protocol based on the BB84 protocol on the level of infinite key
formulas, taking into account weak coherent implementations involving decoy analysis.

I. INTRODUCTION

Quantum key distribution (QKD) [1, 2] is one of the
immediate applications of quantum information theory.
However, QKD still faces several technical hurdles. One
challenge is to implement long-distance QKD. For point-
to-point QKD, in which one user sends quantum sig-
nals directly to another user, the key rate is approxi-
mately bounded by the single-photon transmittance of
the channel [3]. For fibre-optic implementations, this
leads to an exponential reduction of the key rate, re-
sulting in unattractive key rates for distances over a few
hundred kilometres — even when considering optimistic
system performance. The maximum distance is typically
limited by the dark count rate of the detectors, lead-
ing to a vanishing key rate at distances around 200-300
km. In the long term, advanced quantum repeaters [4, 5]
promise practical long distance QKD; however, they are
currently under development on a fundamental research
level. Trusted relays offer a short-term solution. They
have already been demonstrated in several active QKD
networks [6–9], and have been proposed for use in satel-
lite QKD nodes [10–12].

In standard trusted relays, full QKD protocols are ex-
ecuted between nearest neighbours in a series of trusted
nodes. Each node publicly announces the parity of the
two keys it holds, enabling the end users to create a
shared key. It is important that all nodes are trusted,
as each node could reproduce the final key. One draw-
back of this approach is that each intermediate node is in-
volved in full QKD protocols with its nearest neighbours,
including post-processing steps such as error correction
and privacy amplification. These protocol elements can
be demanding in terms of computational resources and
the communication bandwidth. This can lead to prob-
lems, for example, when using lightweight satellites which
are restricted in computation and communication. Even
for unrestricted relays, the total computation and com-
munication overhead of a large chain of trusted nodes is
significant.

In this paper, we present an alternate version of the
trusted relay, which reduces the requirements of the in-
termediate nodes by shifting post-processing tasks to the
end users [13]. We will refer to this variant as the sim-
plified trusted relay (STR). Other simplifications to the

trusted relay have been suggested, such as delayed pri-
vacy amplification [14].

STRs are similar to trusted relays; however, instead of
each node making announcements to connect the com-
pleted secret keys that it shares with its neighbours, each
node makes announcements based on the raw data that
it generates in the quantum phase of the QKD protocol.
The end users then carry out the remainder of the post-
processing based on their raw data and the announce-
ments from the trusted relay. This reduces the required
complexity of each node, as well as the computational
load on the trusted nodes.

It is important to note that in both the standard and
the simplified trusted relay, the intermediate nodes must
be completely trusted. This trust assumption can be re-
duced using independent paths in connection with secret-
sharing protocol ideas [15, 16]. Additionally, one could
use encryption of public announcements to reduce the
impact of compromised nodes that satisfy the typical
honest-but-curious constraints. However, the basic struc-
ture of trusted relays demands a minimal level of trust
in the intermediate nodes.

In Section II, we describe the general STR protocol.
We further list detailed steps for a specific realization
of the STR protocol which employs the quantum phase
of the BB84 protocol [2]. In Section III, we examine
the security of this STR protocol and derive a key rate
formula for the ideal case where the legitimate parties
exchange qubit signal states. The security proof is then
extended to optical modes in Section IV.

II. STR PROTOCOL

STR protocols closely resemble conventional trusted
QKD relays. In each link, quantum signals are dis-
tributed and measured to derive a set of measurement re-
sults and settings. In a conventional trusted relay, neigh-
bouring parties would then use classical post-processing
to create secret keys in each link. Each node would con-
nect the two secret keys it shares with its neighbours by
announcing the bitwise parity of these keys. However, as
we will show, a trusted relay may securely function with
less assistance from the nodes. For STRs, neighbouring
nodes only need to perform the quantum stage of a QKD
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FIG. 1. (A) A conventional trusted relay with a single node.
Quantum signals (black arrows) are used to establish raw
data (d) in each link. Secret keys (k1, k2) are distilled from
the raw data, using classical post-processing (white arrows).
Bob recovers Alice’s key, using the parity announcement, i.e.
k2⊕b = k1. Here ⊕ denotes bitwise modulo-2 addition. (B) A
single node STR. Before error correction and privacy ampli-
fication, Alice, Bob, and the node (T,T′) hold the respective
raws keys, dA, dB , dT , and dT ′ . The trusted node announces
the parity (b) of the raw keys that it holds. In the absence of
errors dA = dT , dB = dT ′ and dB ⊕ b = dA. Alice and Bob
carry out the majority of post-processing. All parties share
authenticated classical channels.

protocol. By sending and measuring quantum signals,
the legitimate parties generate raw data of quantum ori-
gin. The nodes connect the raw data by a public parity
announcement, analogous to conventional trusted relays.
The completion of the QKD protocol, involving error cor-
rection and privacy amplification, is left entirely to the
end users (Alice and Bob). For a single node, the STR
protocol is contrasted to a conventional trusted relay in
Figure 1.

In this paper, we demonstrate the basic idea of STRs
by focussing on a particular STR protocol based on the
BB84 QKD protocol. Note that many variations of this
protocol exist for which our analysis will directly apply.
Moreover, our analysis can be generalized in a straight-
forward manner to other protocols, such as the 6-state
protocol [17, 18] or continuous-variable protocols [19, 20].

The BB84-based protocol proceeds as follows:

1. Point-to-Point Data Creation. Alice and Bob
and all intermediate nodes perform this step with
their nearest neighbours.

(a) State creation and distribution: Alice
chooses a basis uA ∈ {Z,X} with probabil-
ity puA

, then selects a bit value x ∈ {0, 1}
with uniform probability and prepares the cor-
responding BB84 qubit state |φuA

x 〉. Alice
records the state she created, then sends the
signal to the nearest trusted node. Alice car-
ries out this process N times, where N is suit-
ably large. Similarly, each node prepares sig-
nals and sends them to the next node in the
relay. The last node sends signals to Bob.

(b) Measurement: Each node (and Bob) locally
select a basis u ∈ {Z,X} with probability pu
and perform a projective measurement in that
basis, denoted by the positive operator val-
ued measure (POVM) Mu. To distinguish
between the two roles each node plays, we
use uTj

to denote the j-th node’s measure-
ment basis, while uT ′

j
denotes the j-th node’s

state preparation basis. (For the case of a sin-
gle node, we will disregard the index.) The
choice of basis in each link is independent, i.e.
uTj

is independent of uT ′
j
. Bob and the nodes

record their measurement outcome, as well as
the basis in which they measured.

(c) Sifting: The legitimate parties reveal their
measurement and preparation bases. In each
link, data are kept only when an event was
detected and the basis choices coincided. All
other data are discarded, reducing the size of
the data strings from N to n. In the following
sections, we will use u1 := uA = uT1 to denote
the basis choice for an event that has survived
sifting in the first link. Similarly, the basis in
the i-th link is denoted by ui. For each signal
in each link, Alice and Bob record ui.

(d) Keymap: The legitimate parties map their
remaining data into classical bit strings (raw
keys, d), by mapping the BB84 states they
have sent and/or measured into raw bits us-
ing the rule |φux〉 → “x”, where x ∈ {0, 1}. Al-
ice now holds the raw key dA = {x1, . . . , xn}.
For clarity, we denote Bob’s raw key as dB =
{y1, . . . , yn}, where y denotes Bob’s measure-
ment outcome. Similarly, the j-th node holds
the raw keys dTj = {tj,1, . . . , tj,n} and dT ′

j
=

{t′j,1, . . . , t′j,n}.

2. Node Announcement. Only the intermediate
nodes perform this step.

(a) Parity announcement: Each node an-
nounces the bitwise parity of the two raw
keys that it holds. For the j-th node, bj =
{bj,1, . . . , bj,n}, where bj,i = tj,i ⊕ t′j,i.

3. End user protocol. Only the end users Alice and
Bob perform this step.
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(a) Processing of Parity Announcements
Bob adds each parity announcement to his
own raw key to obtain a new raw key d′B :=
{y′1, . . . , y′n}, where y′i = (

⊕
j bj,i)⊕ yi. In the

absence of errors, d′B = dA and Bob recovers
Alice’s raw key.

(b) Parameter estimation: Alice and Bob de-
termine the error rate for each basis combina-
tion, including the basis choices of the inter-
mediate nodes. For m nodes, Alice and Bob
therefore determine 2m+1 error rates. If the
error is suitably low, they continue the proto-
col. Otherwise, they abort.

(c) Error correction and Privacy Amplifica-
tion: If the protocol is not aborted, Alice and
Bob carry out one-way error correction and
privacy amplification to obtain secure keys.

In order to extend our security analysis from collective
to general attacks, we will later require that the protocol
has permutation invariant properties (see Section IV A).
We assume that both error correction and privacy ampli-
fication are carried out in a permutation invariant man-
ner. While permutation invariant methods exist, most
practical methods of error correction and privacy ampli-
fication typically are not permutation invariant. It re-
mains an open question whether this condition is truly
necessary.

For the following theoretical analysis, the prepare-and-
measure scenario in the above protocol can equivalently
be described as a source-replacement scheme [21]. In this
thought set-up, each source generates the entangled state
|Φ〉 ∈ HSS′ , where |Φ〉 = (1/

√
2)(|00〉+ |11〉). Instead of

sending the signal state, the source then sends the second
half of the entangled system (S′). Using a POVM Mu

chosen with probability pu, the legitimate party which
has prepared the entangled state, performs a projective
measurement on the system S, preparing S′.

The source-replacement scheme reveals an important
property. In the point-to-point data creation step, the
roles of signal state preparation and measurement may
be interchanged in each link without affecting the ba-
sic security of the protocol. Similarly, one could use a
scheme based on physical entanglement to perform this
step, where both parties measure signals prepared by
an untrusted intermediate source. One could also use a
measurement-device independent QKD protocol [22] to
establish raw data in each link by making use of addi-
tional untrusted nodes. Note that while the qubit secu-
rity proof in Section III applies to all of these situations,
the extension to realistic implementations in Section IV
looks specifically at the protocol as detailed above.

III. QUBIT SECURITY PROOF

Using the formalism developed in Refs. [23–25], we
establish a rate at which secret key bits may be derived

from the raw key. We begin our analysis by examining
the ideal case where qubit signal states are exchanged
over lossless channels. Furthermore, we examine the
asymptotic limit where the legitimate parties exchange
a large number of signals. In this limit, we can consider
an eavesdropper (Eve) to make collective attacks with-
out loss of generality [26]. (In this context, collective
attacks are defined for each group of signals exchanged
along the chain between Alice and Bob that are matched
by the parity announcements. Eve can attack all sig-
nals contributing to the group jointly. We will justify
this definition in Section IV A.) Using this analysis as a
foundation, we extend the security to include loss and
multi-photon sources in Section IV.

To simplify notation, let us first examine the case
where our relay has one trusted node. The analysis for
an arbitrary number of nodes follows similarly. After dis-
tributing signals, Alice, Bob, and the trusted node hold
the tripartite state ρATB . For simplicity, we use T to de-
note the two qubit-spaces composing the node’s system.
In order to ensure that Eve is limited only by the laws of
quantum mechanics, we allow Eve complete control over
the purification |Ψ〉ATBE . Eve’s choice of purification is
limited only by the observed quantities:

Definition 1. Let Γ be the set of all states ρATBE consis-
tent with all observables measured by the legitimate par-
ties.

From Refs. [23–25], the rate at which secret key bits
may be distilled from raw key bits (the key rate) is

r = H(KA)obs − leakECobs −max
Γ

χ(X : E) (1)

where H(KA)obs is the observed Shannon entropy of Al-
ice’s raw key and leakECobs is the actual information leaked
during error correction. Note that both these quanti-
ties can easily be calculated or bounded from observed
data. The Holevo quantity between Alice and Eve is
denoted by χ(X : E). Note that E includes all classi-
cal communication available to Eve prior to error cor-
rection. We adopt the notation of Ref. [27], defining
χ(ρATBE ,M

u1

A ) := χ(X : E), where Mu1

A represents Al-
ice’s POVM conditioned on her basis choice.

A. Announcements and Postselection

In the STR protocol, the legitimate parties in each link
postselect on data where the basis choices (u) match.
In order to do so, they publicly announce the basis in
which states were prepared or measured. Any events in
which the basis choice did not coincide are discarded.
Additionally, the node announces the parity (b) of the
raw keys that it holds. We must take into account how
these announcements affect security.

The quantum treatment of postselection is represented
by a trace preserving map, which takes ρATBE to ρ̄ATBE .
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The formalism behind this postselection method can be
found in Ref. [27]. The announcements are represented
by a classical register C held by the legitimate parties and
Eve. The postselected state is therefore block-diagonal,
given explicitly by

ρ̄ATBE =
∑

u1,u2,b

pu1
pu2

pb|u1,u2
ρu1,u2,b
ATBE⊗|u1u2b〉〈u1u2b|C .

(2)

Here pu represent the probability of each basis announce-
ment and pb|u1,u2

is the conditional probability associated

with the parity announcement. Furthermore, ρu1,u2,b
ATBE is

the state held between all parties, conditioned on a given
combination of announcements. Note that the choice of
bases, and thus the corresponding announcements, are
determined by local randomness. As a result, the state
conditioned on u1 and u2 alone is the same as the origi-
nal state, i.e. ρu1,u2

ATBE = ρATBE . However, the parity an-
nouncement is determined by a measurement outcome;
the effect proves to be non-trivial. Following the postse-

lection formalism in Ref. [27], ρu1,u2,b
ATBE 6= ρATBE .

B. Parameter Estimation

In order to derive an analytic key rate, we will relax
the conditions on the shared state. Instead of using all
observables, we look only at specific error rates. For each
basis combination, the error rate between Alice’s raw key,
dA, and Bob’s corrected raw key, d′B , is given by

eu1,u2 =
∑
b

pb|u1,u2

∑
x 6=y⊕b

trAB(Mu1

A,x⊗Mu2

B,yρ
u1,u2,b
AB ) (3)

where Mu1

A,x and Mu2

B,y denote Alice and Bob’s POVM

elements. With this in mind, let us define Γ̃, a superset
of Γ:

Definition 2. Let Γ̃ be the set of all states ρATBE con-
sistent with the set of basis-dependent error rates eu1,u2 .

Given that Γ ⊆ Γ̃, we may lower-bound the key rate
by replacing the maximization over Γ in Eq. (1), with a

maximization over Γ̃.

C. Symmetries in the STR Protocol

We begin the security proof by reducing the size of the
set Γ̃. The optimal attack is shown to occur when the
reduced state ρATB is diagonal with respect to a basis
consisting of tensor products of Bell states (see Eq. (5)).
This is a direct result of symmetries in the BB84 signal
states. In the following section, we will make use of the
Bell-diagonal form of ρATB .

As outlined in Ref. [27], the form of Eve’s optimal
attack can often be simplified if the following conditions
are met:

1. The composition of the Holevo quantity and any
postselection mapping applied to ρATBE is concave.

2. A set of states β = {ρiATBE} is found, where each
state yields the same chosen observables as the orig-
inal state ρATBE . In our case, these chosen observ-
ables are basis-dependent error rates.

3. Each state ρiATBE results in the same Holevo quan-
tity as the original state ρATBE .

If these three conditions are met, it follows that the
Holevo quantity is maximized by a state of the form
1
|β|
∑
i ρ
i
ATBE .

In order to satisfy the first of the above conditions, we
first use basic properties of the von Neumann entropy to
rearrange the key rate in Eq. (1):

r ≥
∑
u1,u2

pu1pu2H(Ku1,u2

A )obs − leakECobs (4)

−max
Γ̃

∑
u1,u2

pu1pu2χ

(∑
b

pb|u1,u2
ρu1,u2,b
ATBE ⊗ |b〉〈b|C ,Mu1

A

)
.

Here H(Ku1,u2

A )obs denotes the entropy of Alice’s key
data arising from each basis-combination.

The concavity of the composition of the Holevo quan-
tity and the mapping in Eq. (4) follows directly from the
fact that the mapping is linear and the Holevo quantity is
concave [27]. Drawing inspiration from Refs. [23, 27], we
apply correlated Pauli operations in each link to generate
a set of states β = {ρiATBE} (see Appendix A). In the ap-
pendix, we further show that the basis-dependent error
rates and the Holevo quantity in Eq. (4) are invariant for
each of these states. Therefore we restrict our search for
Eve’s optimal attack, to states of the form 1

|β|
∑
i ρ
i
ATBE .

In Appendix B, we show that the reduced form of the
averaged state is diagonal with respect to a basis con-
sisting of tensor products of Bell states. Therefore we re-
strict our search for Eve’s optimal attack from Γ̃ to Γ̃Bell,
where Γ̃Bell is defined to be the set of all states that are
consistent with the observed basis-dependent error rates,
and also have the reduced form

ρBell
ATB :=

1∑
a,b,a′,b′=0

αa,b,a′,b′ |Φa,b〉〈Φa,b|A,T (5)

⊗ |Φa′,b′〉〈Φa′,b′ |T,B .

Above αa,b,a′,b′ are an arbitrary set of normalized eigen-
values, while |Φa,b〉 are the four Bell states:

|Φa,b〉 :=
1√
2

1∑
k=0

(−1)ak|k ⊕ b〉|k〉. (6)

Here ⊕ denotes modulo-2 addition.
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D. Qubit Key Rate

The evaluation of the key rate makes use of similari-
ties between the measurements in an STR protocol and
Bell measurements. If the intermediate nodes perform
joint Bell measurements on the entangled quantum sys-
tems that they share with their respective neighbours,
then this corresponds to entanglement swapping, provid-
ing the end user with entangled states (as well as infor-
mation about the relevant reference frame determined by
the set of outcomes of the Bell measurements). In this
case, the end users can establish a secret key based only
on the observed correlations analyzed separately for each
announced set of Bell measurements, without further in-
volvement from the intermediate nodes, or even trust in
the nodes.

The primary observation linking the entanglement
swapping picture of quantum relays to the STR proto-
col is that a Bell measurement can be deconstructed into
a parity and a phase bit measurement on two qubits. The
parity result of this measurement, b, is identical to the
parity announcement in our STR protocol (up to local
Hadamard operations, as mentioned below). However,
in the STR protocol, the phase measurement result, de-
noted by the bit a, is suppressed. Still, as we show below,
we can use this relationship to evaluate the secret key
rate of the STR protocol. Note that there are distinct
differences between an entanglement-swapping quantum
relay and the STR protocol. In the STR protocol we can-
not prove security based on Alice and Bob’s observations
alone. Instead, we are required to trust the measure-
ments that the intermediate nodes perform. The com-
plexity of our analysis is increased by the fact that the
actual form of the Bell measurements discussed above
depends on the basis choices used in the two links.

In the STR protocol, the trusted node measures each
link in either the X- or Z-basis and announces the parity
bit of the measurement results. As stated above, we can
imagine an alternate protocol where the node carries out
a Bell measurement for the respective basis, followed by
an announcement of the parity component of the Bell
measurement result, but not the phase component. If we
denote the Z-basis on the i-th qubit with ui = 0 and the
X-basis with ui = 1, the rotated Bell basis is given by
{Hu1⊗Hu2 |Φa,b〉}1a,b=0, where Hui denotes a Hadamard

matrix raised to the power ui and |Φa,b〉 are the four Bell
states. The rotated Bell basis is explicitly

{Hu1 ⊗Hu2 |Φa,b〉}1a,b=0 = (7)
{|Φ0,0〉, |Φ0,1〉, |Φ1,0〉, |Φ1,1〉} : u1 = 0, u2 = 0
{|Φ′0,0〉, |Φ′0,1〉, |Φ′1,0〉, |Φ′1,1〉} : u1 = 0, u2 = 1
{|Φ′0,0〉, |Φ′1,0〉, |Φ′0,1〉, |Φ′1,1〉} : u1 = 1, u2 = 0
{|Φ0,0〉, |Φ1,0〉, |Φ0,1〉, |Φ1,1〉} : u1 = 1, u2 = 1

|Φ′a,b〉 := (11⊗H)|Φa,b〉. (8)

When u1 = u2, the above set is simply a permutation
of the Bell states. Similarly, when u1 6= u2 the set is a
permutation of the Bell states, up to a local unitary.

To simplify the security analysis, we may consider an-
nouncing the phase bit to Eve (but not to Alice and Bob),
effectively putting a lower bound on the key rate of the
alternative protocol. Given that the security of the al-
ternative protocol is equivalent to the STR protocol, we
therefore lowerbound the key rate of the STR protocol.
Intuitively, leaking the phase bit to Eve cannot decrease
Eve’s knowledge of the key. This notion can be made
rigorous using the monotonicity of the quantum relative
entropy under partial trace [28]. This insight leads to the
bound

max
Γ̃Bell

χ

(∑
b

pb|u1,u2
ρu1,u2,b
ATBE ⊗ |b〉〈b|C ,Mu1

A

)

≤max
Γ̃Bell

χ

∑
a,b

pa,b|u1,u2
ρu1,u2,a,b
ATBE ⊗ |a, b〉〈a, b|C ,Mu1

A


(9)

= max
Γ̃Bell

(∑
a,b

pa,b|u1,u2
χ(ρu1,u2,a,b

ATBE ,Mu1

A )

+H(Ku1,u2

A )−
∑
a,b

pa,b|u1,u2
H(Ku1,u2,a,b

A )

)
.

Above, pa,b|u1,u2
denotes the probability associated with

the parity and phase measurement, conditioned on the

measurement basis. Similarly, ρu1,u2,a,b
ATBE is the joint state

conditioned on the particular announcement combination

and Ku1,u2,a,b
A is the conditional key data. The above

equality makes use of simple properties of the von Neu-
mann entropy. Note for each state in Γ̃Bell, it holds that

H(Ku1,u2

A ) = H(Ku1,u2,a,b
A ) for all values of u1, u2, a, b.

Therefore the second and third term in the maximiza-
tion vanish.

A simple method for placing an upper bound on
the above maximization is to maximize each term
χ(ρu1,u2,a,b

ATBE ,Mu1

A ) individually. If the maximization spec-
ifies Z- and X-error rates (or equivalent restrictions) for

each conditional state ρu1,u2,a,b
ATBE , the result of the maxi-

mization is well known [1]. However, upon inspection, it

is not immediately apparent that Γ̃Bell contains suitable
restrictions. First, the observed error rates arise from the

conditional states ρu1,u2,b
ATBE , not ρu1,u2,a,b

ATBE . Second, it is not
clear that the Z- and X-error rates can be simultaneously
determined for each conditioned state (see Eq. (3)). We
address the first concern by considering the hypothetical
error rates eu1,u2,a,b and later invoking the concavity of
the binary entropy to derive a key rate dependent only
on the observed error rates eu1,u2 . The second concern is
addressed using a relation among the conditioned states
(see Eq. (11)).

To address the concerns mentioned above, let us write
the set Γ̃Bell in terms of the hypothetical error rates
for each Bell announcement, i.e. Γ̃Bell is the set of all
states ρBell

ATBE consistent with the error rates eu1,u2,a,b,
such that

∑
a,b pa,b|u1,u2

eu1,u2,a,b equals the observed er-
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ror rates eu1,u2 . With these two conditions in mind, we
define:

Definition 3. Let Γ̃hidden be the set of all states ρBell
ATBE

consistent with all error rates eu1,u2,a,b.

Definition 4. Let Sobs be the set of all error rates
eu1,u2,a,b such that

∑
a,b pa,b|u1,u2

eu1,u2,a,b = eu1,u2 .

The maximization in Eq. (9) can then be treated as
two separate maximizations:

max
Γ̃Bell

χ(ρu1,u2,a,b
ATBE ,Mu1

A ) = max
Sobs

max
Γ̃hidden

χ(ρu1,u2,a,b
ATBE ,Mu1

A ).

(10)

For this approach to be useful, we must first show that
the set Γ̃hidden contains suitable restrictions on each state
ρu1,u2,a,b
ATBE . The form of the Bell measurement reveals that

certain sets of the conditioned states ρu1,u2,a,b
ATBE are related

by trivial relabelings. Explicitly,

ρu1=i,u2=j,a=k,b=l
ATBE = ρu1=i⊕1,u2=j⊕1,a=l,b=k

ATBE ∀i, j, k, l.
(11)

The above relations allow us to derive X- and Z-basis
error rates for each conditioned state. For example,
the X-error rate arising from the conditioned state

ρu1=0,u2=0,a=k,b=l
ATBE is given by eu1=1,u2=1,a=l,b=k.

We can now maximize each term, χ(ρu1,u2,a,b
ATBE ,Mu1

A ), as
if it had arisen from an independent protocol (after mak-
ing use of the above relation). Given that we are only
interested in an upper bound, we can choose to only ex-
amine relevant restrictions when maximizing each term.
This maximization can now be handled using techniques
outlined in Appendix A of Ref. [1]:

max
Γ̃hidden

χ(ρu1=i,u2=j,a=k,b=l
ATBE ,Mu1

A ) (12)

≤ h(eu1=i⊕1,u2=j⊕1,a=l,b=k) ∀i, j, k, l.
Although the individual error rates, eu1,u2,a,b, are un-
known, we can arrive at a useful key rate by first us-
ing the fact that the conditional probability pa,b|u1,u2

re-
spects similar relations to Eq. (11),

pa=i,b=j|u1=k,u2=l = pa=j,b=i|u1=k⊕1,u2=l⊕1. (13)

Then, by using the concavity of the binary entropy, with
consideration of Eq. (1) and Eq. (9), we find the key
rate to be

r ≥
∑
u1,u2

pu1
pu2

H(Ku1,u2

A )obs − leakECobs (14)

−
∑
u1,u2

pu1⊕1pu2⊕1h(eu1,u2).

Note that after using the concavity of the binary entropy,
the maximization over Sobs is trivial, as each element in
Sobs results in the same key rate.

The same analysis may easily be extended to the case
where m trusted nodes are used. In this case, we describe
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FIG. 2. The rate at which key bits can be derived from the raw
key, in the limit of an infinite key length, for a conventional
trusted node (solid line), an STR with one node (dashed line),
and an STR with two nodes (dotted line), as a function of
the error rate in each link, elink. The plot assumes realistic
error patterns. Error correction is assumed to be done in the
Shannon limit.

the basis choices for the m + 1 links are described as
u = {u1, . . . , um+1}. If the legitimate parties share the

postselected state ρ̄ATmBE , and if we define the set Γ̃m
similarly to Def. 1, then we may apply the same analysis
to find

max
Γ̃m

χ(ρ̄ATmBE ,M
u1

A ) ≤
∑

u1,...,um+1

pũh(eu). (15)

where the vector ũ = {u1⊕ 1, . . . , um+1⊕ 1}. Analogous
to Eq. (14), pũ is the probability of the announcement
combination ũ. Similarly, eu is the rate of errors between
Alice and Bob conditioned on both u.

The qubit security of an STR differs from conventional
trusted relays in two major ways. First, the key rate
is only a function of the error rate between Alice and
Bob. Second, the addition of new nodes in an STR pro-
tocol degrades the key rate due to compounding errors.
This prevents STRs from being extended to arbitrary dis-
tances. The qubit key rates for one and two nodes are
plotted in Fig. 2, along with the key rate for a conven-
tional trusted relay. As shown, the simplicity of the STR
protocol comes at the cost of a reduced key rate. Note
that this does not take into account computational time;
for particular scenarios, the key generation rate per unit
time may in fact be higher for STRs.

Allowing one of the intermediate nodes to generate
error-correcting information will reduce the amount of
information revealed to Eve during error correction. In
a possible variant of the above STR protocol, one of
the intermediate nodes may define the key map. That
node generates one-way error correcting information and
broadcasts it to Alice and Bob. While our previous anal-
ysis does not apply to this situation, a canonical calcula-
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tion of the key rate shows that the security of this alter-
nate protocol is nearly equivalent to the above protocol
— if a single node is used and the bases are chosen with
uniform probability. As shown in Ref. [29], the resulting
key rate for this node-focused case is

rnode-focused ≥
1

4

∑
u1,u2

H(Ku1,u2

T )− leakECobs − h(e) (16)

where Ku1,u2

T denotes the key data of the node which de-
fines the protocol, and e is the overall error rate between
Alice’s raw key dA and Bob’s corrected raw key d′B .

IV. REALISTIC CONSIDERATIONS

The key rates found in the previous sections are con-
structed for the ideal case where the legitimate parties
exchange qubits over a lossless channel, and Eve performs
collective attacks. Most QKD implementations use opti-
cal modes to transmit signal states over a lossy channel.
This is problematic, as Eve can actively select for pulses
that contain additional information. Additionally, Eve is
not limited to collective attacks. In this section, we will
address these concerns.

A. From Collective Attacks to General Attacks

First, let us justify our examination of collective at-
tacks in the previous sections. The techniques developed
in Ref. [26] provide a method for extending the secu-
rity of collective attacks to general attacks, provided the
protocol is invariant with respect to permutations of the
input states. Even when exchanging qubit signal states
in a lossless setting, the STR protocol is not permutation
invariant, due to the fact that basis sifting occurs before
the parity announcement.

We may still extend the security of the STR proto-
col to general attacks by noting that key elements of the
STR protocol are permutation invariant. The process
of basis sifting commutes with the measurement process;
therefore, basis sifting may be viewed as an initial step
preceding measurements. In a general attack, Eve may
store all the signal states in a large quantum memory
before distributing them to the legitimate parties. Let
us denote this state with ρN . The initial step of basis
sifting maps the state ρN to a smaller state ρndata. Im-
portantly, the remainder of the STR protocol acting on
ρndata (measurements and post-processing) is permutation
invariant. This assumes privacy amplification is carried
out in a permutation invariant manner. While there exist
permutation invariant methods of privacy amplification,
not all methods of privacy amplification fit this criteria.

In order to separate the initial sifting step from the re-
mainder of the STR protocol, a common proof technique
is to assume Eve performs the sifting step. However, Eve
is unable to perform the process of basis sifting as she

does not have access to the basis information. We there-
fore posit a hypothetical protocol that proceeds identi-
cally to the STR protocol; however, before the protocol
begins, whether signals will be kept or discarded during
sifting is announced to Eve for each time slot (but not the
basis information). Without loss of generality, we may
now assume Eve removes any signals that would be lost
in basis sifting. The steps following sifting are now per-
mutation invariant with respect to the signals grouped
by the parity announcements. We may now assume that
Eve performs collective attacks on these signals, when
considering the infinite key limit [26]. This is precisely
the situation we have analyzed in previous sections.

Importantly, the key rate for this hypothetical proto-
col is a lower bound on the STR protocol. Therefore the
analysis given in the previous sections provides a lower
bound on the key rate of the STR protocol, when con-
sidering general attacks on qubit signal states sent over
lossless channels.

We may extend the above analysis to include qubit
signals exchanged over lossy channels. In the case of a
lossy channel, the legitimate parties discard any data in
which a detector did not click. Similar to basis sifting, the
removal of these events commutes with the measurement
process. Despite being under Eve’s control, we may treat
vacuum sifting in the same manner as basis sifting. The
remainder of the argument follows similarly.

B. STR Protocol with Decoy States

Recall that when considering qubit-level security, our
analysis directly applied to a number of protocols with
different variations of state creation and measurement
(see the discussion ending Section II). In order to move
beyond qubit-level security, we restrict our focus to the
BB84 STR protocol as outlined in the beginning of Sec-
tion II. While the following analysis still applies to the
case where the roles of state preparation and measure-
ment are interchanged, it is not straightforward to gener-
alize the analysis to entanglement-based or measurement-
device independent STR protocols.

Current QKD implementations do not have access to
ideal single photon sources. Typically, highly attenu-
ated lasers are used to generate the signal states. These
sources are described by coherent states, where the pho-
ton number adheres to a Poisson distribution. The prob-
ability of sending multi-photon pulses is therefore non-
zero. An eavesdropper can exploit multi-photon pulses
through a photon number splitting attack [30, 31]. In
order to improve the key rate for realistic sources, the
legitimate parties may employ decoy state analysis [32–
34], supported by tagging [35, 36]. In addition to the
original pulses, the legitimate parties send decoy states
which have a variable mean photon number, µn. By in-
troducing these additional observables, an upper bound
may be estimated on the number multi-photon events.
On the detection side, squashing methods can deal with
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the possibility of multiple photons entering a detector
[37–39]. Given the existence of a squashing map, the de-
tection pattern can be interpreted as if it resulted from
a vacuum or single-photon pulse.

Due to the structure of the parity announcement, if
any of the legitimate parties emits a multi-photon pulse,
Eve may perform a photon number splitting attack. For
simplicity, we assume Eve obtains full information of the
corresponding raw key bit whenever this happens — ex-
cept when a vacuum signal is sent in the first link. (Due
to dark counts, a detector may still click, even when
a vacuum signal was sent.) Additionally, we need to
rescale privacy amplification to account for Eve’s inter-
action with the single photon pulses. Let us denote the
fraction of detected events used for the raw key in which a
single photon was sent in the first link and all other links
sent a single photon (vacuum or single photon) pulse to
be fs,s (fs,v/s). Similarly, fv is the fraction of events
where a vacuum pulse was sent in the first link, and eus,s/v
is the error rate arising from events where a single photon
was sent in the first link and all other links sent vacuum
or single photon pulses. The fraction of multi-photon
events is then given by fm = 1 − fv − fs,v/s. This is
directly subtracted from the key rate. For m nodes, the
corresponding decoy state key rate is

r ≥
∑

u1,...,um+1

puH(Ku
A)− leakECobs (17)

− fs,s/v
( ∑
u1,...,um+1

pũ h(eus,s/v)

)
− (1− fv − fs,v/s)

for the asymptotic limit. Again, u := {ui} represents the
basis choice in each link, and ũ := {ui⊕ 1}. Note that in
practice, the fraction of events in which a single photon
was sent in the first link and all other links sent a vacuum
(fs,v) will be small. The approximations fs,s/v ≈ fs,s and
es,s/v ≈ es,s will safely lower bound the key rate.

Decoy state analysis has been thoroughly explored in
the literature. Most techniques assume that the detected
signal states are independent and identically distributing
(i.i.d.). In general, this assumption is not valid. For this
reason, we rely on the analysis found in Ref. [40], which
does not assume i.i.d. signal states. The analysis in Ref.
[40] uses observables arising from ρN (the overall state
shared between the legitimate parties, including vacuum
and multi-photon signals) to bound the fraction of tagged
signals and the single-photon error rate by use of decoy
states. While the analysis directly applies for a single
node, it may be extended to an STR protocol with an
arbitrary number of nodes. Observations from ρN pro-
vide a promise about the fraction of detected signals that
are tagged. The same analysis from Section IV A may be
applied to extend the security analysis from collective at-
tacks to general attacks; the final key rate simply needs
to be updated with respect to this promise, as shown in
Eq (17).

In Fig. 3, we compare the STR protocol to a con-
ventional trusted relay using decoy state techniques. We
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FIG. 3. The number of secret key bits generated per clock
cycle, for a conventional trusted node (solid line), an STR
with one node (dashed line), and an STR with two nodes
(dotted line), as a function of the loss in a single link. (A)
The scaling is examined in the error-free limit. (B) We use an
intrinsic error rate of 1.85% and a dark count rate of 6×10−6

per clock cycle. Furthermore, we assume the information lost
during error correction is 1.2 times greater than the Shannon
limit. For both cases, we assume a detector efficiency of 50%.
For each value of loss, the signal intensity is optimized. Finite
size effects are not considered, and Alice and Bob are assumed
to perfectly determine fv and fs,v/s.

plot the key generation rate per clock cycle as a function
of channel loss in one arm of the relay, optimizing the
mean photon intensity, µ, at each distance. Though the
key generation rate per clock cycle is lower for an STR,
the computational load on each node is also reduced. In
situations where the nodes have limited computational
power, the key generation rate per unit time may in fact
be greater for an STR than a conventional trusted relay.

V. CONCLUSION

We have examined the security of a simplified trusted
relay which implements the quantum phase of the BB84
protocol. In addition to providing an analytic key rate
for an ideal case (lossless and i.i.d. qubit signals), we have



9

provided a clear path for extending the proof to realistic
circumstances (loss, general attacks, and weak coherent
states). Our results show that a trusted relay can func-
tion securely without the nodes participating in parame-
ter estimation, error correction or privacy amplification.

In comparison to conventional trusted relays, the STR
protocol benefits from its simplicity; however, this comes
at the cost of a lower key rate. Compounding errors
prevent a naive implementation of the STR protocol
from achieving arbitrarily long distances; however, sev-
eral STRs may be chained together (similar to a con-
ventional trusted relay) to form a pattern of simplified
and conventional trusted relay nodes. For many sce-
narios, the optimal network likely incorporates STRs
and conventional trusted relays. In addition, for situ-
ations where the intermediate nodes are limited in com-
putational power or communication bandwidth (such as
lightweight satellites), STRs may prove to have a higher
key generation rate per second, as they reduce the com-
putation and communication requirements for the inter-
mediate nodes.

Appendix A: Invariance of ρATBE with respect to
Pauli-operations

In this appendix, we explicitly show that states derived
by applying correlated Pauli operations to ρATBE result
in the same basis-dependent error rate and Holevo quan-
tity. For clarity, let us change our original notation from

ρiATBE to ρ
Ur,sUr′,s′
ATBE . The set of states β = {ρUr,sUr′,s′

ATBE }
is given explicitly by

ρ
Ur,sUr′,s′
ATBE := Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′ ⊗ 11EρATBE

(A1)

(Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′ ⊗ 11E)†.

For our purposes, we define the Pauli matrices as

Ur,s :=

1∑
k=0

(−1)ks|k + r〉〈k| (A2)

for r, s ∈ {0, 1}.
To show that the basis-dependent error rates are in-

variant for each state ρ
Ur,sUr′,s′
ATBE , we make use of the

fact that Pauli matrices only permute the BB84 signal
states within each basis. Let us define the action of
the Pauli operator Ur,s on the signal state |φux〉 to be
Ur,s|φux〉 = |φux⊕h(u,r,s)〉 for some function h(u, r, s) with

binary output. It follows that this relation similarly ap-
plies to the BB84 POVM elements. The averaged error

rate arising from the state ρ
Ur,sUr′,s′
ATBE can then be rewrit-

ten as

eu1,u2

Ur,sUr′,s′
=
∑
b

∑
x,t

trAB(Mu1

A,x ⊗Mu1

T,t⊗ (A3)

Mu2

T,t⊕b ⊗Mu2

B,x⊕b⊕1ρ
Ur,sUr′,s′
ATB )

=
∑
b

∑
x,t

trAB(Mu1

A,x⊕h(u1,r,s)
⊗Mu1

T,t⊕h(u1,r,s)

⊗Mu2

T,t⊕b⊕h(u2,r′,s′)
⊗Mu2

B,x⊕b⊕h(u2,r′,s′)⊕1ρATB).

Let us define x′ := x⊕h(u1, r, s), t
′ := t⊕h(u1, r, s), and

b′ := b⊕ h(u1, r, s)⊕ h(u2, r
′, s′). It follows

eu1,u2

Ur,sUr′,s′
=
∑
b′

∑
x′,t′

trAB(Mu1

A,x′ ⊗Mu1

T,t′⊗ (A4)

Mu2

T,t′⊕b′ ⊗Mu2

B,x′⊕b′⊕1ρATB)

= eu1,u2 (A5)

Therefore the basis-dependent error rates are invariant
when the same Pauli-operation is applied in each link.

In order to show that the Holevo quantity is invariant,
we need examine the probability of obtaining a key bit
(pk) and Eve’s conditional states (ρkE). Given that the
trace is invariant under a global unitary, the probability
distribution pk is simply permuted:

p
Ur,sUr′,s′
k := trATBE{Mu1

A,k ⊗ 11TBEρ
Ur,sUr′,s′
ATBE } = pk′ .

(A6)

It follows similarly that the action of the local Pauli
operations simply permutes Eve’s conditional state,

ρ
k,Ur,sUr′,s′
E = ρk

′
E . Therefore by expressing the Holevo

quantity in terms of the von Neumann entropy, it follows
that

χ

(∑
b

pb|u1,u2
ρ
u1,u2,b,Ur,sUr′,s′
ATBE ⊗ |b〉〈b|C ,Mu1

A

)
=

χ

(∑
b

pb|u1,u2
ρu1,u2,b
ATBE ⊗ |b〉〈b|C ,Mu1

A

)
. (A7)

Appendix B: Form of symmetrized state ρBell
ATBE

The form of ρBell
ATBE is calculated using an extension

of the work presented in Ref. [41]. We can express the
reduced average state as:

1

16

∑
r,s,r′,s′

ρ
Ur,sUr′,s′
ATB = (B1)

1

16

∑
r,s,r′,s′

Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′

ρATB(Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′)†.

Any state ρATB can be expressed in the tensored Bell
basis B = {|Ur,s〉 ⊗ |Ur′,s′〉 : r, s, r′, s′ = 0, 1}. Note that
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the action of the Pauli matrices on a basis element is

Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′ |Um,n〉 ⊗ |Up,q〉 (B2)

= (−1)−sm+rn−s′p+r′q|Um,n〉 ⊗ |Up,q〉.

By averaging over the Pauli matrices, we find∑
r,s,r′,s′

Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′ |Um,n〉〈Um′,n′ |⊗

|Up,q〉〈Up′,q′ |(U∗r,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ U∗r′,s′)†

=
∑

r,s,r′,s′

(−1)−s(m+m′)+r(n+n′)−s′(p+p′)+r′(q+q′)

|Um,n〉〈Um′,n′ | ⊗ |Up,q〉〈Up′,q′ |. (B3)

The off diagonal elements can be shown to vanish by
observing that the coefficient in Eqn. B3 is equivalent to
16δm,m′δn,n′δp,p′δq,q′ . Therefore the averaged state can
be expressed simply as

1

16

∑
r,s,r′,s′

ρ
Ur,sUr′,s′
ATB =

∑
m,n,p,q

αm,n,p,q|Um,n〉〈Um,n| ⊗ |Up,q〉〈Up,q|. (B4)
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