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Abstract—We propose a novel demand side management
method to tackle the intermittency in wind power generation. Our
focus is on an isolated microgrid with one wind turbine, one fast-
responding conventional generator, and several users. Users act as
independent decision makers in shaping their own load profiles.
Using dynamic potential game theory, we analyze and coordinate
the interactions among users to efficiently utilize the available
renewable and conventional energy resources to minimize the
total energy cost in the system. We further model the inter-
temporal variations of the available wind power as a Markov
chain based on field data. Using techniques from dynamic
potential game theory, we first derive closed-form expressions
for the best responses for the users that participate in demand
side management. Then, we investigate the efficiency of the
constructed game model at the equilibrium. Finally, the system
performance is assessed using computer simulation. In particular,
our proposed scheme saves 38% generation cost compared with
the case without demand side management.

Index Terms—Smart Grid, Wind Power Integration, Markov
Chain, Dynamic Potential Game Theory, Nash Equilibrium.

I. INTRODUCTION

Renewable energy sources, in particular wind power, are
becoming significant power generation technologies around
the world [1]. However, the intermittency and inherent stochas-
tic nature of wind power becomes the major obstacle for
reaching a large market penetration. One possible solution for
this issue is to use fast-responding generators (such as natural
gas units which are usually expensive and have high carbon
footprints) to compensate the fluctuations of the wind turbines
output. Alternatively, we can implement advanced demand side
management (DSM) programs that adjust the controllable load
to match the available power generated. Our focus in this
paper is on this latter case, in particular, to study how to
balance supply and demand in an isolated microgrid [2], which
is an important concept for renewable energy integration. By
studying the microgrid, which is a subsystem of the grid, we
can better understand how to make use of current technology
to achieve the highest renewable energy penetration.
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A. Related Work

The literature on integrating wind power into smart grid
emerged only recently. In [3], Neely et al. used Lyapunov
theory to obtain a centralized optimal queueing system for
allocating renewable energy to delay tolerant consumers. In
[4], Shimizu et al. designed a centralized load control system
for integration of photovoltaic and wind power by utilizing
electric cars’ batteries. In [5], Liu designed a wait-and-see
load dispatch for a hybrid system with thermal generators and
wind turbines. In [6], He et al. proposed a multiple timescale
dispatch for smart grid with integrated wind power. Different
from the previous works, our focus is on applying game
theory [7] to design a decentralized demand side management
system, where users in an isolated microgrid are modeled
as independent decision makers. The users share the cost of
power generation, while each is interested in managing his
own load to minimize his own energy expenses.

Game theory has already been applied to power networks
and demand side management. In [8]–[10], Mohsenian-Rad et
al. used game theory to address demand response management
via price predication and optimal energy consumption schedul-
ing. In [11], Wu et al. proposed a static game model to engage
electric cars’ batteries and a backup battery bank to integrate
wind power into smart grid. In [12], Mohamed applied game
theory to explore various management issues in a microgrid,
such as finding the optimal operating strategy of various
generators to minimize the operating costs together with the
emission cost and level for a microgrid. In [13], Alibhai et
al. used techniques from auction theory to coordinate the dis-
tributed energy resources to meet users’ demands. Unlike [12]
and [13], our approach addresses demand side management
with focus on understanding the interactions among users (not
sources), who share conventional and renewable generators.
Different from [8]–[11] that adopted static game models, here
we apply dynamic game models to take into account the
decision dependencies over multiple periods of time.

B. Our Contributions

In this paper, we propose a decentralized demand side
management program based on game theory solutions to
integrate wind power and to minimize the total energy cost in
an isolated microgrid. The contributions in this paper include:
• Dynamic Potential Game Formulation: Our game model

captures the self interests of end users who participate in
wind power integration over a substantial period of time.
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Fig. 1. An isolated microgrid with conventional and renewable generators.

• Equilibrium Analysis: We obtain the closed-form expres-
sions to characterize the users’ best strategies at the Nash
equilibria of the formulated game model.

• Simulation Studies: Using field data for wind power
generation, we run computer simulations to assess the
performance for the proposed demand side management
method. The results show that the generation cost is
reduced by 38% compared to the benchmark method.

The rest of this paper is organized as follows. The system
model is explained in Section II. The equilibrium analysis for
single-user and multi-user cases are presented in Section III
and Section IV, respectively. Simulation results are presented
in Section V. The paper is concluded in Section VI.

II. SYSTEM MODEL

Consider an isolated microgrid as shown in Fig. 1, where
a set N = {1, . . . , N} of users share the energy generated
by two types of generators. The first type is a conventional
fast-responding fuel generator such as a gas or coal unit, and
the other type is a wind turbine. We are interested in demand
side management during time period [1, H]. The overall period
is divided into H time slots, and the granularity depends
on the frequency of measuring wind speed. For example, if
measurements are made available every one hour, for the day-
ahead planning, we have H = 24.

For each user n ∈ N , let xhn denote user n’s load during
time slot h. Without loss of generality, we assume that each
user has exactly one appliance with controllable/shiftable load,
which needs to be satisfied within the the interval [1, H]. In
particular, for each user n ∈ N , the start and end time slots
of the valid scheduling for the shiftable load are denoted by
αn and βn, that is, a valid scheduling should make sure that
the load is satisfied during this period. For example, for a
dishwasher after lunch, we can set αn = 1:00 PM and βn= 5:00
PM, such that the dishes are washed between lunch and dinner.
Examples for such appliances also include washer, dryer, and
electric vehicles [8]. In this regard, it is required that

βn∑
h=αn

xhn = En, ∀n ∈ N , (1)

where En denotes the total energy consumption needed to
finish the operation of user n’s appliance. The energy profile

xhn outside the time frame [αn, βn] should be zero. That is,{
xhn ≥ 0, αn ≤ h ≤ βn,
xhn = 0, otherwise,

∀n ∈ N . (2)

At a time slot h, the total load in the system is

lh =
∑
n∈N

xhn. (3)

Next, let vh denote the power generation level of the wind
turbine at time slot h. If the total load at each time slot
matches the total renewable power generated at that time slot,
then there will be no need to use the conventional generator.
Otherwise, the conventional generator is used to compensate
the mismatch between load and renewable power supply. At
each time slot h, the total conventional power that needs to
be generated is lh− vh. Assuming the conventional generator
is a thermal generator, the generation cost at each time slot h
can be approximated as a quadratic function as [14],

C(lh − vh) = k (lh − vh)2. (4)

For the renewable power generation, we assume that the
generation cost is constant regardless of the exact amount of
power generated [15]. That is, wind power generation only
introduces a fixed so-called ’sunk cost’ that does not affect
decision making for demand side management. Thus, the
model in (4) can be considered as the total cost of power
generation in the microgrid to support the total load lh at
time slot h, as far as demand side management planning is
concerned. From (4), any deviation (either positive or negative)
of load lh from renewable energy supply vh is penalized. For
the case when lh < vh, this is because the excessive power
generation can degrade the power quality in the system with
voltage frequency exceeding its nominal value [16]. Therefore,
for the best operation of the microgrid with a minimum cost,
the total load at each time slot should be kept as close to the
total renewable power generated as possible.

A. Wind Power Prediction

The amount of power generated by a wind turbine follows
a stochastic process due to the fluctuations in wind speed.
A sample 10-day measurement of the hourly wind speed in
West Texas is shown in Fig. 2(a). Given the wind speed, the
generated wind power at each time instance is obtained based
on the wind power versus wind speed curve in Fig. 2(b).

TABLE I
WIND POWER STATES.

State Index Wind Power Range (kW) Indicator of the State (kW)
State 1 0 - 30 13.02
State 2 30 - 60 42.37
State 3 60 - 90 73.88
State 4 90 - 120 104.13
State 5 120 - 150 133.91
State 6 150 - 180 165.77

To predict the wind power over time, we model it as a
Markov chain [19]. Based on the measured data, we define
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Fig. 2. An example trend for wind speed that we use for wind power
prediction: (a) 10 days wind speed measurement in Crosbyton, TX in August
2009 [17]. (b) Power versus speed curve for a typical wind turbine. [18].

a Markov chain with six states. The first state indicates that
the wind turbine output is between 0 to 30 kW. The rest of
the states are defined similarly as in Table I. Based on hourly
field data over a six-month period, we obtain the transition
probabilities as in Table II. We can see that the transition
probability matrix is sparse, as with a high probability the
Markov chain will either stay at the current state or jump to
an adjacent state. The transition probability matrix can help
users to predict the available wind power at upcoming time
slots for decision making for demand side management.

B. Cost Sharing

The total power generation cost in (4) is shared by users
based on their portions of load. In this regard, each user n’s
electricity bill payment at each time slot h is calculated as

pn(xhn, x
h
−n) =

En∑
m∈N Em

C

(∑
n∈N

xhn − vh
)
, (5)

where xh−n denotes the load for all users other than user n. The
cost sharing model in (5) is proportional to users’ total load
over all H time slots, not their instantaneous load at each
time slot. Although the latter approach can more accurately
incorporate fluctuations in users’ load profiles, it makes our
game-theoretic analysis more complicated. Therefore, in this
paper, we only use (5) as the model for cost allocation.

In this setting, each user individually decides its energy
consumption schedule at the beginning of each time slot.
Such decision is made to maximize the user’s own payoff

TABLE II
WIND POWER TRANSITION MATRIX.
1 2 3 4 5 6

1 0.86 0.12 0.01 0.00 0.00 0.00
2 0.21 0.60 0.16 0.02 0.00 0.00
3 0.03 0.29 0.53 0.13 0.02 0.01
4 0.00 0.07 0.37 0.38 0.15 0.03
5 0.01 0.00 0.06 0.37 0.37 0.19
6 0.00 0.01 0.01 0.07 0.19 0.73

based on the prediction on wind power generation (using the
Markov chain discussed in Section II-A). The actual electricity
cost for each user at the end of each time slot, however, is
calculated based on the true measured amount of wind power
generated. For notional simplicity, we define xn as the energy
consumption profile vector for user n:

xn = [x1n, · · · , xHn ]. (6)

The set of feasible energy consumption profile is defined as

Xn =

{
xn

∣∣∣∣Constraints (1) and (2)

}
. (7)

Each user aims to select xn ∈ Xn to minimize his own total
payment

∑H
h=1 pn(xhn;xh−n) during the microgrid operation.

III. SINGLE USER ANALYSIS

To gain insights, we first consider a simple scenario with
only one user. In this setting, the total cost of power generation
is paid by that user only. We define user 1’s payoff as

f1(x1) = −
H∑
h=1

E{p1(xh1 )} = −
H∑
h=1

E{k(xh1 − vh)2}. (8)

As there is only one user, we do not study a game model here.
However, it is still a challenging task for user 1 to select his
energy consumption schedule xα1

1 , . . . , xβ1

1 to maximize his
payoff. Recall that from (2), xh1 = 0 for all h < α1 and all h >
β1. To maximize the payoff, user 1 can apply the backward
induction technique. Starting from the last time slot, user 1
finds his optimal energy consumption schedule backward in
time. For example, at the last time slot h = β1, assuming
that the optimal energy consumption schedules at the previous
time slots (i.e., the sequence xα1∗

1 , . . . , xβ1−1∗
1 ) are known, the

optimal energy consumption schedule xβ1∗
1 is obtained as

xβ1∗
1 = E1 −

β1−1∑
i=1

xi∗1 . (9)

Using backward induction, the following theorem provides the
optimal energy consumption schedules in all time slots.

Theorem 1: Assume that E1 is large enough such that

E1 ≥
β1∑

i=h+1

E{vi−vh|vh−1}, ∀ α1 ≤ h ≤ β1. (10)

User 1’s payoff is maximized when we select:

xh∗1 =

E1−
h−1∑
i=α1

xi∗1 −
β1∑

i=h+1

E{vi−vh|vh−1}

β1 − h+ 1
, α1 ≤ h ≤ β1.

(11)

The proof of Theorem 1 is given in Appendix A. At the
beginning of time slot h = α1, user 1 calculates the whole
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sequence of optimal energy consumption schedules as in (11);
however, he only implements his schedule at that time slot:

xα1∗
1 =

E1 −
β1∑
i=2

E{vi − v1|vα1−1}

β1 − α1 + 1
. (12)

As time goes by, user 1 shall update his decisions, again
using backward induction in (11), based on the updated
measurements on the status of available wind power during
the past time slots. Next, we study the case where the energy
sources in the microgrid are shared by multiple users.

IV. MULTIPLE USERS ANALYSIS

For the general case when the microgrid includes several
users, the payoff function for user n ∈ N is

fn(xn,x−n)=
−En∑
n∈N En

H∑
h=1

E

{
k

(∑
n∈N

xhn−vh
)

2

}
. (13)

Each user’s payoff function not only depends on his own
strategy, but also depends on other users’ strategies. This leads
to a game theoretical model between users as below.

Energy Consumption Scheduling Game for Micro-grid:

• Players: Set N of all users.

• Strategies: For each user n, vector xn ∈ Xn as in (7).

• Payoffs: For each user n, fn(xn,x−n) as in (13).

Next, we show the properties of the above ECS-MG game.

A. Potential Game

For a game with a set of players N , feasible set of actions
Xn, and payoff functions fn(xn,x−n), a function Φ : Xn → R
is called an ordinal potential function [20], if for each n and
each x−n = (xm ∈ Xm, ∀m ∈ N\{n}), the following holds:

fn(y,x−n)− fn(z,x−n) > 0⇔
Φ(y,x−n)− Φ(z,x−n) > 0, ∀y, z ∈ Xn.

(14)

If a game has an ordinal potential function, it is called an
ordinal potential game. It is easy to verify that

Φ =

H∑
h=1

E

k
(∑
n∈N

xhn − vh
)2
 (15)

is an ordinal potential function for the ECS-MG game, i.e., the
ECS-MG game is an ordinal potential game. We first analyze
a simple two-user two-slot case, and then characterize users’
best responses and Nash equilibria for the general case.

B. The Two-User Two-Slot Scenario

Consider the case when N = 2 and H = 2. Also assume
that α1 = α2 = 1 and β1 = β2 = 2. In this case, although
the ECS-MG game has two stages, decision making can be
reduced to only one stage since:

x21 = E1 − x11 and x22 = E2 − x12. (16)

Thus, we can obtain user n’s (n=1,2) best response as follows:

x1∗n (x1−n) = argmax
x1
n∈Xn

fn(xn,x−n)

=
E1 + E2 + E{v1|v0} − E{v2|v0}

2
− x1−n.

Note that, given all other users’ strategies x−n, there is a single
best strategy for user n (n=1,2). Next, we will characterize the
Nash equilibria based on the best strategies. We can prove the
following theorem, which can directly obtained from [20].

Theorem 2: If the potential function Φ in (15) has a max-
imum value at x∗n ∈ Xn, then x∗n is a pure strategy Nash
equilibrium for the ECS-MG game.

For the two-user two-slot case, we can verify that the
Jacobian matrix A for Φ is negative definite as follows:

A =


∂2Φ

∂2x11

∂2Φ

∂x11∂x
1
2

∂2Φ

∂x12∂x
1
1

∂2Φ

∂2x12

 = −4k

(
1 1
1 1

)
. (17)

If k > 0, then A is negative definite and Φ is strictly diagonal
and has a unique global maximum value. Thus, any pair
(x1∗1 , x

1∗
2 ) that satisfies the following equality

l1∗ = x1∗1 + x1∗2 =
E1 + E2 + E{v1|v0} − E{v2|v0}

2
(18)

is a Nash equilibrium for ECS-MG game. Note that, from (18)
and (1) we also automatically have:

l2∗ = x2∗1 + x2∗2 = E1 + E2 − l1∗

=
E1 + E2 − E{v1|v0}+ E{v2|v0}

2
.

(19)

Clearly, there are infinite pairs (x1∗1 , x
1∗
2 ) that satisfy (18),

indicating that the ECS-MG game has infinite number of Nash
equilibria in this case. However, all these equilibria result in
equal total energy costs. That is because only the total load, not
the way distributed among users, determines the energy cost.
As one option, users can choose their energy consumption
proportionally, such that for each user n, we have

xhn =
En∑

m∈N Em
lh, 1 ≤ h ≤ H, (20)

which can easily be implemented in practice.

C. Generalization

We are now ready to investigate the ECS-MG game in a
general case with an arbitrary number of users N ≥ 1 and
an arbitrary number of stages H ≥ 1. Same as the two-user
two-stage case, a Nash equilibrium is characterized only based
on the total load, not the exact distribution of the load among
users. Again, we will use the backward induction technique
to obtained closed-form solutions for the Nash equilibria. To
simply the analysis in this paper, we assume that:

Assumption 3: For each time slot h, there exists at least
one end user n in the microgrid such that αn ≤ h ≤ βn.

Using backward induction, we can show the following.
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Theorem 4: If Assumption 3 holds and assume
E1, · · · , EN are large enough such that (21) is always
non-negative, then for the general case with N ≥ 1 and
H ≥ 1, the Nash equilibrium for each sub game of the
ECS-MG game at time slot 1 ≤ h ≤ H , is constructed as

∑
n∈N

xh∗n =

∑
n∈N

(
En −

h−1∑
i=1

xi∗n

)
−

H∑
i=h+1

E{vi − vh|vh−1}

H − h+ 1
,

(21)
where

x∗hn = 0, if h < αn or h > βn. (22)

The proof of Theorem 4 is similar to that of Theorem 1
and is omitted. Note that, although Theorem 4 provides the
Nash equilibrium for the whole rest of the game as in (21),
users only implement their energy consumption schedules only
for the first time slot. As time goes by, the Nash equilibrium
will be updated, using a similar backward induction approach,
based on the update measurements on available wind power.

V. SIMULATION RESULTS

Consider a one-day (24 hours) energy consumption schedul-
ing problem with N = 50 users. Simulation results on cost
of conventional generation are shown in Fig. 3. Here, we
compare three scenarios. First, the case when no demand side
management program is implemented. In this case, each user
n randomly schedule their energy consumption within interval
[αn, βn]. Second, the case where demand side management is
done via the ECS-MG game in a decentralized fashion. In this
case, the wind power prediction is done using the Markov
Chain in Section II-A. Finally, the case where demand side
management is done via the ECS-MG game in a decentralized
fashion but with perfect information of the wind power gener-
ation in all future time slots. This last case provides an upper
bound on the system performance, indicating the minimum
cost of conventional power generation that can be reached.
We can see that by implementing the proposed demand side
management program, the cost of power generation reduces
by 38% at the Nash equilibrium of the ECS-MG, compared to
the case where no demand side management is implemented.
Improving the wind power prediction accuracy can further
reduce the total power generation cost by a maximum of 21%.

The results on the users’ individual electricity bill payments
are shown in Fig. 4. For the ease of presentation, the bill
amount are shown for 10 users only. The results are similar
for the rest of the users. Here, we can see that all users benefit
from participating in the proposed demand side management
program. Therefore, demand side management can not only
help the whole system, but also help each individual user.

VI. CONCLUSIONS

In this paper, we consider an isolated microgrid consisting
of N end users, who obtain energy from a renewable power
generator and a backup conventional power plant. These N
end users share the total energy cost of the conventional
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Fig. 4. The individual daily electricity bill for 10 users.

power plant. We design a cost allocation mechanism, which
effectively minimize the total energy cost. We also study the
Nash equilibrium of the dynamic potential game constructed
among users by applying backward induction.

We plan to extend the results in several directions. For
example, we would like to modify the game model to include
uncertainty on other users’ behaviors. This will lead to a more
realistic formulation of game with incomplete information.
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APPENDIX

A. Proof for Theorem 1

Without loss of generality, we assume that α1 = 1 and
β1 = H . As stated in Theorem 1, we also assume that E1 is
large enough such that (11) is always non-negative. We now
prove the result by induction.

Step 1: Consider the case of H = 1. From (1), the only
feasible energy consumption schedule is x11 = E1. It is easy
to verify that (11) leads to the same solution in this case.

Step 2: Assume that (11) holds for H = 1, · · · ,M , where
M ≥ 1. Next we will show that (11) also holds for H = M+1.
We can divide the M + 1 time slots into two periods: the first
slot and the rest M slots. For the optimal decisions during
slots {2, · · · ,M + 1}, we can obtain the optimal schedule by
using the optimal schedule for an M -slot decision problem (by
replacing E1 with E1 − x11 and each time slot i with i + 1).

More precisely, when H = M , we have

x
′h
1 =

E
′

1−
h−1∑
i=1

x
′i
1 −

M∑
i=h+1

E{v
′i−v

′h|v
′h−1}

M − h+ 1
. (23)

For H = M + 1, the last M -slot decision problem, we have

xh1 =x
′h−1
1 =

E
′

1−
h−2∑
i=1

x
′i
1 −

M∑
i=h

E{v
′i−v

′h−1|v
′h−2}

M − (h− 1) + 1

=

E1 − x11 −
h−2∑
i=1

xi+1
1 −

M+1∑
i=h+1

E{vi − vh|vh−1}

(M + 1)− h+ 1

=

E1 −
h−1∑
i=1

xi1 −
M+1∑
i=h+1

E{vi − vh|vh−1}

(M + 1)− h+ 1
. (24)

Note that, the second line is because we have xh1 = x
′h−1
1 , 2 ≤

h ≤M + 1 and vh = v
′h−1, 1 ≤ h ≤M + 1. For h = 1, let

the first order derivative of (8) with respect to x11 be zero so
that we can obtain the optimal value of x11. Note that using
backward induction, ∀ h ≥ 2, xh1 is a function of x11. Thus,
we have:

x11 − E{v1|v0} −
M+1∑
h=1

(
xh1 − E{vh|v0}

) ∂xh1
∂x11

= 0. (25)

To obtain the closed-form solution of x11, we first need to
show the following lemma.

Lemma 5: For h = 2, · · · ,M + 1,

∂xh1
∂x11

= − 1

M
. (26)

Proof of Lemma 5: We prove this lemma also by induction.
Step 2.1: Since

x21 =
E1 − x11 −

∑M+1
i=3 E{vi − v2|v1}
M

, (27)

obviously, ∂x21/∂x
1
1 = −1/M .

Step 2.2: Assume for h = 2, · · · ,m, (26) holds. Then, for
h = m+ 1, we have

∂xm+1
1

∂x11
= − 1

M + 1−m

(
m∑
i=1

∂xi1
∂x11

)

= − 1

M + 1−m

(
1− m− 1

M

)
= − 1

M
. (28)

Note that in the second line ∂x1
1

∂x1
1

= 1. Thus, we complete the
proof for Lemma 5. �

Back to Step 2 of the proof for Theorem 1, based on Lemma
5 and the fact that

∑M+1
h=2 xh1 = E1 − x11, we can obtain

x11 =
1

M + 1

(
E1 −

M+1∑
i=1

E{vi − vh|v0}

)
. (29)

Thus, we complete the proof. �
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