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Abstract. In recommender systems, a group of users may have simi-
lar preferences on a set of items. As the groups of users and items are
not explicitly given, these similar-preferences groups are called implicit
communities (where users inside same communities may not necessarily
know each other).

Implicit communities can be detected with users’ rating behaviors. In
this paper, we propose a unified model to discover the implicit commu-
nities with rating behaviors from recommender systems.

Following the spirit of Latent Factor Model, we design a bayesian
probabilistic graphical model which generates the implicit communities,
where the latent vectors of users/items inside the same community follow
the same distribution. An implicit community model is proposed based
on rating behaviors and a Gibbs Sampling based algorithm is proposed
for corresponding parameter inferences. To the best of our knowledge,
this is the first attempt to integrate the rating information into implicit
communities for recommendation.

We provide a linear model (matrix factorization based) and a non-
linear model (deep neural network based) for community modeling in
recsys.

Extensive experiments on seven real-world datasets have been con-
ducted in comparison with 14 state-of-art recommendation algorithms.
Statistically significant improvements verify the effectiveness of the pro-
posed implicit community based models. They also show superior per-
formances in cold-start scenarios, which contributes to the application
of real-life recommender systems.

Keywords: Recommender systems · Implicit community · Gibbs
sampling

1 Introduction

Recommender systems try to analyze the user behaviors and provide information
or items of interest to relevant users. Existing works have made efforts to model
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the user behaviors from the individual perspective and achieved great successes
[10,17]. While human behaviors are the co-product of individual characteristics
and community influences, it is necessary to model the impact of communities
from the rating behaviors of users. In the context of recommender systems, the
rating behaviors of users inside a same community are assumed to be more con-
sistent, which is the basis of our proposed implicit communities in recommender
systems.

In most recommender systems, there are no explicitly-labeled communities
nor user-user connections. The available records only contain user-item inter-
actions such as ratings or consumptions. Meanwhile, the user profiles such as
ID, occupations and addresses can not directly reflect the preferences. Further-
more, the user profiles may not be publicly available considering the information
security issues. For some recommender systems, the labeled communities usu-
ally come from real-life relationships. The users who are connected in real life
may have diverse preferences (considering that they may simply come from same
companies or universities but like different items). As the implicit communities
should reflect user rating preferences, these explicitly labeled communities may
not satisfy this requirement. In this case, we propose to learn the implicit com-
munities directly from the rating records of users.

Therefore, we propose a bayesian probabilistic model that depicts the implicit
communities. The Latent Factor Model is used as the cornerstone: user and items
are modeled as latent factor vectors. In our model, the latent factor vectors of
users inside a same community share a same distribution so that the behaviors
of users are naturally influenced by the community. We use the co-clustering
approach as another cornerstone to construct the implicit communities for users
and items, where each community has a corresponding distribution of latent
factor vectors. The community effect of items is considered because items from
the same categories tend to have similar features (like romance movies and love
novels may be both attractive to some youngsters), which has been convinced
in works related to co-clustering methods [3,18].

The contributions of this paper are summarized as follows:

– To the best of our knowledge, We are about the first to model implicit com-
munities for recommender systems, in terms of user rating behaviors.

– A unified probabilistic bayesian graphical model and corresponding parame-
ter inference algorithms are proposed to discover the structures of implicit
communities.

– The performances of proposed methods are compared with 14 state-of-the-art
approaches on seven real-world datasets, and statistical significant improve-
ments are observed. The proposed model is also verified to be effective in cold
start cases, which contributes to the application of recommender systems in
real-life scenarios.

The remainder of the paper is organized as follows. The next section intro-
duces some related works and Sect. 3 introduces some preliminaries about the
paper. Section 4 gives a detailed introduction about the modeling of implicit
community from rating behaviors and further shows the inference algorithm for
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the parameters in the model. We conduct extensive experiments with the real-
world datasets and the results are presented in Sect. 5. Finally, we conclude the
paper in Sect. 6.

2 Related Work

2.1 Collaborative Filtering and Matrix Factorization Approaches

Collaborative Filtering (CF) is a typical approach for recommendation [17]. The
motivation comes from the assumption that people often get the best recom-
mendations from someone with tastes similar to themselves. Among various
CF methods, Matrix Factorization (MF) is the most popular and effective one,
which assumes that users and items are represented as vectors in a latent factor
space. Some MF based approaches, including SVD++ [10], NMF (Non-Negative
Matrix Factorization) [21], MMMF (Max-Marginal Matrix Factorization) [14],
BMF (Biased Matrix Factorization) [10] and PMF (Probabilistic Matrix Factor-
ization) [15] have achieved superior accuracy and scalability in recommendation
due to the dimension reduction nature.

2.2 Localized Matrix Factorization Approaches

Co-clustering is widely used in image processing and bio-informatics. [18] is
the first study related to applying co-clustering in recommender systems, which
assumes that the matrix is generated from a bayesian probabilistic model. An
additive co-clustering model is proposed in [2] where the matrix is assumed to be
a summation of a series of matrices and each of them is co-clustered into blocks.

CF methods that utilize localized blocks include [22] and [3]. In [22], the
matrix is first decomposed into several blocks along the diagonal and matrix
factorization is performed in each sub-matrix later. [3] co-clusters the matrix
into blocks but predict the missing entries in a different way from matrix fac-
torization.

Another state-of-art approach is LLORMA [11]. It first randomly selects a
number of user/item pair from the rating matrix, termed anchor points, and
then chooses neighbors for the anchor points based the user and item similari-
ties between the neighbors and the anchor point. Then the matrix factorization
is performed on each submatrix and they are combined as a approximate the
original rating matrix. In LLORMA, the anchor points decide the structure of
localized matrices, but the random selection is ad-hoc and the matrix factoriza-
tion is performed after the submatrices are determined. Our model discovers the
structure of implicit communities and conducts the matrix factorization simulta-
neously. Meanwhile, the implicit communities are determined with a probabilistic
model, which does not require the selection of anchor points artificially.
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2.3 Community Detection

There has been some works concerning with the community detection or commu-
nity discovery problems. In [19], these works are categorized into several aspects:
Latent Space Models [4], Spectral Clustering [5] and Modularity Maximization
[6]. The Latent Factor Models assume that the connections between users are
determined by the latent factors. The community is discovered by clustering the
users represented by latent factors. The spectral clustering method treats the
social connections as an adjacency matrix of the social network and aims to
minimize the number of connections between communities. This problem is a
variant of minimum cut problem and can be solved with a spectral clustering
method. The modularity maximization problem defines a metric for evaluating
the quality of a partitioning of a network as modularity. A typical method for
modularity maximization problem is greedy algorithm that starts with repre-
senting each node as a community and merges two communities with maximum
incremental modularity.

3 Preliminaries

3.1 Latent Factor Model

Latent Factor Model (LFM) is widely adopted to describe the rating behavior
of users: for user i and item j, the rating given by user i to item j is assumed to
be a product of two latent factor vectors:

Rij = uT
i vj + τ (1)

where ui refers to the user factor vector which reflects the preferences of users;
vj refers to item factor vectors which reflects the qualities of items. τ is the
global bias of ratings. The dimension of these vectors is a predefined constant
where each dimension corresponds to a latent factor. The product of ui and vj

therefore reflects the preference of user i on item j.
PMF (Probabilistic Matrix Factorization) has provided a good prob-

abilistic interpretation for LFM as Fig. 1(a): it assumes the factor vectors are
drawn from Gaussian distributions, where (μu, Σu) and (μv, Σv) represent the
parameters of Gaussian distributions for the user and item latent factors respec-
tively:

ui ∼ N(μu, Σu),∀i ∈ U, vj ∼ N(μv, Σv),∀j ∈ I (2)

Among different variations of Latent Factor Model, PMF has an advantage of
both good probabilistic interpretation and high accuracy, which is popularly
used in related researches.

3.2 List of Symbols

We list the variables from our models in Table 1.
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Table 1. Variables for the model proposed in this paper

Variable Meaning

U Set of users in the system, |U | = N

V Set of items in the system, |V | = M

Rij Rating that user i gives to item j

ci The cluster that user i is in

gj The group that item j is in

ui User factor vector of user i

vj Item factor vector of item j

τ The global bias

(μci , Σci) Gaussian distribution parameters of ui in cluster ci

(μgj , Σgj ) Gaussian distribution parameters of vj in group gj

θα : (λα, μα, Wα) parameters from prior of (μci , Σci)

θβ : (λβ , μβ , Wβ) Parameters from prior of (μgj , Σgj )

θ Parameter of multinomial distribution of ci

γ Parameter of multinomial distribution of gj

σ Precision of Gaussian distribution of R

3.3 Implicit Communities

Although each individual user/item is unique and different from each other, there
exist different groups of users who have similar preferences on items. Notice that
there are no explicit communities labeled or set up in the recommender systems,
we call these naturally-formed similar-preferences user groups as implicit com-
munities. Similarly, the implicit communities can be found in items based on
users’ preferences on them.

Notice that the users inside same implicit communities share similar pref-
erences, they are not necessarily acquainted with each other in real life. The
communities are observed from user favors on items (represented by ratings) in
the system. This is another reason we call the communities as implicit ones.

4 Modeling Implicit Communities with Rating Behaviors

In this section, we present the generative model of implicit communities gener-
ated with rating behaviors. Moreover, the Gibbs sampling algorithms are pre-
sented for the parameter inference.

4.1 Implicit Community Coordinated Recommendation Model
(ICR Model)

Given the effectiveness of latent factor models, we leverage the model to find
the structure of implicit communities. The latent vectors of users/items inside
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the same communities share the same distribution. As the communities are not
explicitly labeled, we design a probabilistic model capturing the rating behaviors
and learning the implicit structure, which is called Implicit Community coor-
dinated Recommendation Model (ICR Model) and shown in Fig. 1(b) in
comparison with PMF (where the differences are highlighted).

ICR differs from PMF in two aspects: first, the latent factor vectors are
drawn from different Gaussian distributions from the communities respectively.
The assignment of users/items to the communities is learned simultaneously with
the latent factor vectors; second, we put priors over the Gaussian distributions
and the parameters of these Gaussian distributions are learnt iteratively.

Fig. 1. Comparison between PMF and ICR Model

The reason for choosing Gaussian-Wishart distribution is that it is conju-
gate to the Gaussian distribution, which allows for a convenient inference of the
parameters. Meanwhile multinomial distribution and Gaussian distribution are
chosen to represent the community membership and rating distribution respec-
tively.

Here is the generation process of the latent factor vector for user i:

– Choose the hyperparameters: λα, μα,Wα;
– For each user, generate the cluster belonging to with the multinomial distrib-
ution: ci ∼ Multi(θ);

– For each cluster, generate the corresponding Gaussian parameters: (μc, Σc) ∼
GW (λα, μα,Wα);

– For each user, generate the user factor vector with the Gaussian distribution
from the cluster ci: ui ∼ N(μci , Σci);

Unlike the users, items may not possess the subjective rating behaviors by
choosing to be rated by whom. However, we believe that community effect still
exist objectively, this can be explained that some categories of items may be
rated similarly: the book “Game of Thrones” and the movie “Lord of the Ring”
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may be close to each other for some group of users like both of them; or some
other items will be put into a same community because they are liked/disliked
by a group of users. Therefore we model the implicit communities of items in a
similar way to users by the generation process:

– Choose the hyperparameters: λβ , μβ ,Wβ ;
– For each item, generate the group it belongs to with the multinomial distrib-
ution: gj ∼ Multi(γ);

– For each group, generate the corresponding Gaussian parameters: (μg, Σg) ∼
GW (λβ , μβ ,Wβ);

– For each item, generate the item factor vector with the Gaussian distribution
from the group gj : vj ∼ N(μgj

, Σgj
);

4.2 Implicit Community Coordinated Recommendation Algorithm

Given the parameter inference procedures introduced, we present the algorithm
for model learning in Algorithm1.

Algorithm 1. Implicit Community coordinated Recommendation Algorithm
(ICR):
Input: The rating matrix R, the number of user clusters |c| and the number of item
groups |g|
Output: Implicit clusters of users c, implicit groups of items g and predictions of
unknown ratings.

1: Initialize the latent factor vectors u and v;
2: while Not convergent and iter ≤ MaxIter do
3: for each user i and item j do
4: Infer the user cluster ci and the item group gj ;
5: end for
6: for each cluster c and group g do
7: Infer the parameters for the prior μc, Σc, μg, Σg;
8: end for
9: for each user i and item j do

10: Infer user and item factor vectors: ui, vj ;
11: end for;
12: end while
13: Predict the unknown ratings by drawing from the normal distribution respectively;

The ICR algorithm first initializes the user and item factor vectors, then
assigns the users and items to different implicit communities according to the
cluster and group assignment inference procedure (as Eqs. (8), (9)). When the
implicit communities are found, the parameters of Gaussian distributions from
each cluster and group are inferred (as Eq. (11)). With the inferred parameters,
the factor vectors can be updated (as Eqs. (3), (5)). Then the ratings can be
predicted with the factor vectors inferred. The process keeps going in iterations
and outputs the final implicit communities of users and items with predictions
of unknown ratings.
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Inference for ui, vj. Based on our proposed model, the conditional distribution
of ui on the rest of parameters is still a Gaussian.

p(ui|rest) =N(ui|μ∗, Σ∗−1)

∼
M∏

j=1

[N((Rij − τ)|uT
i vj , σ

−1)]Iijp(ui|μci , Σ
−1
ci )

(3)

where
Σ∗ = Σci + σ

∑

j

[vjv
T
j ]Iij

μ∗ = [Σ∗]−1(σ
∑

j

[vj(Rij − τ)]Iij + Σci · μci)
(4)

Iij is an indicator variable that indicates if user i has rated item j (1 if rated and
0 otherwise). ci represents the cluster user i is in. The conditional distribution
of vj on the rest of parameters is a Gaussian as well:

p(vj |rest) =N(vj |μ∗, Σ∗−1)

∼
M∏

j=1

[N((Rij − τ)|uT
i vj , σ

−1)]Iijp(vj |μgj
, Σ−1

gj
)

(5)

where
Σ∗ = Σgj

+ σ
∑

i

[uiu
T
i ]Iij

μ∗ = [Σ∗]−1(σ
∑

i

[ui(Rij − τ)]Iij + Σgj
· μgj

)
(6)

gj represents the group item j is in.

Inference for ci and gj. Now we evaluate how well a user/item is fit for the
cluster/group assigned to and introduce how we assign users and items into
clusters and groups. The likelihood of ui and vj conditioning on that user i is
assigned to the cluster ci = ĉ (where ĉ refers to a specific cluster) and that item
j is assigned to the group gj = ĝ (where ĝ refers to a specific group) are:

p(ui|ci = ĉ, μci , Σci) ∼ N(ui|μĉ, Σ
−1
ĉ )

p(vj |gj = ĝ, μgj
, Σgj

) ∼ N(vj |μĝ, Σ
−1
ĝ )

(7)

Since p(ci = ĉ|ui, μĉ, Σĉ) ∼ p(ui|ci = ĉ, μci , Σci), so the probability of user i
assigned to ĉ is:

p(ci = ĉ) =
N(ui|μĉ, Σ

−1
ĉ )

∑
c N(ui|μc, Σ

−1
c )

(8)

Similarly, the group assignment can be inferred as this:

p(gj = ĝ) =
N(vj |μĝ, Σ

−1
ĝ )

∑
g N(vj |μg, Σ

−1
g )

(9)
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Inference for μc, Σc and μg, Σg. The priors for the Gaussian distributions
of cluster parameters are drawn from the GW (Gaussian-Wishart) distribution.
The posterior distribution of the parameters is a GW distribution as well:

p(μc, Σc|rest) = GW (μc, Σc|λ∗, ν∗, μ∗,W ∗)

= N(μc|μ∗, (λ∗Σc)−1)W(Σc|W ∗, ν∗)
(10)

where
λ∗ = λα + Nc, ν

∗ = ν0 + Nc

μ∗ = λ∗−1(λαμα +
∑

ci=c

ui)

W ∗−1 = W−1
α +

∑

ci=c

(ui − ūc)(ui − ūc)T +

λαNc

λα + Nc
(μα − ūc)(μα − ūc)T

ūc =

∑
ci=c ui

Nc

(11)

Nc denotes the number of users assigned to cluster c. Similarly, the parameters
μg, Σg,∀g can be drawn from the GW distributions with updated parameters.

5 Experiments

In this section, we conduct the experiments on real-world datasets to evalu-
ate the performances of our algorithm. More specifically, we first introduce the
datasets and evaluation metrics adopted in our experiments, then the results on
rating-only datasets are presented to evaluate the performances of ICR. Then
the performances of ICR are compared with other social-aware recommender
systems on social-included datasets. Moreover the results on cold-start users are
presented.

5.1 Datasets

In our experiments, we use the datasets from Movielens-100K, Movielens-1M,
Movielens-10M, Film Trust, Ciao, Epinions and Douban. The first three datasets
are datasets from the website Movielens and widely adopted in the evaluation
of recommender systems, however they do not contain social relationships. The
latter four datasets come from the review websites that allow users to post
their reviews for the items online and contain in-site social relationships. The
first three datasets contain in-site trust relationships between users, which are
unilateral, i.e. the user may trust the other one but the trusted user does not nec-
essarily trust back. Douban contains friendship between users, which is bilateral,
i.e. users are friends with each other.

The details of the datasets are presented in Table 2. The density of ratings
in Moivelens-100K, Movielens-1M and Movielens-10M are 6.30%, 4.19% and
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Table 2. Details of the datasets

Datasets #users #items #ratings #trusts

M.L.-100K 943 1,682 100,000 \
M.L.-1M 6,040 3,952 1,000,209 \
M.L.-10M 69,878 10,677 10,000,054 \
Film trust 1,508 2,071 35,497 1,632

Ciao 7,375 106,796 282,269 111,781

Epinions 40,163 139,738 664,824 487,183

Douban 129,490 58,541 16,830,839 1,692,952

1.34% respectively. The densities of ratings and trusts in FilmTrust are 1.14%
and 0.052%; while the densities of ratings and trusts in Ciao are 0.037% and
0.21%; the Epinion dataset has a rating density of 0.051% and a trust density of
0.029%. For Douban, the rating and social densities are 0.22% and 0.01%. For
each dataset, we split them into 5 folds and use 4 folds as training set while the
remaining fold is used as testing set. The average performances are presented in
the paper.

5.2 Benchmarks and Evaluation Metrics

We choose 14 benchmark algorithms for comparison with our algorithms ICR,
including: Rating-Only Recommendation Algorithms:

– PMF [15]: PMF is a probabilistic model that generates user and item factor
vectors from Gaussian distributions.

– BMF [10]: BMF (Biased Matrix Factorization) includes user and item biases
into the matrix factorization model. The addition of bias improves the accu-
racy of prediction.

– BPMF [16]: BPMF (Bayesian Probabilistic Matrix Factorization) places pri-
ors on the user and item latent factor vectors into the Probabilistic Matrix
Factorization.

– NMF [8]: NMF (Non-negative Matrix Factorization) is another matrix fac-
torization scheme that requires the latent factor vectors to be non-negative.

– SVD++ [10]: SVD++ is a model that merges latent factor model and neigh-
bourhood effect together. Furthermore, it can be extended to incorporate both
implicit and explicit feedbacks from users.

Localized Matrix Factorization and Clustering based Approach (also rating only):

– BCC (Bayesian Co-Clustering) [18]: The BCC algorithm co-clusters the
matrix into several blocks so that the entries inside the same cluster have a
low variance.

– LMF [22]: LMF (Localized Matrix Factorization) first decomposes the matrix
into several blocks and then conduct matrix factorization in each sub-matrix.
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– LLORMA(Local Low-Rank Matrix Approximation) [11]: It is a state-
of-the-art matrix factorization model based on the local low rank assumption.

– UCMF(User Clustering Matrix Factorization) [1]: It is a graphical
model that clusters users into K groups for recommendation.

– ICMF(Item Clustering Matrix Factorization) [1]: It is a graphical
model that clusters users into K groups for recommendation, as opposite
to the UCMF recommender.

Social-Aware Recommendation Algorithms:

– SoRec [12]: Sorec co-factorizes the rating matrix and social matrix simulta-
neously and both matrices share the same user factor vectors.

– SoReg [13]: The model adds social regularization into the matrix factoriza-
tion framework based on the social homophily effect.

– SocialMF [9]: The model employs matrix factorization techniques as the
basis and incorporates the mechanism of trust propagation into the model.

– TrustMF [20]: TrustMF assigns each user a trustor-specific vector and a
trustee-specific vector. The model can choose to incorporate either vector or
both vectors in the matrix factorization framework.

Proposed Implicit Community Models:

– ICR: This is the Implicit Community coordinated Recommendation Algo-
rithm proposed in this paper.

Since there are no public available toolkits for LMF found, we select their
best performances reported from their papers in following result tables. The
results of BCC are generated with the tool from [18]. The results of remaining
baselines are conducted with LibRec [7]. We select social-aware recommendation
algorithms because social connections are explicitly labeled connections and we
want to compare the performances of ICR with algorithms that incorporate
explicit user relationships.

We use RMSE for the rating prediction evaluation:

RMSE =
√

1
T

∑

i,j

(Rij − R̂ij)2 (12)

Rij denotes the actual rating user i gives to item j, R̂ij denotes the predicted
Rij , and T is the size of testing set.

Parameter setting: In our algorithm, we set σ = 2 for all the datasets. The
hyperparameters of the Gaussians are set as: (λα, μα,Wα) = (0,0, 3

2I), where I
is the indentity matrix and the settings are the same for θβ and θρ. The numbers
of clusters and groups for different datasets are set as (2,2), (5,5), (10,10), (4,5),
(6,8), (6,10), (10,8) (in order of Movielens-100K, Movielens-1M, Movielens-10M,
FilmTrust, Ciao, Epinions and Douban). The numbers are selected by a grid
search in experiments.
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The parameters for benchmark algorithms are chosen from the reported ones
in the references and further carefully tuned.1

5.3 Comparative Analyses on Proposed Approaches

Performances of ICR. The performances of our algorithm and other non-
social aware recommendation algorithms on Movielens datasets are summarized
in Table 3. As shown in the table, our method outperforms the other approaches
and achieves comparative performance with LLORMA. However, LLORMA
requires a selection of anchor points beforehand and the localized matrices are
divided based on the selected anchor points. Similarly in LMF model, the whole
matrix is decomposed into several blocks where each block is a sub-matrix con-
sisting of a portion of rows (users) and columns (items), then the standard
matrix factorization is conducted on each sub-matrix. Both LLORMA and LMF
artificially segment the matrix into localized matrices first and conduct matrix
factorization separately. This separation of localization and matrix factorization
does not directly incorporate user preferences into the localization and therefore
can not capture the structure of implicit communities.

Table 3. RMSE on movielens datasets (ICR Imp. is the improvement of ICR on others)

Methods ML-10M ICR Imp. ML-1M ICR Imp. ML-100K ICR Imp.

UCMF 0.978 19.63% 1.035 18.84% 1.042 14.59%

ICMF 0.944 16.74% 0.979 14.20% 1.025 13.17%

PMF 0.819 4.03% 0.871 3.44% 0.960 7.29%

BPMF 0.816 3.68% 0.865 3.10% 0.954 6.71%

BMF 0.806 2.48% 0.879 4.44% 0.916 2.84%

NMF 0.824 4.61% 0.881 4.65% 0.914 2.63%

LMF \ \ 0.866 3.11% 0.910 2.20%

SVD++ 0.803 2.46% 0.867 3.11% 0.912 2.41%

BCC 0.985 20.20% 1.051 20.08% 1.062 16.20%

LLORMA 0.789 - 0.840 - 0.894 -

ICR 0.786* - 0.840* - 0.890* -

ICR incorporates the clustering of users and items and latent factor model
together into a generative model and learn the structure of implicit communities
and latent factor vectors simultaneously. This enables a coordination of user
preference into the community discovery and judging from the experimental
results, this procedure improves the rating prediction accuracy (Table 4).

1 In all of the following result tables, ∗ represents the improvements of ICR are stati-
cally significant with p < 0.05.
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We further conduct experiments on social-included datasets and compare
the prediction accuracy of ICR with other state-of-art approaches, including
social-aware recommendation algorithms. Since the social connections are explic-
itly labeled relationships, the social-aware recommendation algorithms usually
achieve superior performances than those non-social algorithms. However, we
find that ICR performs best among all the comparative approaches, which illus-
trates the contribution of modeling implicit communities on the rating predic-
tion task. As the social connections provide good complementary information to
alleviate the shortage of ratings, the social-aware approaches can utilize social
information to model user preferences. On the other hand, ICR does not rely
on social information and only utilize ratings to learn the structure of implicit
communities from rating records. The implicit communities directly reflects the
user preferences while the social connections are not strongly correlated to the
rating similarities of users. Therefore the superior performance of ICR shows the
effectiveness of implicit communities.

Table 4. RMSE comparison with social-aware algorithms

Methods PMF NMF BMF SVD++ SoRec SoReg SocialMF TrustMF BCC ICR

FilmTrust 0.968 0.974 0.856 0.802 0.831 0.875 0.844 0.819 0.831 0.788∗

ICR Imp. 18.60% 19.10% 7.94% 1.75% 5.17% 9.94% 6.64% 3.79% 5.17% -

Ciao 1.076 1.264 1.006 0.983 1.014 1.078 0.978 1.012 1.014 0.964∗

ICR Imp. 10.41% 23.73% 4.17% 1.93% 4.93% 10.58% 1.43% 4.74% 4.93% -

Epinions 1.197 1.302 1.107 1.067 1.142 1.095 1.082 1.095 1.186 1.053∗

ICR Imp. 12.03% 19.12% 4.88% 1.31% 7.79% 3.84% 2.68% 3.84% 11.21% -

Douban 0.720 0.723 0.722 0.712 0.753 0.700 0.774 0.724 0.768 0.694∗

ICR Imp. 3.61% 4.01% 3.88% 2.53% 7.84% 0.86% 10.34% 4.14% 9.64% -

Impacts of Clusters and Groups. The experiment is conducted to reveal
the impact of cluster and group number on the performances. We fix the cluster
number to 1 and check the results with various group numbers (for group number
impact it is symmetric). The results are similar on all datasets. Due to page
limit, the results on dataset Ciao and Epinion are presented. As illustrated in
Fig. 2, the performance on Ciao gets better when the number of clusters rises
from 2 to 6, however, the performance does not keep getting better with the
number of clusters growing (such as 8 to 12 clusters). When the number of
clusters is properly limited, the growing number of clusters can assign users to
proper clusters. Therefore the user factor vectors can be generated with more
sufficient information from these users inside the cluster. When the number of
clusters is large, the data assigned to train each cluster is ‘diluted’, and the user
factor vectors can not be generated accurately, which leads to the decrease of the
prediction precision. Therefore, we need to find the suitable number of clusters
to maximize the prediction precision, and the number is 6 to 8 for Ciao.

The impact of group numbers is quite similar to the impact of cluster num-
bers. The same phenomenon appears in the experiments on Epinions and the
results are depicted in Fig. 2.
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Fig. 2. Impact of cluster and group numbers

5.4 Performances in Cold-Start Scenarios

In this section, we present the results in cold-start scenarios. Users who rate fewer
than five items are referred as cold-start users and the evaluation is conducted
only on these users here. Similar testing settings are used in [20]. The number of
ratings for each user in Movielens datasets is at least 20, therefore no cold-start
users exist in these datasets.

Table 5. RMSE comparison on cold-start users

Methods PMF NMF BMF SVD++ SoRec SoReg SocialMF TrustMF ICR

Film trust 1.009 0.904 1.421 0.898 0.914 0.973 0.934 0.913 0.884∗

ICR Imp. 12.39% 2.21% 37.79% 1.56% 3.28% 9.15% 5.35% 3.18% -

Ciao 1.191 1.046 1.327 1.020 1.033 1.278 1.017 1.031 1.007∗

ICR Imp. 15.45% 3.73% 24.11% 1.27% 2.52% 21.21% 0.98% 2.33% -

Epinions 1.432 1.197 1.412 1.166 1.180 1.437 1.152 1.176 1.126∗

ICR Imp. 21.37% 5.93% 20.25% 3.43% 4.58% 21.64% 2.26% 4.25% -

Douban 0.827 0.828 0.826 0.827 0.833 0.815 0.839 0.840 0.809∗

ICR Imp. 2.18% 2.29% 2.06% 2.18% 2.88% 0.74% 3.58% 3.69% -

The cold start problem is a coherent trouble in recommender systems since
users usually rate a considerably small number of items. Meanwhile, new users
and items are added to the system all the time, which provides little training data
for the recommender system. The cold-start problem can be alleviated from the
implicit community effect in ICR while social-aware recommendation algorithms
utilize social information to enrich the user profiles of ‘cold’ users.

As shown in Table 5, ICR still achieves a superior performance over the bench-
marks, even when comparing with other social-aware recommender systems. In
ICR, the cold-start users with few ratings are assigned to corresponding clus-
ters based on the similarity of their preferences to users inside. Therefore the
preferences of these users are enriched by the profiles of other users in the cor-
responding clusters. The results indicate that the implicit communities provides
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more accurate modeling for the preferences of cold users. As the social con-
nections provide an enrichment of user profiles in a different perspective, we
conjecture that joint modeling of implicit communities and social connections
in recommender systems can further improve the prediction accuracy. We will
leave it as one of the future work directions.

6 Conclusions

In this paper, we concern with the problem of how to model implicit communi-
ties in recommender systems and further utilize the communities to improve the
performances of recommender systems. We design a bayesian generation prob-
abilistic model that detects the implicit communities from the rating records.
Moreover, we design a Gibbs sampling algorithm for parameter inference. Exten-
sive experiments have been conducted on 7 real world datasets and the results
in comparison with 13 state-of-the-art approaches show statistically significant
improvements. To the best of our knowledge, we are the first to model the implicit
communities in recommender systems based on the rating behaviors of users. In
the future, we aim to jointly model implicit communities and social connections
for recommendation.
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