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Abstract. In the Crypto’07 paper [5], Desmedt et al. studied the problem of
achieving secure n-party computation over non-Abelian groups. The function to
be computed is fG(x1, . . . , xn) := x1 · . . . · xn where each participant Pi holds
an input xi from the non-commutative group G. The settings of their study are
the passive adversary model, information-theoretic security and black-box group
operations over G.

They presented three results. The first one is that honest majority is needed
to ensure security when computing fG. Second, when the number of adversary
t ≤ �n

2
� − 1, they reduced building such a secure protocol to a graph coloring

problem and they showed that there exists a deterministic secure protocol com-
puting fG using exponential communication complexity. Finally, Desmedt et al.
turned to analyze random coloring of a graph to show the existence of a prob-
abilistic protocol with polynomial complexity when t < n/µ, in which µ is a
constant less than 2.948.

We call their analysis method of random coloring the counting method as it
is based on the counting of the number of a specific type of random walks. This
method is inspiring because, as far as we know, it is the first instance in which the
theory of self-avoiding walk appears in multiparty computation.

In this paper, we first give an altered exposition of their proof. This modifica-
tion will allow us to adapt this method to a different lattice and reduce the com-
munication complexity by 1/3, which is an important saving for practical imple-
mentations of the protocols. We also show the limitation of the counting method
by presenting a lower bound for this technique. In particular, we will deduce that
this approach would not achieve the optimal collusion resistance �n

2
� − 1.
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1 Introduction

Multi-party computation allows multiple parties to cooperatively compute the value of a
common function while keeping their own personal inputs secret. Since its introduction
by Yao [17], it has become one of the major topics in cryptographic research, having
applications in distributed voting, auctions, private information retrieval for instance
[8]. The reader may be aware of a recent large-scale implementation of protocols for
auction and benchmarks by Bogetoft et al. [?]. Many cryptographic primitives are based
on mathematical structures being at least Abelian groups [13] as in [7, 10, 11, 12]. Sim-
ilarly, numerous protocols for multiparty computation are designed over such structures
[1, 3, 4]. However, the discovery of quantum algorithm to solve the factoring problem
and the discrete logarithm problem [16] prevents many existing cryptographic schemes
to be used on quantum computers. Since those machines seem to compute less effi-
ciently over non-Abelian groups, designing cryptographic protocols over such mathe-
matical structures becomes important.

The first multiparty computation protocol for non-Abelian group was designed by
Desmedt et al. in [5]. They studied the existence of secure n-party protocols to compute
the n-product function fG(x1, . . . , xn) := x1 · . . . ·xn where each participant is given
the private input xi from some non-Abelian group G. They considered the passive (or
semi-honest) adversary model [6] and information-theoretic security. They assumed
that the parties were only allowed to perform black-box operations in the finite group
G. This assumption means that the n parties can only perform three operations in (G, ·):
the group operation ((x, y) �→ x·y), the group inversion (x �→ x−1) and the uniformly
random group sampling (x ∈R G).

Their results are as follows: first, if the number of adversaries t ≥ �n
2 � (dishonest

majority) then it is impossible to construct a t-private protocol to compute fG. Second,
if t < �n

2 �, they could reduce building a secure protocol to a graph coloring problem,
and designed a deterministic t-private protocol computing fG with exponential com-

munication complexity of O(n
(
2 t+1

t

)2
) group elements (when t = O(n)). Third, by

using a probabilistic argument based on random coloring, they showed the existence
of t-private protocols computing fG with polynomial communication complexity of
O(n t2) group elements when t < n

μ , in which μ is a constant less than 2.948.
Since computationally bounded multi-party computation protocols for classical com-

puters are often based on information theoretically secure ones, we believe that this re-
sult would show some insight on how to design computationally bounded multi-party
computation algorithms relying on non-Abelian structures to be used over quantum
machines.

In this paper, we further explore their analysis method of random graph coloring. We
call this technique the counting method as it relies on counting the number of a specific
type of random walks. This counting method is interesting for two reasons: not only it
give us a cryptographic protocol for computing fG due to the reductions presented by
Desmedt et al., but to the best of our knowledge, it is also the first instance that applies
the theory of self-avoiding walks to cryptography.

Our results are as follows: first, we give an alternative proof of the counting method
from [5]. This modified demonstration will ensure that the protocol computing fG re-
mains secure when this method is applied to a different lattice as in Sect. 4. In this case,
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we will be able to reduce the communication complexity by 1/3, which is an important
saving for practical implementation of the protocol. However, the collusion resistance
is not as good as the original case in [5]. Second, we give a lower bound on collusion
resistance for the original case, showing that the counting method cannot give us the
optimal collusion resistance �n

2 � − 1.
In this article, we will first shortly recall the reduction proposed in [5] that relates the

problem of designing a secure protocol computing fG to a graph coloring problem. In
Sect. 3, we show the outline of the counting approach, and construct a lower bound on
the collusion resistance we can get from this method. In Sect. 4, we apply this method
to square lattices which allows us to reduce the communication cost of the protocol by a
third. Finally, we conclude our paper with remaining open questions about this method.

2 Reduction from Secure Computation to Graph Coloring

Since majority is required to ensure secure computation, we assume that t < �n
2 � in the

remaining of the paper. In such a case, Desmedt et al. reduced the problem of designing
protocol of securely computing the n-product function to the n-coloring for some spe-
cific graphs. In this section, we present these different reductions of their construction.
First, we recall the definition of secure multi-party computation in the passive, compu-
tationally unbounded attack model, restricted to deterministic symmetric functionalities
and perfect emulation as in [6].

We denote [n] as the set of integers {1, . . . , n} and {0, 1}∗ as the set of all finite
binary strings. |A| denotes the cardinality of the set A.

Definition 1 ([6]). We denote f : ({0, 1}∗)n �→ {0, 1}∗ an n-input and single-output
function. Let Π be an n-party protocol for computing f . We denote the n-party input
sequence by x = (x1, . . . , xn), the joint protocol view of parties in subset I ⊂ [n] by
VIEWΠ

I (x), and the protocol output by OUTΠ(x). For 0 < t < n, we say that Π
is a t-private protocol for computing f if there exists a probabilistic polynomial-time
algorithm S, such that, for every I ⊂ [n] with |I| ≤ t and every x ∈ ({0, 1}∗)n

, the
random variables

〈S(I, xI , f(x)), f(x)〉 and
〈
VIEWΠ

I (x), OUTΠ(x)
〉

are identically distributed, where xI denotes the projection of the n-ary sequence x on
the coordinates in I .

In the remaining of this paper, we assume that party Pi has a personal input xi ∈ G (for
i ∈ [n]) and the function to be computed is the n-product fG(x1, . . . , xn) = x1 ·. . .·xn.

In the first step of the reduction, Desmedt et al. proved that if one can construct
a symmetric (strong) t-private protocol Π ′ to compute the shared 2-product function
gG(x, y) = x · y where the inputs x and y are distributed among the n parties, then,
(n− 1) iterations of Π ′ would give us a t-private n-party protocol for fG. Note that the
output gG(x, y) of Π ′ is to be distributed amongst the n parties, too.

The second phase of reduction in [5] consists of constructing a t-private n-party
shared 2-product Π ′ from a suitable coloring over particular planar directed graphs.
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In that model, the colors stand for the n participants, each directed edge represents
one group element sent from one party to another and the non-commutativity of G is
reflected in the planar property of the graph.

Finally, Desmedt et al. showed that it was sufficient to color triangular lattices defined
as in Definition 2 using a coloring following the requirements of Definition 4.

Definition 2. The graph Gtri(�′, �) is an �′ × � undirected grid such that:

– [horizontal edges] for i ∈ [�′] and for j ∈ [� − 1], there is an edge between nodes
(i, j) and (i, j + 1),

– [vertical edges] for i ∈ [�′ − 1] and for j ∈ [�], there is an edge between nodes
(i, j) and (i + 1, j),

– [diagonal edges] for i ∈ [�′ − 1] and for j ∈ {2, . . . , �}, there is an edge between
nodes (i, j) and (i + 1, j − 1).

1
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4

5

6

7

1 2 3 4 5 6 7

Fig. 1. The grid Gtri(6, 6)

The security requirement of the protocol is reflected in the following constraint for
the coloring of Gtri(�, �) (i.e. when �′ = �).

Definition 3. Let C : [�] × [�] �→ [n] be a n-coloring for Gtri(�, �). Denote I a subset
of [n]. Let P be a path in Gtri(�, �). We say that P is a I-avoiding path if all its nodes
are colored only with colors from [n] \ I .

Definition 4 ([5]). We say that C : [�]× [�] �→ [n] is a weakly t-reliable n-coloring for
Gtri(�, �) (or good (n, t) coloring for convenience), if for each t-color subset I ⊂ [n]:

– There exists an I-avoiding path Px in Gtri(�, �) from a node on the top row to a
node on the bottom row. Such a path is called an I-avoiding top-bottom path.

– There exists an I-avoiding path Py in Gtri(�, �) from a node on the rightmost col-
umn to a node on the leftmost column. Such a path is called an I-avoiding right-left
path.
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Remark 1. Note that in the second phase, we need a directed graph, while here we
define Gtri(�′, �) as undirected. This is allowed since Desmedt et al. showed that for
avoiding paths, the direction does not matter.

From the reductions above, Desmedt et al. have demonstrated that it was sufficient to
get a weakly t-reliable n-coloring for some Gtri(�, �) in order to construct a t-private
protocol for computing the n-product fG. The cost communication of this protocol is
n − 1 times the number of edges of Gtri(2 � − 1, �) where Gtri(2 � − 1, �) is obtained
from Gtri(�, �) by a mirror process. Thus, the communication cost of the whole protocol
computing fG is O(n �2) group elements.

3 Random Coloring and Counting Method

In this graph coloring problem, two important parameters with respect to the number of
parties n are to be taken into account. The first parameter is t, the number of adversaries
the protocol must be secure against. Since honest majority is needed to ensure security,
we know t < �n

2 �. If a protocol is secure when t < n
μ , we denote its (largest) collusion

resistance as μ. We would like μ to be as close to 2 as possible. The second parameter
is the size of the grid side �. Since the number of edges of Gtri(�, �) is a factor of the
communication cost of the protocol, we would like to minimize this parameter as much
as possible. That is, we want � to be a polynomial in n.

Designing a deterministic coloring method achieving good parameters for t and �
at the same time seems quite difficult. In [5], Desmedt et al. turned to analyze the
performance of randomly coloring the node of Gtri(�, �) and they developed what we
call the counting method. In short, they first counted the number of a specific type of
random walks. Then, by establishing the equivalence of minimal cutsets and random
walks, they plugged the number of random walks into a probabilistic argument which
resulted in the existence of good (n, t) colorings when t < n

2.948 .
Our observation is that, this analysis involves two combinatorial objects: (a specific

type of) random walks and minimal cutsets. The central object is the minimal cutset,
which has a close relation to good colorings. Then, the equivalence between minimal
cutsets and random walks is used to bound the number of such cutsets. In our exposition
of the counting method, we emphasize on the importance of minimal cutsets. We use
minimal cutsets during the whole proof and only show the equivalence between minimal
cutsets and random walks in the last step of the demonstration. Thus, we can adapt
the first part of the proof to square lattices without modification to the part involving
minimal cutsets as in Sect. 4.

Theorem 1 ([5]). For any constant R > 2.948, if t ≤ n
R , there exists a black-box

t-private protocol for fG with communication complexity O(n3) group elements.

Proof. The algorithm is simple: set Gtri(�, �) with � = O(n) (the explicit value of the
parameter � will be given later) and we choose a color for each vertex independently
and uniformly at random from the set [n]. Next, we use the counting method to analyze
the effect of this random coloring. The central combinatorial object in this method is
the minimal left-to-right (top-to-bottom) cutset of Gtri(�, �).
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Definition 5 (Cutset/Minimal Cutset). A set of nodes S in Gtri(�, �) is called a top-
bottom cutset (resp. right-left cutset) if all top-bottom paths (resp. right-left paths) in
Gtri(�, �) go through at least one node in S. A cutset S is called minimal if removing
any node from S destroys the cutset property.

It is easy to see that every cutset contains a minimal cutset. The relation between mini-
mal cutsets and good (n, t) colorings is established in the following lemma, which will
allow us to use this method to a different type of lattices in Sect. 4.

Lemma 1. Let C be an n-coloring of Gtri(�, �). If every minimal cutset contains more
than t colors then C is a good (n, t) coloring for Gtri(�, �).

Proof. We demonstrate this result by contradiction. Suppose that C is not a good (n, t)
coloring for Gtri(�, �). Then, we know that there exists a t-color subset I ⊂ [n], such
that (w.l.o.g) no I-avoiding left-right paths exist in this graph.

We denote the reduced graph of vertices colored in I as HI , and the reduced graph
of vertices colored in [n]\I as H̄ . We claim that HI forms a right-left cutset. If it is not
the case, then there exists some right-left path in H̄ due to planarity and connectivity.
This contradicts the hypothesis that no I-avoiding paths exist in Gtri(�, �). So, there is
a minimal cutset SI ⊂ HI , and the vertices of SI are only colored with colors in I ,
forming a contradiction. �

Given this lemma, we can analyze the effect of random coloring as follows. Suppose
that we could count the number of minimal cutsets of size k on Gtri(�, �). Then, over
the random colorings of Gtri(�, �), we could bound the probability that there exists
some minimal cutset that contains no more than t colors. If this probability could be
shown to be less than 1 when � is O(n), then we would deduce that there exists some
coloring C that is a good (n, t) coloring for Gtri(�, �) according to Lemma 1. Then,
using the reduction introduced in Sect. 2 would complete the proof of Theorem 1.

Now, two points remain to be done: first, to bound the number of minimal cut-
sets; second, to perform the probabilistic analysis. The second point is similar to what
Desmedt et al. showed in [5] except that we replace the term path employed in [5] with
cutset. We just include the probabilistic argument here for completeness.

Let NP (k, �) denote the total number of minimal right-left cutsets in Gtri(�, �) of
size k. Let px(I) (py(I)) denote the probability that there exists a minimal right-left
(top-bottom) cutset P whose node colors are all in the t-subset I representing the set
of colluders. We also denote p(I) the probability there exists some minimal cutset that
contains only colors in I .

Since node colors are chosen independently and uniformly in [n], each minimal

right-left cutset of size k has probability
(

t
n

)k
to have all its node colors in I . It is

clear that � ≤ k ≤ �2. So, summing over all possible minimal cutset sizes, we have:

px(I) ≤
�2∑

k=l

NP (k, �)
(

t
n

)k
. By symmetry, we have py(I) ≤

�2∑

k=l

NP (k, �)
(

t
n

)k
. So, an

upper bound on the probability p(I) is: p(I) ≤ 2
�2∑

k=l

NP (k, �)
(

t
n

)k
.
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Finally, taking a union bound over all
(
n
t

)
possible t-color subsets I , we get an upper

bound on the probability p that the random coloring C is not a good (n, t) coloring as

p ≤ 2
�2∑

k=�

NP (k, �)
(

t

n

)k (
n

t

)
(1)

Now, we bound the number of minimal cutsets with respect to their respective size k.
This is where the counting method is interesting. Instead of directly counting the num-
ber of minimal cutsets, we will prove that minimal cutsets, a static structure, are equiva-
lent to some type of random walks, which is a dynamic structure. Then, we will simply
bound the number of such walks, which is the subject of investigations in Physics with
a rich theory on its own respect.

On an infinite planar lattice, a random walk starts from some node and, at each step,
it randomly chooses some point from the neighbors of its current vertex as the next
step. A Self-Avoiding Walk (SAW) is a random walk such that the walker has a memory
so that he will avoid any vertex which has been visited previously [15]. It is useful in
Physics and Chemistry when people try to model the structure of polymer chain. Here,
our focus is on a generalization of SAW: Neighbor-Avoiding Walk (NAW). As its name
suggests, a NAW is a random walk that avoids the neighbors of this walk. We introduce
the following definition for the finite grid Gtri(�, �).

Definition 6 (Restricted NAW). A restricted right-left (resp. top-bottom) NAW on
Gtri(�, �) is a NAW such that:

– its starting node is on the rightmost column (top row);
– its ending node is on the leftmost column (bottom row);
– and no internal nodes are on the rightmost (top) or leftmost column (bottom row).

The study of NAW is a novelty that we introduce with respect to [5]. The following is
an adaptation of Lemma 4.6 from [5]. An illustration is given on Fig. 2 when � = 6.

Lemma 2. On Gtri(�, �), a set of nodes is a right-left minimal cutset if and only if it
forms a restricted top-bottom NAW.

There is a rich literature on bounding the number of SAWs on different lattices. Lin and
Hsaio showed in [14] that the number N of SAWs or NAWs with respect to number of
steps already taken k had the following form:

N ≈ Aμkkγ

in which A, μ and γ are constants depending on the type of lattice (triangular, square,...)
and walk (SAWs, NAWs,...). Since μk constitutes the major fraction of N , μ plays
a central role in estimating N . This value μ is called the connective constant of the
lattice (related to the type of walk). For any walk on any lattice, we define μ as μ :=
lim

n→∞(N(k)1/k). Compared to SAWs, the estimation of μ of NAWs receives far less

attention [9]. Desmedt et al. bounded this number on their own as follows.
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Fig. 2. A NAW on Gtri(6, 6) which is a minimal cutset

Lemma 3 ([5]). The number MP (k, �) of NAWs of length k on infinite triangular lat-
tice is upper bounded as:

MP (k) ≤ c(μ)μk

for some constants μ, c(μ), with μ ≤ 2.948. Here, μ is just the connective constant of
NAWs on infinite triangular lattices.

Remark 2. Note that the set of NAWs on Gtri(�, �) of length k is a subset of NAWs
on infinite triangular lattices of length k, so the number of restricted right-left NAWs
is upper bounded by �MP (k) = c(μ) � μk as we have � starting points at the rightmost
column.

Remark 3. Note that we bounded the number of NAWs on infinite lattices instead of
that of restricted NAWs on Gtri(�, �). Since the set of restricted NAWs on Gtri(�, �) is
a subset of NAWs on infinite triangular lattices, finding a specific bound for Gtri(�, �)
may lead to some improvements on the value of the connective constant over such
graphs.

Given the equivalence between minimal cutsets and restricted NAWs, we get:
NP (k, �) ≤ c(μ) � μk. So, after substituting NP (k, �) in (1) with c(μ) � μk, we have:

p ≤ 2 c(μ) �3

(
μ t

n

)� (
n

t

)

Thus, if n
t ≥ R > μ on Gtri(�, �), then it is clear that this upper bound on p is less than

1 for sufficiently large �. It is sufficient to have � = O(log(
(

n
t

)
)/ log(n/(μt))) = O(n),

as claimed. This finishes the analysis of the counting approach. �
To summarize what we have done so far, we showed the relation between good coloring
and minimal cutset, and use a probabilistic argument to show the existence of such a
good coloring. Then, we established the equivalence between minimal cutset and re-
stricted NAW on Gtri(�, �), and bounded the number of restricted NAWs to complete
the proof.
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One last thing to notice is that the collusion resistance of the protocol is just the
connective constant μ. Here, we only have an upper bound for μ in Lemma 3, so one
might guess that μ is quite close to 2, giving us a good collusion resistance. However,
we now prove that it is not the case by showing that μ ≥ 1 +

√
2 ≈ 2.414. So, simply

improving μ would not give us information about protocols whose collusion resistances
are in (2, 2.414). In other words, the counting method on Gtri(�, �) cannot be used to
prove the existence of t-private protocol for computing fG when n

2.414 < t < n
2 .

Theorem 2. The connective constant μ of NAWs on triangular lattices is at least 1 +√
2.

Proof. We show a family of NAWs with connective constant μ′ = 2.414 by consid-
ering a random walker who moves on the infinite triangular lattice following some
constraints. Call the node where the walker is currently located the current node, and
the node before the current node the last node.

Consider such a family of random walks formed by the following rule:

1. The walker starts at the origin point. It has three choices: up (↑), right (→) and
up-right diagonal(↗);

2. The possible choices of the walker depend on its last move:

Last Move Possible Choices

↑ ↑, ↗
↗ ↑, →, ↗
→ →, ↗

We need to prove that this forms a family of NAWs. First, at every step the walker
avoids the neighbors of the last node due to its possible choices. Second, the neighbors
of the nodes before the last node lie on the left lower side of the current node, while the
walker will only go to the right upper side. So, the set of all such walks forms a family
of NAWs.

One can count the number T (k) of NAWs with respect to the number of steps k
(k ≥ 1) already taken as follows. Let fk be the number of NAWs of length k, when
the walker has three choices for the next step (e.g. the last move is ↗). Let gk be the
number of NAWs of length k, when the walker has two choices for the next move (e.g.
the last move is ↑ or →). We have the following recursive equations:

{
fk+1 = fk + gk

f0 = 1

{
gk+1 = 2 fk + gk

g0 = 0

We get:

T (k) =
1
2

((
1 +

√
2
)(k+1)

+
(
1 −√

2
)(k+1)

)

Recall the definition of connective constant, and we have μ′ = 1 +
√

2. Since this is
just a subset of NAWs, we have: μ ≥ μ′ = 1 +

√
2. �
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4 The Counting Method on Square Lattices

Let Gsqr(�, �) be the graph after removing the diagonal edges of Gtri(�, �). So, Gsqr

(�, �) is just the square grids of side size �. In this section, we adapt the counting method
to Gsqr(�, �) and get a protocol that saves about 1/3 communication complexity com-
pared to the triangular lattices case. However, the collusion resistance of this protocol
is not as good as the original one: we show a trivial upper bound 5. Though, we do not
get a lower bound, we believe that the collusion resistance is larger than 3 in this case.

Remark 4. We would like to explain why we can color Gsqr instead of Gtri and still
get a protocol for computing fG. We reason as follows. Remember that in order for an
n-coloring C on Gtri to be (n, t) good, we require that, for every I ⊂ [n] of size t,
there exist I-avoiding top-bottom and right-left paths. If the diagonal edges in Gtri are
not used for any I-avoiding paths of I ⊂ [n], then to consider colorings on Gsqr(�, �)
is sufficient.

To apply the counting method to square lattices Gsqr(�, �), we need to examine the
proof presented in Sect. 3. It is easy to see that the proof is still valid (by replacing
Gtri with Gsqr) on square lattices up to the point where we need to bound the number
of minimal cutsets on square lattices. In the Gtri case, we bounded the number of
minimal cutsets by showing the equivalence of minimal cutsets and restricted NAWs
and bounding the number of the walks instead. It seems difficult to proceed identically
over square lattices since it could be shown that a minimal cutset on square lattices may
not need to be a walk, as shown on Fig. 3.

However, we could show that restricted NAWs on a graph Gdia(�, �) related to
Gsqr(�, �) are just minimal cutsets on Gdia(�, �). The graph Gdia(�, �) is simple: you
just connect both diagonals of every 1 × 1 grid in Gsqr(�, �) (see Figure 3). The re-
stricted NAWs on Gdia(�, �) are defined similarly as in Definition 6.

Lemma 4. A set of nodes S on Gsqr(�, �) is a minimal top-bottom (resp. right-left)
cutset if and only if it forms a restricted right-left (resp. top-bottom) NAW on Gdia(�, �).

Fig. 3. Gsqr(6, 6) and its corresponding Gdia(6, 6). The node set presented in the graph is a
minimal cutset of Gsqr(6, 6). It is not a walk on Gsqr , but it is an NAW on Gdia.
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v

Fig. 4. Unique paths of v

Proof. We first demonstrate the necessary condition: since Gsqr is planar, we know
S forms a cutset. Then, we claim that it is minimal. First, observe that, on Gsqr, we
can reach every neighbor of S from the leftmost or the rightmost column. Otherwise,
there would be a cycle around the particular neighbor on Gdia, which is not allowed for
NAWs. Call a neighbor v of S a left neighbor if there is a path on Gsqr between v and
the leftmost column without crossing nodes in S. A right neighbor is defined similarly.
Thus, a neighbor of S is either a right neighbor or a left neighbor. We have three cases
for u ∈ S:

1. u is not on the leftmost or rightmost column: in this case, it could be shown that u
must have right and left neighbors at the same time (by enumerating all configura-
tions of NAWs on Gdia). So, after removing u from S, we just need to connect its
left and right neighbors through u on Gsqr to get a right-left path.

2. u is on the leftmost or rightmost column except the four corners: suppose u is on
the leftmost column. Then, u must have a right neighbor due to the configurations
of NAWs on Gdia. So, removing u from S would also give us a right-left path;

3. u is at the four corners of Gsqr : since S is restricted, removing u we would imme-
diately get a right-left path (it is the top row or the bottom row).

Now, we look at the sufficient condition. First, we have a simple lemma about minimal
cutsets. An illustration is given as Fig. 4.

Lemma 5. A right-left cutset S is minimal if and only if for all v ∈ S, there is some
right-left path Pv , such that the only node from S on Pv is v. For some node v in a
minimal cutset S, such a Pv is called the unique path of v.

Proof. The necessary condition: in this case, after removing any v ∈ S, the unique path
Pv of v is just a right-left path that does not meet any node in S, destroying the cutset
property.

The sufficient condition: suppose there exists v ∈ S such that for every right-left path
P crossing v would cross some other node in S. Then, removing v would not destroy
the cutset property, contradicting the assumption about the minimality of S. �
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Fig. 5. Different windows of nodes in a minimal cutset of Gsqr

Unique paths play an important role in this proof. By using unique paths and the pla-
narity of Gsqr(�, �), we could show the following properties of minimal cutset on Gsqr

(detailed proofs of those properties are in Appendix A).

Lemma 6. A minimal right-left cutset contains exactly one node on the top row and
one node on the bottom row.

Lemma 7. A 1 × 1 grid contains at most two nodes in a minimal cutset.

Definition 7. The window of some node v from some node set S that is not on the sides
is the 2×2 grid with v at its center. If v is on the leftmost column (or rightmost) column,
we call the 2 × 1 grid with v at the center of its left (or right) column the half window
of v. If v is on the top row (or bottom) row, we call the 1× 2 grid with v at the center of
its top row (or bottom row) the half window of v.

Lemma 8. For minimal right-left cutset, each window contains exactly 3 nodes. For
half windows, we have each left/right half window contains exactly 3 nodes, while each
top/bottom half window contains exactly 2 nodes.

We could show that these three properties, plus the minimality property fully character-
ize restricted top-bottom NAWs on Gdia.

Lemma 9. The minimal right-left cutset S on Gsqr is a restricted top-bottom NAW on
Gdia.

Proof. The cutset S can be viewed as a walk on Gdia under such guidance: the walker
starts from the unique node on the top row, and goes to the only node at its half window.
While it is not on the bottom row, it always has a unique next step to take according
to its current window specified in Lemma 8. Finally, it would reach the bottom row. At
that point, it has to stop since he has no choices any longer.

First, notice that such a walk would cross all nodes in S. Otherwise, due to planarity,
removing the vertex not on the walk would not destroy S’s cutset property. This walk
is also restricted due to Lemma 6.
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To make this random walk a restricted NAW, we need to show that the walker always
avoids the neighbors. First, due to Lemma 7, the next step of the walker avoids the
neighbors of the last node. Second, it would also avoids the neighbors of the nodes
before the last node due to Lemma 8. Thus, we proved that a minimal cutset on Gsqr is
also a restricted NAW on Gdia. �
This last lemma completes the proof of Lemma 4. �
Having established the equivalence between minimal cutsets on Gsqr and restricted
NAWs on Gdia, we can now apply the counting method to Gsqr . Another concern is
the connective constant μdia of restricted NAWs on Gdia. By considering 1-step history
of NAWs, we could get a trivial upper bound of 5.

Thus, we adapted the counting method to square lattices. Note that the number of
edges in Gsqr is roughly 2/3 of the number of edges in Gtri. So, we saved the commu-
nication complexity of the whole protocol by 1/3. Table 1 summarizes the comparison
of the counting method applied on Gtri and Gsqr .

Table 1. Statistics of the counting method

On Gtri(l, l) On Gsqr(l, l)

Communication Complexity c = O(n3) 2
3
c

Collusion Resistance 2.414 ≤ µ ≤ 2.948 µ ≤ 5

5 Conclusion and Open Problems

We showed that the counting method could be applied to square lattices and save com-
munication complexity of the protocol by 1/3, which is important when implementing
the multiparty protocol. We also gave a lower bound of this method for collusion resis-
tance on triangular lattices which shows the limitation of this method on Gtri(�, �).

Note the comparison of applying the counting method to Gsqr and Gtri. There seems
to be a tradeoff between communication complexity and collusion resistance. We think
this tradeoff is due to the structure of the lattice and the minimal cutset on this lattice.
The interplay between minimal cutset and a specific random walk is important as well.
We ask the question of generalizing this method to other types of planar lattices and
find which type of random walk corresponds to the minimal cutsets on that lattice.

We emphasize that we bounded the number of walks with respect to number of steps
taken on infinite lattices. Due to the reduction of Desmedt et al., we really need to bound
the number of random walks on finite lattices and we might hope to obtain security for
larger t = n

μ > n
2.948 using particular graphs. So, whether there is difference between

those two cases is also an interesting problem.
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A Proofs of Three Properties of Right-Left Minimal Cutsets on
Gsqr(�, �)

Since the basic ideas of these properties are quite similar, we provide a detailed demon-
stration for Lemma 10 and we simply show the outline of the proofs for the remaining
two properties.

Lemma 10. A minimal right-left cutset contains exactly one node on the top row and
one node on the bottom row.

Proof. We demonstrate this result by contradiction. Suppose that, for some right-left
cutset S, there exist two nodes u and v at the top row and u, v ∈ S. Suppose that u lies
on the mth column and v lies on the nth column. Consider the unique paths Pu for u
and Pv for v (see Fig 6 for a rough representation of this situation). We can make the
assumption that Pu crosses u only once, and Pv crosses v only once.

Now, let the walker A move along Pu from the leftmost column, and walker B move
along Pv from the rightmost column. Due to the planarity of the grid, we know that the
paths of A and B would meet at some node w that lies on column k, m ≤ k ≤ n after
they cross u and v respectively. Now, if we connect the rest of Pu and the rest of Pv

through w we will get a path Q that does not cross any node in S, contradicting with its
cutset property. �

Lemma 11. A 1 × 1 grid contains at most two nodes in a minimal cutset.

Proof. We prove this result by contradiction. Assume that, for some minimal top-
bottom cutset S, there exists a 1 × 1 grid in which there are three nodes u, v and
w ∈ S. So, we have such a configuration for unique paths Pu, Pv and Pw as shown
on Fig. 7.

In this case, if the walker follows Pw from bottom to top, then it is clear that Pw

would have no choices but to intersect with Pu or Pv after it crosses w (and after Pu

crosses u/Pv crosses v). This would destroy the cutset property of S. �

1 m k n l
u v

w

Q

Fig. 6. The path Q does not cross any node in S
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u v

w

Fig. 7. When some 1 × 1 grid contains three points from a minimal cutset S

Lemma 12. For minimal top-bottom cutset, each window contains exactly 3 nodes. For
half windows, we have each left/right half window contains exactly 2 nodes, while each
top/bottom half window contains exactly 3 nodes.

Proof. This proof is quite similar to the demonstration of Lemma 11. We just illustrate
the configuration of unique paths when the window of v has u, w and t in it. This
is a special case, but one can enumerate all cases and find that they are all similar to
this one.

From Fig. 8, we can see the unique path of t has to intersect with Pu of Pv after it
crosses t (and after Pu crosses u/Pv crosses v), thus destroying the cutset property. �

u

v

w

t

Fig. 8. When some 2 × 2 grid contains four points from a minimal cutset S
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