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16-qubit IBM universal quantum computer can be fully

entangled

Yuanhao Wang', Ying Li(? Zhang-qi Yin' and Bei Zeng®*

Entanglement is an important evidence that a quantum device can potentially solve problems intractable for classical computers. In
this paper, we prepare connected graph states involving 8 to 16 qubits on ibmgx5, a 16-qubit superconducting quantum processor
accessible via IBM cloud, using low-depth circuits. We demonstrate that the prepared state is fully entangled, i.e., the state is

inseparable with respect to any fixed partition.
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INTRODUCTION

Quantum computation has been an active research topic since the
middle 90s with the invention of the Shor’s algorithm and many
other important discoveries such as quantum error correction.'
For the last two decades, physical implementations of quantum
computation have achieved significant progress. The fidelity of
single and two-qubit gates exceeds 99%, reaching the threshold
of fault-tolerant quantum computing.> The number of qubits in
both superconducting and trapped ions quantum computers are
both greater than 20 now.>* It is projected that the number of
qubits will approach to 50 or more in the next few years. At that
time, the quantum computer may become more powerful than
the fastest classical computer for some specific tasks, into the
regime of the so-called quantum supremacy.’

The IBM Q is a quantum cloud service released by IBM. Its
present backend devices include two processors with 5 super-
conducting qubits (ibmgx2 and ibmgx4), one 16-qubit processor
(ibmgx5) and one 20-qubit processor (QS7_7).* IBM recently
announced that they have successfully built and tested a 20-
qubit and a 50-qubit machine.” The quantum cloud service of IBM
provides high fidelity quantum gate operations and measure-
ments. Hence, after the launch of the IBM Q, many groups tested it
and performed quantum computing experiments on the cloud
(for instance, see refs. 57'2),

Entanglement is considered to be the most nonclassical
manifestation of quantum physics.”® It is also a critical resource
for quantum information processing. Highly entangled states such
as Bell states, GHZ (Greenberger-Horne-Zeilinger) states and
cluster states'* have been applied in quantum teleportation,
super-dense coding, one-way quantum computing'® and various
quantum algorithms. The ability to produce highly entangled
states is, therefore, one important step to demonstrate quantum-
ness for quantum processors like ibmgx5. This task is, however,
highly non-trivial due to the error accumulation of faulty gates.

In this paper, we wish to assess the quantumness and
performance of the 16-qubit ibmgx5 device via the production
of highly entangled states, namely the graph states, which is an

important class of many-body entangled states that are widely
used in one-way quantum computing, quantum error correc-
tion.>'® We generate graph states that correspond to rings
involving 8 to 16 qubits via IBM Q cloud service (ibmgx5), using
optimized low-depth circuits that are tailored to the universal get
set on ibmgx5. We detect full entanglement up to 16 qubits, using
an entanglement criterion based on reduced density matrices.
Qubits are fully entangled in the sense that the state involves all
physical qubits and is inseparable with respect to any fixed
partition.

RESULTS

Graph states and entanglement

Graph state'” is a generalization of cluster state introduced in
2001,"* which is the resource state of one-way quantum
computing’ and quantum error correction.'® GHZ state is an
example of graph state and has been demonstrated in super-
conducting qubit system.'® However, GHZ state is fragile. Some
other graph states are very robust to local operations, such as local
measurements and noises. In order to disentangle the cluster state
of N qubits, N/2 local measurements are needed.'* Because of this
nice feature, we decide to generate and detect linear cluster states
in the IBM cloud service ibmgx5.

X, Y, Z denote the Pauli operators. An undirected graph G(V, E)
includes a set of vertices V and a set of edges E. A graph state that
correspond to an undirected graph G(V, E) is a |V|-qubit state that
has the form

G) = H Uab‘+>®vv (1)

(a,b)eE
where Uy, is a control-Z operator acting on qubits a and b,'® and

1

V2

are eigenvectors of the X operator.
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Fig. 1 Calibration parameters of ibmgx5, archived 10 January 2018 from ref.* It should be noted that these parameters are updated on a daily

basis

Fig. 3 Graph states employed in this experiment. Colored lines illustrate the graph of the 8-qubit graph state (in red), 10-qubit graph state
(orange), 12-qubit graph state (yellow), 14-qubit state (blue) and 16-qubit graph state (purple)

An equivalent definition, the graph state that corresponds to G
(V, E), is the uniqgue common eigenvector (of eigenvalue 1) of the
set of independent commuting operators:

_ Ng __ b
Ko =x2% =x"[] 2, 3)

beN,

where the eigenvalues to K, are +1 for all a €V, and N, denotes
the set of neighbor vertices of a in G."° As implied by the first
definition, a n-qubit graph state can be prepared by the following
steps.

1. Initialize the state to |+)*"
10)°";

2. For every (a, b) € E, apply a control-Z gate on qubits a and b;
the order can be arbitrary.

by applying n Hadamard gates to

Entanglement of general mixed states was discussed by Werner
in 1989.% Since then, many entanglement criteria were proposed;
among them the widely used ones include the partial transpose
criterion’>?'22 and the symmetric extension criterion.?®

A bipartite state pag on the Hilbert space H = H, ® H;p is said
to be separable if psz can be written as

Prs = D PiPh © P, @)

where pj, and pj are quantum states of the system A and B,
respectively, with p;= 0 and ), p; = 1. Otherwise p,z is entangled.
For a state p of a many-body system, for any fixed bipartition AB of
the system, if p is entangled with respect to the partition AB, then
the entanglement of the many-body state p can also be examined
via its subsystems. That is, if the subsystems are all entangled, the
whole system must be also entangled.
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To be more concrete, consider a 4-qubit subsystem psscp in an
n-qubit system. Suppose that we perform two local operations O,
and Op on qubit A and D respectively, and then obtain the
reduced density matrix of qubit B and C by tracing out qubit A and
D. The reduced density matrix for qubits B and C reads

O4O0ppPppcp OE o)
tr (OA ODpA,BA,C,DO}-)O-/‘.4>

©)

/
Pgc = trap

The entanglement of p;. can be determined by using
entanglement monotones such as negativity and concurrence,
which, in the 2-qubit case, has non-zero values if and only if the
system is entangled.">** If pj,  is entangled, we can conclude that
in the original system, there could not exist a separation with
qubit B and C on different sides. In other words, if the original
system is biseparable with respect to a fixed partition, the qubit B
and C must be on the same side. Otherwise, we will be able to
create entanglement between the two separable parties with only
local operations, which is not possible.”

For an n-qubit system {g,, q>, ..., .}, if we can show that among
the n-qubit pairs (g1, G2), -.-, (Gn—1, Gn)s (Gn, G1), N — 1 of them must
be on the same side in a separation, then we may conclude that
there is no possible separation, and that the system is a n-qubit
entangled state (meaning that the state is not biseparable with
respect to (w.r.t.) a fixed partition, and that it involves all qubits).
The (minimal) number of circuit configurations needed in this
approach is 3*(n — 1), which grows linear with respect to n. This
method is far more efficient compared to a full n-qubit
tomography, which  requires exponential number of
configurations.
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Graph states on ibmgx5

ibmgx5 is a 16-qubit superconducting quantum processor. It
allows independent single-qubit operations with fidelity >99%
and control operations with fidelity 95-97% (see Fig. 1) marked as
the edges in the connectivity map (see Fig. 2). That is, controlled
NOT (CNOT) operations with qubit a as the control qubit and b as
the target is allowed if and only if a— b is an edge in the map.

In our experiment, as shown in Fig. 3, the following five graph
states are employed. The first state is a 8-qubit graph state
involving qubits g5-g12 that corresponds to a ring of length 8; the
second one is a 10-qubit state involving qubits g4-g13
corresponding to a ring of length 10; the third one involves
qubits g3-q14 and corresponds to a ring of length 12; the fourth
one involves qubits g2—-g15 and corresponds to a ring of length
14; the fifth one involves all the 16 qubits. We employ these
particular graph states based on the following considerations.
First, these states are genuinely entangled and will remain
entangled after tracing out a large number of qubits. Second,
research has shown that one-dimensional (1D) cluster states are
robust against decoherence, meaning that it would be more likely
to find entanglement in a rather large graph state close to a 1D
chain, compared to GHZ states and two-dimensional (2D) graph
states.”* At last, even rings are two-edge colorable; as a result, on
the 16-qubit ibmqx5, these “even-ring” states could be prepared
using low-depth circuits (see Fig. 4).

To prepare the desired graph state, we start from the circuit
implied by the definition of graph states (see Fig. 4a). The control-
Z gates are implemented using a CNOT gate and two Hadamard
gates. We then optimize this circuit by adjusting the order of
commuting gates and removing redundant Hadamard gates (see
Fig. 4b). The circuit that we implemented are shown in Fig. 4b and
Fig. 5a—d.

Experimental results

For each n-qubit ring state, n partial tomographies are performed
for every subsystem with 4 qubits that forms a chain in the ring.
For example, for the 8-qubit graph state, the 8 subsystems are (g5,
g6, q7, g8), (g6, g7, g8, q9), ..., (q12, g5, g6, q7). For every state, 3*n
experimental configurations are used; 2048 measurements are
taken under each configuration. The n 4-qubit reduced density
matrices are obtained using the maximum likelihood method
proposed by Smolin et al.>®

Due to Eq. (3), for a ring graph state, each 4-qubit density matrix
of neighboring four qubits, as illustrated in Fig. 6, is given by

Pagcop = ‘11 (I + ZaXgZc ) (I + ZsXcZp). (6)

(@ |gs) —{H] (®) [gs) Els
la6) —{ H | la6) —{ H |
lar) —{H | Ja7) Fis
las) —{ H | las)
la0) —| H la9) —| H |
|910) @ |q10) @
) —{ H] 1) —{H]| H

l12) —{ H |

Fig. 4 a The quantum circuit for preparing a 8-qubit graph state
implied by the definition of graph states. b The optimized circuit
that suits ibmgx5's connectivity
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Fig. 5 The quantum circuit implemented on ibmgx5 for the
preparation of a 10-qubit graph state, b 12-qubit graph state, ¢
14-qubit graph state and d 16-qubit graph state

O @O

Fig. 6 A 4-qubit subsystem that forms a chain

e
A

Then, for each 4-qubit density matrix, we apply the local
operations Oy = % and Op = @ and calculate the negativity of
the resulting 2-qubit subsystem. For instance, we may choose (g5,
g6, q7, g8) as our subsystem; after applying O, and O to g5 and
g8 respectively, we will trace out g5 and g8, and measure the
negativity of the remaining subsystem, (g6, q7). We choose Oy =
% and Op = @ for the following reason. If p is graph state, and
the 4-qubit subsystem corresponds to 4 vertices that form a chain
in the graph, then the resulting 2-qubit state is a maximally
entangled state

1
|#) :ﬁ(|0>\+>+|1>|—>)‘ )

Therefore, for a state close to this graph state, we should expect
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Fig. 7 The result of a the 8-qubit graph state, b the 10-qubit graph state, ¢ the 12-qubit graph state, d the 14-qubit graph state and e the 16-
qubit graph state. The negativity of the final 2-qubit states are plotted. The 95% confidence intervals are estimated using bootstrapping

techniques

the resulting 2-qubit state to have a negativity significantly greater
than 0. The results are plotted in Fig. 7.

For the 8-qubit graph state, the measured negativities are all
significantly greater than 0. For the 10-qubit graph state, 9 out of
10 measured negativities are significantly greater than 0. Based on
our argument above, both the 8-qubit state and 10-qubit state are
fully entangled.

In the 12-qubit case, as shown in Fig. 7c, 10 out of 12 measured
negativites are significantly non-zero. The two zeros come from
(g9, q10) and (g14, g3) pairs. Therefore, there is only one possible
separation, namely {q10, q11, q12, 13, q14} | {g3, g4, g5, g6, q7, g8,
q9}. Should this be true, the reduced density matrix of qubits g8,
G9,910,g11 should also be separable with the separation {g8, q9} |

npj Quantum Information (2018) 46

{g10, g11}. In that case, its partial transpose with respect to qubit
g8 and g9 must be positive. However, with respect to this partial
transpose, Pgsq9q10411 has negativity 0.0391 +0.0039 (standard
deviation estimated via bootstrapping). Therefore, this possibility
is ruled out with very high confidence. We can now conclude that
the 12-qubit graph state is fully entangled.

In the 14-qubit case, as shown in Fig. 7d, 12 out of 14 measured
negativites are significantly greater than 0. Here, we may apply the
same trick again. The only possible separation is {g2, g3, g4, g5, g6,
q7, g8, g9, q12, q13, q14} | {g10, g11}. In this case, subsystem {g8,
g9, q10, 11} should have zero negativity with respect to the
partial transpose on g8 and g9. However, the measured negativity
is 0.0698+0.0048 (standard deviation estimated via

Published in partnership with The University of New South Wales



16-qubit IBM universal quantum computer can be fully entangled
Y Wang et al.

npj

5

bootstrapping). Hence, this possibility is ruled out with very high
confidence. We may conclude that this state is fully entangled.

In the 16-qubit case, as shown in Fig. 7e, 15 out of 16 measured
negativites are significantly greater than 0. As argued above, this
means that this state is not biseparable w.rt. a fixed partition,
thereby showing that all 16 qubits in ibmgx5 are in full
entanglement.

It may be noted that the subsystem of qubits {g8, g9, q10, q11}
yields close-to-zero negativity in 3 out of 4 experiments. This can
be due to relatively high readout errors or gate errors involving
these qubits, which is compatible with the measured parameters
provided by IBM website® (see Fig. 1). For instance, the CNOT gate
between 10 and g11 has the largest error among all possible
CNOT gates, while the readout errors of g10 and g11 are also
above the average level (6.5%).

Further exploration of the 16-qubit state

The results above could be understood as an ability to generate
localized entanglement on physically neighboring qubits.?® That
is, neighboring qubits can be put into entanglement by
performing ideal local operations on the 16-qubit state. Using
the same data obtained above, we will show that localized
entanglement on qubits with distance 2 and 3 could also be
generated.

Suppose {E, A, B, C, D, F} is a 6-qubit subsystem that forms a
chain. We first apply Of =%% and Or =%% on E and F
respectively (four possibilities). On our data, this can effectively
be done by first postselecting Os on qubits £ and F before
calculating the tomography of {A, B, C, D}. Next, Og :% and
Op = @ are performed (see Fig. 8). At last, B, E, F and D are traced
out, while the negativity in subsystem {A, C} is calculated. If the 16-
qubit state is perfect, this resulting system would be maximum
entangled.

Based on data obtained in previous experiments, we have
calculated the corresponding negativity for each 6-qubit sub-
system and shown them in Table 1. Using this method, we have
identified localized entanglement in 13 out of 16 pairs of qubits
with distance 2.

To generate localized entanglement on qubits with distance 3,
we may apply the same Og and Of, and then apply Oy = % and
O = @ (see Fig. 9). The negativity of subsystem {A, D} would be
calculated. Again, if the 16-qubit state is perfect, these two qubits
would be maximum entangled; therefore, we should expect a
non-zero negativity if the actual state is close to the theoretical
one.

Among 16 pairs of qubits with distance 3, we have identified
localized entanglement in 6 pairs of them. The results based on

our data is presented in Table 2.
(o)

O DO
0, o~ o/ O

B D

Fig. 8 Operations performed to produce entanglement on sub-
system {A,C}

Table 1. Negativities of qubits with distance 2 in the 16-qubit state

02 03 249 G55 @6 67 68 (7.9

0.023 0.027 0.088 0.145 0.143 0.156 0.134 0.105
(8,10) (9, 11) (10,12) (11,13) (12,14) (13,15 (14,0) (15, 1)
0.178 0.000 0.114 0.079 0.040 0.028 0.000 0.000
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Fig. 9 Operations performed to produce entanglement on sub-
system {A, D}

Table 2. Negativities of qubits with distance 3 in the 16-qubit state
0,3) (1,49 (25 3, 6) 4,7) (5,8 (69 (7,10
0.000 0.000 0.085 0.093 0.110 0.097 0.061 0.000
8, 11) (9,12) (10,13) (11,14 (12,15 (13,00 (14,1) (15,2)
0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DISCUSSION

We have prepared graph states of 8, 10, 12, 14 and 16 qubits on
the 16-qubit ibmgx5 processor and demonstrated that these
graph states are not biseparable w.rt. any fixed partition. In
particular, we have realized full entanglement using all 16 qubits.
Moreover, we have demonstrated the ability to create localized
entanglement on qubit pairs with distance 3 and 4 from this 16-
qubit entangled state. In our approach of detecting nonsepar-
ability, we only have to measure the reduced density matrix of up
to 4 qubits, and the size of reduced density matrix does not scale
with the total qubit number, ie, our method is efficient and
scalable. In our experiments, graph states do not have high fidelity
because of the large number of qubits, e.g., the fidelity of the 12-
qubit graph state is lower than 0.44. (This upperbound is obtained
by computing the fidelity between each 4-qubit subsystem and
the theoretical result and taking the minimum.) However, the
negativity of 4-qubit reduced density matrix decays gently with
respect to the qubit number, which implies that the error per
qubit weakly depends on the qubit number. It is a strong evidence
that ibmgx5 is capable of generating highly entangled states and
demonstrates the computer’'s quantumness. In computational
tasks such as one-way quantum computing, graph state with
decaying fidelity is acceptable, and the computing is fault tolerant
as long as the error per qubit is lower than a threshold.?”?®
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