
            

PAPER • OPEN ACCESS

The experimental realization of high-fidelity
‘shortcut-to-adiabaticity’ quantum gates in a
superconducting Xmon qubit
To cite this article: Tenghui Wang et al 2018 New J. Phys. 20 065003

 

View the article online for updates and enhancements.

Related content
Experimental demonstration of work
fluctuations along a shortcut to adiabaticity
with a superconducting Xmon qubit
Zhenxing Zhang, Tenghui Wang, Liang
Xiang et al.

-

Experimental state control by fast non-
Abelian holonomic gates with a
superconducting qutrit
S Danilin, A Vepsäläinen and G S
Paraoanu

-

Simulated quantum process tomography
of quantum gates with Rydberg
superatoms
I I Beterov, M Saffman, E A Yakshina et al.

-

Recent citations
Experimental demonstration of work
fluctuations along a shortcut to adiabaticity
with a superconducting Xmon qubit
Zhenxing Zhang et al

-

This content was downloaded from IP address 166.111.142.88 on 06/12/2018 at 07:28

https://doi.org/10.1088/1367-2630/aac9e7
http://iopscience.iop.org/article/10.1088/1367-2630/aad4e7
http://iopscience.iop.org/article/10.1088/1367-2630/aad4e7
http://iopscience.iop.org/article/10.1088/1367-2630/aad4e7
http://iopscience.iop.org/article/10.1088/1402-4896/aab084
http://iopscience.iop.org/article/10.1088/1402-4896/aab084
http://iopscience.iop.org/article/10.1088/1402-4896/aab084
http://iopscience.iop.org/article/10.1088/0953-4075/49/11/114007
http://iopscience.iop.org/article/10.1088/0953-4075/49/11/114007
http://iopscience.iop.org/article/10.1088/0953-4075/49/11/114007
http://iopscience.iop.org/1367-2630/20/8/085001
http://iopscience.iop.org/1367-2630/20/8/085001
http://iopscience.iop.org/1367-2630/20/8/085001
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/163727920/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?


New J. Phys. 20 (2018) 065003 https://doi.org/10.1088/1367-2630/aac9e7

PAPER

The experimental realization of high-fidelity ‘shortcut-to-adiabaticity’
quantum gates in a superconducting Xmon qubit

TenghuiWang1, Zhenxing Zhang1, LiangXiang1, Zhilong Jia2, PengDuan2,WeizhouCai3, ZhihaoGong1,
ZhiwenZong1,MengmengWu1, JianlanWu1, Luyan Sun3, Yi Yin1 andGuopingGuo2

1 PhysicsDepartment, ZhejiangUniversity, Hangzhou, 310027, Peopleʼs Republic of China
2 Key Laboratory ofQuantum Information, University of Science andTechnology of China,Hefei, 230026, Peopleʼs Republic of China
3 Center forQuantum Information, Institute for Interdisciplinary Information Sciences, TsinghuaUniversity, Beijing, 100084, Peopleʼs

Republic of China

E-mail: jianlanwu@zju.edu.cn, yiyin@zju.edu.cn and gpguo@ustc.edu.cn

Keywords: quantumgate, shortcut-to-adiabaticity, superconducting qubits

Abstract
Based on a ‘shortcut-to-adiabaticity’ (STA) scheme, we theoretically design and experimentally realize
a set of high-fidelity single-qubit quantum gates in a superconducting Xmonqubit system. Through a
precisemicrowave control, the qubit is driven to follow a fast ‘adiabatic’ trajectorywith the assistance
of a counter-diabatic field and the correction of derivative removal by adiabatic gates. The
experimentalmeasurements of quantumprocess tomography and interleaved randomized bench-
marking show that the process fidelities of our STAquantum gates are higher than 94.9% and the gate
fidelities are higher than 99.8%, very close to the state-of-art gatefidelity of 99.9%.An alternate of
high-fidelity quantum gates is successfully achieved under the STAprotocol.

1. Introduction

Quantumcomputation and quantum information processing are programmed through sequential operations
of various quantumgates, which are built bottomup from simple but fundamental single- and two-qubit gates
[1, 2]. A gate error has to be controlled below a fault-tolerant threshold in scale-up quantum computation. Since
this error threshold is usually small (0.1%–1%), the experimental realization of high-fidelity quantum gates is an
essential task in various artificial quantum systems such as nuclearmagnetic resonance [3, 4], ion traps [5] and
superconducting circuits [6].

A unitary transformation occurs when a single- ormulti-qubit system is operated by a quantum gate. For a
single-qubit, such a unitary transformation can be viewed as a rotation of a qubit vector, which can bemapped
onto a spin, on the Bloch sphere. Subject to an externalmagnetic field along afixed direction, the rotation angle
of the spin is controlled by adjusting the amplitude of themagnetic field over time. Bymapping a driving pulse,
e.g., Gaussian-shaped, onto amagnetic field, we can build a single-qubit quantum gate based on the above
scheme. This standard approach has been applied in almost all the artificial quantumdevices. In
superconducting qubit systems, the highest single-qubit fidelity is achieved at the level of>99.9%by optimizing
the pulse amplitude and frequency [6].

An alternative way of constructing quantumgates is to change the direction of themagnetic field over time.
In a specialmoving reference frame, themotion of the spin can be highly simplified. In a quantum adiabatic
operation, the qubit is kept at its instantaneous eigenstates.With respect to the instantaneous eigenbasis, the
qubit vector is rotated along afixed latitude on amoving Bloch sphere by accumulating dynamic and geometric
phases [7, 8]. At the end of such an quantum adiabatic operation, an arbitrary quantumgate is realized by the
combined effect of a simple spin rotation in themoving frame and the rotation of the reference frame.

However, an ideal adiabatic operation can only be performedwith an infinitely slow speed. A practically
adiabatic implementation inevitably includes errors due to non-adiabatic transition and quantumdissipation.
The associated long operation time leads to a technical difficulty in scale-up quantum computation. The
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shortcut-to-adiabaticity (STA) procedure has been proposed to solve these problems by introducing a counter-
diabaticfield in addition to the reference fast ‘adiabatic’field [9–17]. The qubit system is driven to follow the
reference ‘adiabatic’ trajectory by suppressing the non-adiabatic transitions. As the quantumoperation is
accelerated ten to hundred times, the decoherence induced error can be significantly reduced. The STAprotocol
has beenwell implemented experimentally soon after it was proposed theoretically [18–22]. In our recent
experiments with a superconducting phase qubit, we successfullymeasured the Berry phase [23] and achieved a
high-fidelity state transfer under the STAprotocol [24]. The state transfer techniquewas further applied to
simulate a quantum topological phase transition [24].

In this paper, we extend our previouswork of quantum state transfer for the purpose of single-qubit STA
quantumgates. Our theoretical design shares the same principle as in a recent proposal in the systemofNV
centers [25]. The detailed driving pulse is different but preserves the utilization of the phase accumulation in the
fast ‘adiabatic’ evolution. The STA gate operations are also discussed in recent theoretical proposals [26, 27].
With the improvement from a superconducting phase toXmon qubit, the high-fidelity STAquantum gate is
successfully achieved, as demonstrated by our quantumprocess tomography (QPT) and interleaved randomized
benchmarkingmeasurements. For our examples of the rotations aboutX-,Y- andZ-axes and theHadamard
gate, the gatefidelity is consistently higher than 99.8%,which promises an alternative choice of quantumgates
for a practical application.

2. Theory

In this section, we demonstrate our theoretical design of a general single-qubit gate performed under the
‘shortcut-to-adiabaticity’ (STA) protocol.

2.1. Adiabatic quantumgate
A single-qubit of ñ ñ{∣ ∣ }0 , 1 can bemapped onto a spin-1/2 particle ñ ñ{∣ ∣ }, driven by an externalfield [1]. In
the rotating frame, the time-dependentHamiltonian is written as

 s=( ) ( ) · ( )BH t t 2, 10 0

where q f q f q= W( ) ( )( ( ) ( ) ( ) ( ) ( ))B t t t t t t tsin cos , sin sin , cos0 is the vector of an externalfield and
s s s s= ( ), ,x y z is the vector of Paulimatrices. The amplitudeΩ(t), the polar angle θ(t) and the azimuthal angle
f(t) aremodulated bymicrowave pulse sequences in our experiment [23, 24]. At a given time t, the instantaneous
eigenstates, y yñ ñ+ -{∣ ( ) ∣ ( ) }t t, , are obtained by a rotation of the reference states, ñ ñ{∣ ∣ }, , where the rotation
matrix to change the frame is given by
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For an extremely slow variation of the external field, the spin-1/2 particle remains at the same
instantaneous eigenstate, y ñ+ -∣ ( )t , if it is prepared at y ñ+ -∣ ( )0 initially. During this adiabatic propagation,
only the dynamic and geometric phases are accumulated.With respect to the instantaneous eigenbasis, a
unitary transformation is thus defined as y y y y= ñ á + ñ á+ ++ + - -- -( ) ∣ ( ) ( ) ( )∣ ∣ ( ) ( ) ( )∣U t t U t t U t0 0ad ad ; ad; with
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In our experiment, we consider a special formof the amplitude evolution,
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where the parameterT is the time of our quantumoperation. The accumulated dynamic phases vanish, i.e.,
jd(T)=0. After a global phase shift, the unitary transformation is simplified to
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with g g gD = -+ -( ) ( ) ( )T T T . If the initial preparation and finalmeasurement are performed in the reference
basis of ñ ñ{∣ ∣ }, , the combined unitary transformation is given by

= +( ) ( ) ( ) ( )U S T U T S 0 , 6ad

which leads to an arbitrary single-qubit quantumgate [1]. This adiabatic construction can be straightforwardly
extended tomulti-qubit gates, whichwill be studied in the future.

2.2. STAprotocol
In practice, the remaining non-adiabatic transition introduces an inevitable error for an adiabatic quantumgate.
In the STA protocol, an additional counter-diabaticHamiltonian is applied to cancel this non-adiabatic error
[9–17]. A general time-dependentHamiltonianH0(t) can be expanded in its instantaneous eigenbasis, giving

 y y= å ñá( ) ( )∣ ( ) ( )∣H t t t tn n n n0 with òn(t) the nth eigenenergy and y ñ∣ ( )tn the nth eigenstate. Accordingly, the
counter-diabaticHamiltonian ( )H tcd is formally written as [10]

å y y y y y y= ¶ ñá - á ¶ ñ ñá( ) [∣ ( ) ( )∣ ( )∣ ( ) ∣ ( ) ( )∣] ( )H t t t t t t ti , 7
n

t n n n t n n ncd

which suppresses the non-adiabatic transition for each eigenstate y ñ∣ ( )tn . The quantum systemdriven
= +( ) ( ) ( )H t H t H t0 cd rigorously evolves along the instantaneous eigenstates ofH0(t). The time propagator

becomes exactly diagonal in the reference instantaneous eigenbasis, i.e.,

å y y= ñ á( ) ∣ ( ) ( ) ( )∣ ( )U t t U t 0 . 8
n

n nn nSTA STA;

Each diagonal element of the time propagator is written as j g= +( ) { [ ( ) ( )]}U t t texp inn d n nSTA; ; where
j ( )td n; and γn(t) are accumulated dynamic and geometric phases of the nth reference adiabatic state. The
adiabatic quantum gate introduced in equation (6) is thus changed to a STA quantumgate,

= +( ) ( ) ( ) ( )U S T U T S 0 , 9STA

by replacingUad(T)withUSTA(T) and excluding the global phase.As the quantumoperation timeT is decreased, the
error inducedby relaxation anddecoherence canbe significantly reducedwhile thenon-adiabatic error is fully
suppressed in the ideal scenario.The STAprotocol provides an alternativedesignof high-fidelity quantumgates [25].

For the spin-1/2 particle under theHamiltonian in equation (1), the counter-diabaticHamiltonian follows a
similar form,

 s=( ) ( ) · ( )BH t t 2. 10cd cd

Through a tedious but straightforward derivation from equation (7), the three elements of the counter-
diabaticfield ( )B tcd are explicitly given by
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Equation (11) can be further organized into a cross product form as [10, 23, 24]
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, 12cd
0
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which is always orthogonal to the reference field ( )B t0 . By applying the externalfield, = +( ) ( ) ( )B B Bt t t0 cd ,
to a single-qubit, the STA gates will be testified experimentally in ourXmon qubit system.

2.3.DRAG correction
Inmany artificial systems, the influence of higher excited states cannot be fully ignored so that the two-level
qubit has to be re-modeled as amulti-level anharmonic oscillator [1, 32]. For example, theHamiltonian of a
three-level anharmonic oscillator in the rotating frame is written as [24]


= + D ñá( ) ( ) · ∣ ∣ ( )B SH t t

2
2 2 , 132
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andΔ2 is an anharmonic parameter. In the STAprotocol, the external field is given by = +( ) ( ) ( )B B Bt t t0 cd .
A technical treatment is to apply the derivative removal by adiabatic gates (DRAG)method, which decouples the
interaction between the lowest two levels (qubit) and higher excited states [24, 28–31].With the increment of
another field, =( ) ( ( ) ( ) ( ))B t B t B t B t, ,x y zd d; d; d; , the total externalfield is changed to = +( ) ( ) ( )B B Bt t ttot d

and the totalHamiltonian in equation (13) ismodified to be  ¢ = + D ñá( ) ( ) ( ) · ∣ ∣B SH t t2 2 2tot 2 . In
addition, we introduce theDRAG frame (-frame), in which the totalHamiltonian is transformed into

    = ¢ ++ +( ) ( ) ( ) ( ) ( ) ( ) ( )H t t H t t t ti 15

where ( )t is a unitary operator. The densitymatrix in the -frame is given by  r r= +( ) ( ) ( ) ( )t t t t .With
a delicate design of ( )B ttot and ( )t , the transformedHamiltonian  ( )H t is factorized into


 se e= + Å ñá

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) · ( )∣ ∣ ( )BH t t t t

2
2 2 , 162

where ε(t) and ε2(t) are two shifted energies [24, 29]. The qubit subspace of ñ ñ{∣ ∣ }0 , 1 is decoupledwith the
second excited state ñ∣2 . To avoid an artifact of the -frame, wewould expect an requirement of

 = = = =( ) ( ) ( )t t T0 1 and 1, 17

so that the densitymatrices at the initial and finalmoments of the quantumoperation are unaffected, i.e.,

r r=( ) ( )0 0 and r r=( ) ( )T T . In theDRAGmethod, ( )B ttot and ( )t are evaluated by a perturbation
approachwith the assumption of a large anharmoncity, i.e., D ∣ ∣ ∣ ( )∣B t2 . On thefirst order correction, the
DRAGfield ( )B td is explicitly given by [24, 29]
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under a presumption of =( )B t 0zd; . In our experiment, the Xmon qubit is driven by the total external field,
= + +( ) ( ) ( ) ( )B B B Bt t t ttot 0 cd d , under the STAprotocol andwith theDRAG correction.

3. Experimental setup

A cross-shaped transmon (or calledXmon) qubit [6, 32, 33] is applied in this experiment. TheXmon qubit
sample is fabricated on a silicon substrate. After initially cleaned in buffered hydrofluoric acid to remove the
native oxide, the substrate is immediately loaded into a high vacuumelectron beam evaporator, followed by a
deposition of an aluminum (Al)film. The superconducting resonators and control lines are patterned using
photolithography in awafer stepper and etchedwith BCl3/Cl2 in an inductively coupled plasma dry etcher. The
superconducting Josephson junctions are patternedwith an electron beam lithography and developedwithAl
double-angle evaporation. An additional ‘bandage’DCelectrical contact is fabricated to reduce the capacitive
loss [34].

Figure 1(a) displays an opticalmicrograph of a single Xmon qubit. Four arms of the cross are connected to
different elements for separate functions of coupling, control and readout. At the bottomof the cross, aflux
current (Z control) line biases the qubit at a resonance frequency ofω10/2π=4.85 GHz, which is the energy
difference between the ground ( ñ∣0 ) and excited ( ñ∣1 ) states of the qubit. The qubit nonlinearity is
Δ2/2π=−253MHz. AnotherXY control line provides amicrowave drive signal to the qubit tomanipulate the
qubit state [6, 32, 33]. The top armof the cross is coupled to a readout resonatorwhose bare frequency is
ωr/2π=6.56 GHz. By sending amicrowave signal through the readout line, we can detect the qubit state
information from the dispersive interaction between the qubit and readout resonator. The readout signal goes
through a series of circulators, being reflected from a Josephson parametric amplifier [35, 36] and further
amplified by a high electronmobility transistor for a high-fidelitymeasurement. By heralding the ground state
[37], the readoutfidelity for the ground state ñ∣0 and excited state ñ∣1 are 99.8% and 95.1%, respectively.With the
qubit biased at a sweet point here, the coherence is characterized by a relaxation time,T1=20 μs, and a pure
decoherence time, * m=T 38 s2 (see figures 1(b) and (c)). Our current sample is designed as a linear arraywith six
qubits. All the qubits have comparable values ofT1 and *T2 . The qubit chip ismounted in a sample box and
cooled in a dilution refrigerator whose base temperature is∼10 mK.

4. Results

In this section, we present our experimental realization of various single-qubit STAquantumgates.

4
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4.1.Xπ andXπ/2 rotations
The unitarymatrices representing theπ andπ/2 rotations about theX-axis (Xπ andXπ/2 rotations) are explicitly
written as [1]

= -
-

= -
-p p( ) ( ) ( )U i

i
U i

i
0

0
and

2

2
1

1
. 19X X 2

Todesign theXπ rotation, the reference ‘adiabatic’field ( )B t0 is specified as

q
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sin
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20
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The drive amplitude, polar and azimuthal angles are pW =( ) ( )t A t Tsin 2 , q p p= -( ) ( )[ ( )]t t T2 1 cos ,
andf(t)=−π/2, respectively. In our experiment, we set the pulse length (operation time) atT=30 ns and the
maximumdrive amplitude atA/2π=20MHz. The same two parameters will be used in other STA gates. The
pulse length is comparable to the typical value of a truncatedGaussian pulse. In principle, these two parameters
can bemodified independently under the STAprotocol. The counter-diabatic field ( )B tcd and theDRAGfield

( )B td are calculated using equations (11) and(18). Due to the limitation of space, wewill not present the
analytical forms of ( )B tcd and ( )B td . Infigures 2(a) and (b), we plot the x-, y- and z-components of the reference
field ( )B t0 and the totalfield = + +( ) ( ) ( ) ( )B B B Bt t t ttot 0 cd d . As a comparison, themajor difference
between the twofields appears in their x-components.With the condition of D∣ ∣ ∣ ∣A 2 , theDRAGcorrection
is aminor effect. Notice that if the amplitude of ( )B t0 is gradually decreased to zero, the dominant counter-
diabaticfield ( )B tcd recovers the standardXπ-pulse along the x-direction. Thus, other gate schemes can in
principle bemapped onto their counterparts in the STAprotocol. For an initial preparation at the spin-up state
( ñ = ñ∣ ∣0 ), the fast ‘adiabatic’ trajectory of the qubit is shown infigure 2(c). In an ideal scenario, the qubit vector
evolves from the north to south pole along 270°-longitude of the Bloch sphere, and the final qubit state is the
spin-down state ( ñ = ñ∣ ∣1 ). Figure 2(c) shows that this trajectory can be excellently generated under the STA
control field ( )B ttot [24].

With the consideration of the errors in state preparation, STAoperation and readout, the output state is
obtained through amap of the input state [1], i.e.,

åe r e r r=
=

+ ( ) ( )E E: , 21
i

i i
1

4

with ρ the initial densitymatrix of the qubit. Each linear operators Ei=1,L,4 can be expanded over a fixed set of
operators, s s s={ ˜ }E I , , ,m x y z , giving = å ˜E e Ei m im m. The output densitymatrix is rewritten as

Figure 1. (a)Anopticalmicrograph of a single cross-shapedXmon qubit. (b)Energy decay of the qubit, giving a relaxation time of
T1=20 μs. (c)Ramsey fringes of the qubit, giving a pure decoherence time of * m=T 38 s2 .

5
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åe r c r= +( ) ˜ ˜ ( )E E 22
mn

mn m n

with *c = å e emn i im in. Theχmatrix thus completely characterizes thebehavior of a specific gate.To experimentally
determine theχmatrix,weperform theQPTby selecting 6different initial states, ñ ñ ñ  ñ{∣ ∣ (∣ ∣ )0 , 1 , 0 1 2 ,

ñ  ñ(∣ ∣ ) }0 i 1 2 [1, 38, 39]. Each input state is drivenby ( )B ttot and theoutput state ismeasuredby thequantum
state tomographymethod.Theχmatrix is thennumerically calculatedby solving equation (22). For the STAXπ-gate,
the experimental result of theχ(Xπ)matrix is plotted infigures 3(a) and (b). Consistentwith the theoretical prediction
of an idealXπ-gate, the dominant element of theχ(Xπ)matrix is the operator ofσx. Toquantify thefidelity of the
wholequantumprocess,we calculate theprocessfidelity using [1]

cc= { } ( )F Tr . 23P ideal

The experimental result is =p( )F X 95.21%P . To exclude the errors in state preparation and readout, we
perform an interleaved randomized benchmarkingmeasurement (see section 4.4), which gives the gatefidelity
of the STAXπ rotation at =p( )F X 99.82%g . This number is very close to the current highest fidelity of a Xmon
qubit [6], and the 0.1%deviation could be improved by the future optimization of our system.On the other
hand, if the operation time is increased toT=500 ns, the counter-diabatic field becomes nearly negligible and
the processfidelity of the adiabaticXπ-gate is decreased to =p( )F X 92.15%P due to the accumulation of the
dissipation-induced error.

To design theXπ/2 rotation, we take the same reference ‘adiabatic’field ( )B t0 except for that the azimuthal
angle is changed to q p p= -( ) ( )[ ( )]t t T4 1 cos . The counter-diabatic andDRAG fields, ( )B tcd and ( )B td ,
are analytically calculated accordingly. After theQPTmeasurement, the experimentally reconstructed c p( )X 2

matrix is plotted infigures 3(c) and (d), agreeing excellently with the theoretical prediction of an idealXπ/2 gate.
As compared to theχ(Xπ)matrix, theχ(Xπ/2)matrix includes auto and cross correlations between the operators
of I andσx. The experimentalmeasurement shows that the process and gatefidelities of our STAXπ/2 rotation
are =p( )F X 95.03%P 2 and =p( )F X 99.81%g 2 .

4.2.Zπ andZπ/2 rotations
The second group of STA quantumgates we inspect are theπ andπ/2 rotations aboutZ-axis. The corresponding
unitarymatrices are [1]
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B t t t

B t

cos

sin

0,

25
x

y

z

0;

0;

0;

Figure 2. (a)The reference ‘adiabatic’ and (b) total (with the counter-diabatic andDRAG corrections)fields for aπ rotation about the
X-axis. Themaximumdrive amplitude isA/2π=20 MHz and the operation time isT=30 ns. (c)The fast ‘adiabatic’ trajectory of
the qubit vector for the initial state at ñ∣0 . The ideal result is shown in a red arrowed curve on the Bloch sphere while the experimental
result after the correction of themeasurement error is shown in blue dots.
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where the drive amplitude is pW =( ) ( )t A t Tsin 2 and the polar angle is θ(t)=π/2. The azimuthal angles for
Zπ andZπ/2 rotations are f p p= -( ) ( )[ ( )]t t T2 1 cos and f p p= -( ) ( )[ ( )]t t T4 1 cos , respectively. The
control parameters,A andT, are the same as those in theX-rotation gates. The counter-diabatic andDRAG
fields, ( )B tcd and ( )B td , are also analytically calculated for the experimental generation. TheQPTmeasurements
ofχ(Zπ) and c p( )Z 2 matrices are presented infigures 4(a)–(d), also agreeing excellently with the results in an
ideal scenario. The processfidelities of these two STA gates are =p( )F Z 95.23%P and =p( )F Z 95.20%P 2 .
After excluding errors in state preparation and readout, the gates fidelities are =p( )F Z 99.89%g and =p( )F Zg 2

99.87%.

4.3.Hadamard gate
An arbitrary single-qubit quantum gate can be realized by a combination of sequential rotations aboutX-,Y- and
Z-axes. For example, theHadamard gate can be generated byπ/2 rotation about theY-axis followed byπ
rotation about theX-axis [1], i.e.,

= =
-p p ( ) ( )U U U

2

2
1 1
1 1

. 26H X Y 2

In the STAprotocol, theHadamard gate can be realized by a one-step operation, which reduces the errors
accumulated throughmultiple steps. Our reference ‘adiabatic’field ( )B t0 is designed as

j

j

j

= W

= W

= - W

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

B t t t

B t t t

B t t t

2

2
cos

sin

2

2
cos

27

x

y

z

0;

0;

0;

with pW =( ) ( )t A t Tsin 2 andj p p= -( ) ( )[ ( )]t t T2 1 cos . After including counter-diabatic field ( )B tcd

and theDRAG field ( )B td , we perform the sameQPTmeasurement as above. The experimentally reconstructed
χ(H)matrix is displayed infigures 5(a) and (b). The processfidelity is FP(H)=94.93%while the gatefidelity
with the errors in state preparation and readout excluded is Fg(H)=99.81%.

Figure 3.The experimentalmeasurement ofχmatrices for (a), (b)Xπ and (c), (d)Xπ/2 rotations. The left and right panels are the real
and imaginary parts of the twoχmatrices, respectively.
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4.4. Interleaved randomized benchmarkingmeasurement
In theQPTmeasurement, the errors of state preparation and readout aremixedwith the error of a quantumgate
operation. To extract the gatefidelity, we perform theClifford-based randomized benchmarkingmeasurement
[6, 40–43]. For a single-qubit, the Clifford group consists of 24 rotations preserving the octahedron in the
Bloch sphere. In principle, eachClifford operator can be realized by a combination from the elements of

p p p p { }I X X Y Y, , , ,2 2 . The qubit is initially prepared at the spin-up state ( ñ = ñ∣ ∣0 ), and then driven by a
sequence ofm randomly selectedClifford gates. The combined operation is described by a unitarymatrix,

=  =U UC i
m

i1 . Since theClifford group is a closed set,UC is always aClifford operator. Subsequently, the
(m+1)th step is the reversed step ofUC and the total quantumoperation is written as

= +

=

( )U U U . 28C
i

m

itot
1

The remaining population P0(tf) of the initial state ismeasured afterwards. After repeating the above random
operation sequence k (=50 in our experiment) times, we calculate the average result ofP0(tf), which represents a

Figure 4.The experimentalmeasurement ofχmatrices for (a), (b)Zπ and (c), (d)Zπ/2 rotations. The left and right panels are the real
and imaginary parts of the twoχmatrices, respectively.

Figure 5.The experimentalmeasurement of theχmatrix for theHadamard gate: (a) real and (b) imaginary parts.
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sequencefidelity, Fseq(m). As shown infigure 6, this sequencefidelity can bewellfitted by a power-law decaying
function [41],

= + ( )F A p B , 29m
seq 0 0

whereA0 andB0 absorbs the errors in state preparation and readout, and p is a depolarizing parameter. The
average error over the randomizedClifford gates is given by [41]

=
-

-( ) ( )r
d

d
p

1
1 , 30

where d=2N is the dimension of theHilbert space for an array ofN qubits. In our experiment, the value of the
average error is r=0.0011, or equivalently the fidelity of a randomizedClifford gate is 99.89%,which serves as a
reference for our next interleaved operation (see figure 6).

To extract thefidelity of a specific gateUg, wemake an interleaved operation [41]. At each step, the qubit is
driven by a combination of a randomly select Clifford operator followedUg.With the product operator,
¢ =  = ( )U U UC i

m
g i1 , and the +( )m 1 th operator of ¢ +( )UC , the total quantumoperation is described by

¢ = ¢ +
=( ) ( )U U U UC i

m
g itot 1 [6, 41]. Similarly, wemeasure the sequence fidelity ¢ ( )F mseq . As shown by the examples

infigure 6, ¢ ( )F mseq can also bewellfitted by equation (29)with a newdepolarizing parameter ¢p . Here ¢p can be
considered as a product of the average number p of a randomized Clifford operator and the intrinsic number pg
of the specific gateUg, i.e., = ¢p p pg . Substituting pg into equation (30), we obtain the intrinsic error rg and the
gatefidelity ofUg is given by

= -
-

-
¢⎛

⎝⎜
⎞
⎠⎟ ( )F

d

d

p

p
1

1
1 . 31g

Infigure 6, we list the results of 8 example STA gates, and all the values of Fg are equal or greater than 99.8%.
In the STAprotocol, thefidelity of theHadamard gate (Fg(H)=99.81%) is higher than the product of the
fidelities of theYπ/2 andXπ gates ( =p p( ) ( )F X F Y 99.65%g g 2 ). Thus, our one-step STA gate can efficiently
reduce the error accumulation in a combined operation ofmultiple gates.

5. Summary

In this paper, we propose a scheme of building a universal quantum gate using a ‘STA’ trajectory, which shares
the same spirit as in [25] butwith a different design. This scheme is successfully implemented in a high-quality
superconducting Xmon qubit, and various single-qubit STAquantum gates are created through a precise
microwave control. As demonstrated by the examples of rotations aboutX- andZ-axes and theHadamard gate,
we have achieved high process and gatefidelities (Fp>94.9% and Fg�99.8%), which are very close to the
state-of-the-art values (Fg�99.91%) in the superconducting Xmon qubit system. In principle, the STA
quantumgates allow a large flexibility in the control parameters, such as the pulse amplitude, operation time and

Figure 6.Randomized benchmarkingmeasurement for a set of single-qubit STA quantumgates. The reference and interleaved
sequence fidelities are displayed as functions of the number of Cliffords. Each sequence fidelity is averaged over k=50 randomized
operation (see text), with its standard deviation from themean shown as an error bar. All the gatefidelities are calculated and shown in
the figure.
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pulse shape. Although this paper is focused on single-qubit gates, the STA scheme can be extended to amulti-
qubit system [6, 25]. The improvement and extension of our STA quantumgates will be addressed in the near
future.
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