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Entanglement, a critical resource for quantum information processing, needs to be witnessed in many practical
scenarios. Theoretically, witnessing entanglement is by measuring a special Hermitian observable, called an
entanglement witness (EW), which has non-negative expected outcomes for all separable states but can have
negative expectations for certain entangled states. In practice, an EW implementation may suffer from two
problems. The first one is reliability. Due to unreliable realization devices, a separable state could be falsely
identified as an entangled one. The second problem relates to robustness. A witness may not be optimal for a target
state and fail to identify its entanglement. To overcome the reliability problem, we employ a recently proposed
measurement-device-independent entanglement witness scheme, in which the correctness of the conclusion is
independent of the implemented measurement devices. In order to overcome the robustness problem, we optimize
the EW to draw a better conclusion given certain experimental data. With the proposed EW scheme, where only
data postprocessing needs to be modified compared to the original measurement-device-independent scheme,
one can efficiently take advantage of the measurement results to maximally draw reliable conclusions.

DOI: 10.1103/PhysRevA.93.042317

I. INTRODUCTION

Since the inception of quantum theory, entanglement has
been recognized as one of the most distinctive quantum
features. In a way, Einstein, Podolsky, and Rosen proposed
a paradox [1] on entanglement, which was motivated to argue
against the quantum theory, however, turned out to be an
effective experimental (Bell) test [2] for ruling out classical
theories. In the development of the quantum information
field, entanglement becomes an essential resource for varieties
of tasks [3]. Many quantum advantages can be revealed
if there exists entanglement. Witnessing the existence of
entanglement is thus an important and necessary step for
quantum information processing. For instance, in quantum key
distribution (QKD) [4,5], secret keys are ensured crucially by
showing that entanglement can be preserved after the quantum
channel [6].

In theory, as shown in Fig. 1, entanglement can be witnessed
by measuring a Hermitian observable W , whose output
expectation for any separable state σ is non-negative,

Tr(Wσ ) � 0, (1)

but can be negative for certain entangled state ρ,

Tr(Wρ) < 0. (2)

In this case, we call W an entanglement witness (EW) for ρ

[7]. In general, W can be obtained by a linear combination
of product observables, which can be measured locally on the
subsystems. For a review of entanglement witness, one can
refer to Refs. [8,9].

In reality, an EW implementation may suffer from two
problems. The first one is reliability. That is, one might
conclude unreliable results due to imperfect experimental
devices. In this case, the validity of the EW result depends on
how faithfully one can implement the measurements according
to the witness W . If the realization devices are not well cali-
brated, see Fig. 1 as an example, the practically implemented
observable W ′ may deviate from the original theoretical design
W , which can even be not a witness. That is, there may exist

some separable states σ , such that Tr[σW ′] < 0 � Tr[σW ].
Practically, by exploiting device imperfections, an attack
has been experimentally implemented for an entanglement
witness procedure [10]. In cryptographic applications, such
a problem is regarded as a loophole, where one mistakes
separable states to be entangled ones. For instance, in QKD,
this would indicate that an adversary successfully convinces
the users Alice and Bob to share keys which they think are
secure but are eavesdropped on. Such a problem is solved
by the measurement-device-independent QKD scheme [11],
inspired by the time-reversed entanglement-based scheme
[12–14]. Branciard et al. applied a similar idea to an EW and
proposed the measurement-device-independent entanglement
witness (MDIEW) scheme [15], in which entanglement can
be witnessed without assuming the realization devices. The
MDIEW scheme is based on an important discovery that any
entangled state can be witnessed in a nonlocal game with
quantum inputs [16]. In the MDIEW scheme, it is shown that an
arbitrary conventional EW can be converted to be an MDIEW,
which has been experimentally tested [10].

The second problem lies with the robustness of the EW
implementation. Since each (linear) EW can only identify a
certain regime of entangled states, a given EW is likely to be
ineffective in detecting entanglement existing in an unknown
quantum state. While a failure of detecting entanglement is
theoretically acceptable, in practice, such a failure may cause
an experiment to be highly inefficient. In fact, a conventional
EW can only be designed optimally when the quantum state
has been well calibrated, which, on the other hand, generally
requires one to run quantum state tomography. Practically,
when the prepared state can be well modeled, one can indeed
choose the optimal EW to detect its entanglement. Since a
full tomography requires exponential resources regarding the
number of parties, an EW plays an important role for detecting
well modeled entanglement, which would generally fail for
an arbitrary unknown state. In a way, this problem becomes
more serious in the MDIEW scenario, where the measurement
devices are assumed to be uncharacterized and even untrusted.
In this case, the implemented witness, which may although
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FIG. 1. Entanglement witness and the reliability problem.

be designed optimally in the first place, can become a bad
one which merely detects no entanglement. However, the
observed experimental data may still have enough information
for detecting entanglement. Therefore, the key problem we are
facing here is that given a set of observed experimental data,
what is the best entanglement detection capability one can
achieve.

In detecting quantum nonlocality, a similar problem is to
find the optimal Bell inequality for the observed correlation,
which can be solved efficiently with linear programming [17].
Regarding our problem, we essentially need to optimize over
all entanglement witnesses to draw the best conclusion of
entanglement with the same experiment data, as shown in
Fig. 2(a). As the set of separable states is not a polytope, this
problem cannot be solved by linear programming. Generally
speaking, it is proved that the problem of accurately finding
such an optimal witness is NP-hard [18]. However, if a certain
failure probability is tolerable, we show in this work that
this problem can be efficiently solved. That is, if we admit
a probability less than ε to detect a separable state to be
entangled, we show that the optimal entanglement witness can
be efficiently found. As the optimization step can be effectively
conducted as postprocessing, our scheme does not pose extra
burdens on experiments compared to the original MDIEW

scheme. In this case, our result can be directly applied in
practice.

The rest of the paper is organized as follows. In Sec. II,
we review the MDIEW scheme, which solves the reliability
problem. Then, we introduce our robust MDIEW scheme in
Sec. III and give an explicit example in Sec. IV. In Sec. V, we
summarize our results and discuss practical applications. We
mainly focus our discussion on the bipartite scenario. However,
our results can be naturally generalized to multipartite cases.

II. RELIABLE ENTANGLEMENT WITNESS

A. Nonlocal games

Before reviewing the MDIEW scheme, we first discuss
nonlocal games with classical and quantum inputs as shown in
Fig. 3. In a classical nonlocal game, classical random inputs
x and y are given to two spacelikely separated users Alice
and Bob, who each perform a measurement on a preshared
entangled state ρAB and get outputs a and b, respectively.
According to the probability distribution p(a,b|x,y), a Bell
inequality can be defined by

I =
∑

a,b,x,y

β
x,y

a,b p(a,b|x,y) � IC, (3)

where β
x,y

a,b is the coefficient and IC is a bound for all separable
states σAB . A violation of the inequality can be considered as
a witness for entanglement. As the Bell test does not assume
measurement detail, witnessing entanglement by a Bell test is
device independent. However, as the conclusion is so strong
such that the implementation is self-testing, not all entangled
states can be witnessed in such a way [19,20]. Furthermore, the
requirement of a faithful Bell test is very high, which makes
such a witnesses impractical. For instance, the minimum
efficiency required is 2/3 for all Bell tests with binary inputs
and outputs [21,22]. On the other hand, if we can trust the
measurement, a Bell test essentially becomes an EW. Although
such a method is able to detect all entangled states and is easy to
realize, this scheme is not measurement-device-imperfection
tolerant.

In the seminal work [16], Buscemi introduces the concepts
of nonlocal games with quantum inputs. If one denotes the
inputs of Alice and Bob by ωx and τy , then an inequality

FIG. 2. Optimization of entanglement witnesses. (a) To get the optimal witness of an unknown entangled state ρ, one has to run over all
possible witnesses. Intuitively, this is done by scanning over all witnesses that are tangent to the set of separable states. (b) The optimization
can be efficiently done if a certain failure probability can be tolerated.

042317-2



RELIABLE AND ROBUST ENTANGLEMENT WITNESS PHYSICAL REVIEW A 93, 042317 (2016)

FIG. 3. Bipartite nonlocal game with classical and quantum
inputs. (a) Nonlocal game with classical inputs. Based on the classical
inputs x and y, Alice and Bob each perform a local measurement on
the preshared entangled state ρAB and get classical outputs a and
b, respectively. A linear combination of the probability distribution
p(a,b|x,y) defines a Bell inequality as shown in Eq. (3). (b) Nonlocal
game with quantum inputs. The quantum inputs of Alice and Bob are,
respectively, ωx and τy . It is shown [16] that any entangled quantum
states can be witnessed with a certain nonlocal game with quantum
inputs. Equivalently, if we consider that Alice and Bob each prepares
an ancillary state and a third party Eve performs the measurement,
this setup also corresponds to the case of an MDIEW.

similar to a Bell inequality can be defined by

J =
∑

a,b,x,y

β
x,y

a,b p(a,b|ωx,τy) � JC, (4)

where JC is also the bound for all separable states ρAB . As
the quantum inputs can be indistinguishable, it is proved that
all entangled states can violate a certain inequality [16]. If we
consider that the input states are faithfully prepared by Alice
and Bob, then such a nonlocal game with quantum inputs can
be considered as an MDIEW [15]. Moreover, as shown below,
there is no detection efficiency limit for such a test.

B. MDIEW

The nonlocal game presented in Ref. [16] can be considered
as a reliable entanglement witness method, which does not
witness a separable state as entangled with an arbitrary imple-
mented measurement. This nonlocal game is thus an MDIEW,
i.e., J � 0 for all separable states and J can be negative if
Alice and Bob share an entangled state. Furthermore, the
statement that J � 0 for all separable states is independent
of the implementation of the measurement. In Ref. [15], the
authors put this statement into a more concrete and practical
framework. They show that, for an arbitrary conventional EW,
there is a corresponding MDIEW. Below, we will quickly show
how to derive MDIEWs from conventional EWs.

Focus on the bipartite scenario with Hilbert space HA ⊗
HB , with dimensions dimHA = dA and dimHB = dB . For a
bipartite entangled state ρAB defined on HA ⊗ HB , we can
always find a conventional entanglement witness W such that
Tr[WρAB] < 0 and Tr[WσAB] � 0 for any separable state σAB .
Suppose {ωT

x } and {τT
y } to be two bases for Hermitian operators

on HA and HB , respectively. Thus, we can decompose W on
the basis {ωT

x ⊗ τT
y } by

W =
∑
x,y

βx,yωT
x ⊗ τT

y , (5)

where βx,y are real coefficients and the transpose is for later
convenience. Notice that, owing to the completeness of the
set of density matrices, we further require {ωx} and {τy} to be
density matrices. In addition, the decomposition of Hermitian
operators is not unique which varies with different {ωx}
and {τy}.

With a conventional EW decomposed in Eq. (5), an
MDIEW can be obtained by

J =
∑
x,y

β
x,y

1,1 p(1,1|ωx,τy), (6)

where β
x,y

1,1 = βx,y and p(1,1|ωx,τy) is the probability of
outputting (a = 1,b = 1) with input states (ωx,τy). In the
MDIEW design, Alice (Bob) performs Bell state measure-
ment on ρA (ρB) and ωx (τy). The probability distribution
p(1,1|ωx,τy) is thus obtained by the probability of projecting
onto the maximally entangled state |�+

AA〉 = 1/
√

dA

∑dA

i=1 |ii〉
and |�+

BB〉 = 1/
√

dB

∑dB

j=1 |jj 〉.
As shown in Ref. [15] and also the Appendix, J is

linearly proportional to the conventional witness with an ideal
measurement,

J = Tr[WρAB]/dAdB. (7)

Thus, J defined in Eq. (6) witnesses entanglement. Further-
more, it can be proved that such a witness is independent of the
measurement devices. That is, even if the measurement devices
are imperfect, J is always non-negative for all separable states
and hence no separable state will be mistakenly witnessed to
be entangled. We refer to Ref. [15] and also the Appendix for
a rigorous proof.

Theoretically, the MDIEW scheme prevents identifying
separable states as being entangled. Such a reliable MDIEW
has been experimentally demonstrated lately [10]. In practice,
however, such a scheme can be inefficient, meaning that it
witnesses very few entangled states despite that the observed
data could actually provide more information. This is because,
in the MDIEW procedure, one first chooses a conventional EW
and then realizes it in an MDI way. The conventional EW is
chosen based on an empirical estimation of the to-be-witnessed
state; thus it may not be able to witness the state for an
ill estimation. Furthermore, even if the conventional EW is
optimal in the first place, the measurement imperfection will
make it suboptimal in practice. Especially, when the input
states {ωx ⊗ τy} are complete, a specific witness may not be
able to detect entanglement. With complete information, a
natural question is whether we can obtain maximal information
about entanglement, i.e., get the optimal estimation of an
MDIEW.

III. ROBUST MDIEW

Now, we present a method to optimize the MDIEW given
fixed observed experiment data p(1,1|ωx,τy). Before digging
into the details, we compare the problem to a similar one in
nonlocality. In the nonlocality scenario, a Bell inequality is
used as a witness for quantumness; see Eq. (3). In practice, the
Bell inequality may not be optimal for the observed probability
distribution p(a,b|x,y). As the probability distribution of a
classical correlation forms a polytope, one can run linear
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programming to get an optimal Bell inequality for p(a,b|x,y).
While, in our case, the probability distribution p(1,1|ωx,τy)
with separable states is only a convex set but no longer a
polytope. Thus, our problem cannot be solved directly with
linear programming.

A. Problem formulation

Let us start with formulating the optimization problem.
Informally, our problem can be described as follows:

Problem (informal). Find an optimal witness for the
observed probability distribution p(1,1|ωx,τy). �

According to Eq. (6), the witness value is defined by a linear
combination of p(1,1|ωx,τy) with coefficient βx,y . To witness
entanglement, the coefficient βx,y must lead to a witness as
defined in Eq. (5). In addition, as we can always assign 2βx,y

to double a violation, we require a trace normalization of the
witness W by

Tr[W ] = 1. (8)

Under this normalization, the optimal entanglement witness
W [23] for a given state ρ is defined by the solution to the
minimization

min Tr[Wρ]. (9)

Generally speaking, the minimum value, i.e., maximum
violation, of the entanglement witness makes the result more
robust to experimental errors and statistical fluctuations. Fur-
thermore, a larger violation of entanglement witness can also
help for a larger estimation of entanglement measures [24].

Therefore, the problem can be expressed as
Problem (formal). For a given probability distribution

p(1,1|ωx,τy), minimize

J (βx,y) =
∑
x,y

βx,yp(1,1|ωx,τy) (10)

over all βx,y satisfying∑
x,y

βx,yTr
[
σAB

(
ωT

x ⊗ τT
y

)]
� 0, (11)

for any separable state σAB and

Tr

[∑
x,y

βx,yωT
x ⊗ τT

y

]
= 1. (12)

�
Contrary to the optimization of the Bell inequality, we

can see that this problem is much more complex. When
the measurements are implemented faithfully, it is easy to
verify that p(1,1|ωx,τy) = Tr[(ωx ⊗ τy)ρAB]/

√
dAdB , where

ρAB is the state measured. Therefore, finding the optimal
βx,y is equivalent to finding the optimal entanglement witness
W = ∑

x,y βx,yωT
x ⊗ τT

y for state ρAB . A possible solution to
this problem is to try all entanglement witnesses to find the
optimal one; see Fig. 2. However, it is proved that the problem
of accurately finding such an optimal witness is NP-hard [18].
Thus, our problem is also intractable for the most general case.

B. ε-level optimal EW

The key for the problem being intractable is that there is no
efficient way to characterize an arbitrary entanglement witness.
In the bipartite case, an operator is an witness if and only if

Tr[σABW ] � 0 (13)

for any separable state σAB . As σAB can always be decomposed
as a convex combination of separable states as |ψ〉A|φ〉B , the
condition can be equivalently expressed as

〈ψ |A〈φ|BW |ψ〉A|φ〉B � 0, (14)

for any pure states |ψ〉A and |φ〉B . The constraints for a witness
W are very difficult to describe in the most general case, which
makes our problem hard.

However, this problem can be resolved if we allow certain
failure errors. A Hermitian operator Wε is defined as an ε-level
entanglement witness, when

Prob{Tr[σWε] < 0|σ ∈ S} � ε, (15)

where S is the set of separable states. That is, the operator Wε

has a probability less than or equal to ε to detect a randomly
selected separable quantum state to be entangled. Intuitively,
ε can be regarded as a failure error probability. We refer to
Ref. [25] for a rigorous definition. It is shown that the ε-level
optimal EW can be found efficiently for any given entangled
state ρ. In particular, constrained on Tr[Wε] = 1 and Wε to be
an ε-level EW, one can run a semidefinite programming (SDP)
to minimize Tr[Wερ].

C. Solution

Following the method proposed in Ref. [25], we can solve
the minimization problem given in Eq. (10) by allowing a
certain failure probability ε. First, we relax the constraint given
in Eq. (11). Instead of requiring being non-negative for all
separable states, we randomly generate N separable states
{|ψ〉iA|φ〉iB} and require that∑

x,y

βx,y
〈
ωT

x ⊗ τT
y

〉i � 0,∀i ∈ {1,2, . . . ,N}, (16)

where 〈ωT
x ⊗ τT

y 〉i = 〈ψ |iA〈φ|iBωT
x ⊗ τT

y |ψ〉iA|φ〉iB . Then the
problem can be expressed as

Problem (ε-level). Given a probability distribution
p(1,1|ωx,τy), minimize

J (βx,y) =
∑
x,y

βx,yp(1,1|ωx,τy) (17)

over all βx,y satisfying∑
x,y

βx,y
〈
ωT

x ⊗ τT
y

〉i � 0,∀i ∈ {1,2, . . . ,N}, (18)

for N randomly generated separable states {|ψ〉iA|φ〉iB} and∑
x,y

βx,yTr
[
ωT

x ⊗ τT
y

] = 1. (19)

�
This problem can be converted to an SDP solvable problem

when we reexpress the inequality of numbers in Eq. (18) by an
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inequality of matrices. To do so, we only need to notice that
Eq. (14) is equivalent to require that

WB = 〈ψ |AWε |ψ〉A � 0,∀|ψ〉A, (20)

where WB � 0 indicates that WB has non-negative eigenval-
ues. Therefore, we only need to generate N states |ψ〉iA, for
i = 1,2, . . . ,N , and the problem is

Problem (ε-level, SDP). Given a probability distribution
p(1,1|ωx,τy), minimize

J (βx,y) =
∑
x,y

βx,yp(1,1|ωx,τy) (21)

over all βx,y satisfying∑
x,y

βx,y〈ψ |iAωT
x |ψ〉iAτT

y � 0,∀i ∈ {1,2, . . . ,N}, (22)

for N randomly generated states {|ψ〉iA} and∑
x,y

βx,yTr
[
ωT

x ⊗ τT
y

] = 1. (23)

�
In practice, we can run an SDP to solve this problem.

According to Refs. [25,26], to get the ε-level witness with
probability at least 1 − β, the number of random states N

should be at least r/(εβ) − 1. Here r is the number of
optimization variables, i.e., coefficients β, and β can be
understood as the failure probability of the minimization
program. It is worth to remark that the problem can be similarly
solved in the multipartite case.

IV. EXAMPLE

In this section, we show explicit examples about how the
witness becomes nonoptimal in the MDI scenario and how this
problem can be resolved by running the optimizing program.

Suppose the to-be-witnessed state is a two-qubit Werner
state [19]:

ρv
AB = v|�−〉〈�−| + (1 − v)I/4, (24)

where ν ∈ [0,1], |�−〉 = 1/
√

2(|01〉 − |10〉), and I is the iden-
tity matrix. The designed entanglement witness for the Werner
states is

W = 1
2I − |�−〉〈�−|. (25)

As Tr[Wρv
AB] = (1 − 3v)/4, ρv

AB is entangled for v > 1/3 and
separable otherwise.

As shown in Ref. [15], we can choose the input set by

ωx = σx

I + 	n · 	σ
2

σx,τy = σy

I + 	n · 	σ
2

σy,x,y = 0, . . . ,3,

(26)

where 	n = (1,1,1)/
√

3, 	σ = (σ1,σ2,σ3) is the Pauli matrices,
and σ0 = I . According to Eq. (5), the witness can be
decomposed on the basis of {ωx ⊗ τy} with coefficient βx,y

given by

βx,y =
{

5
8 if x = y

− 1
8 if x 
= y.

(27)

FIG. 4. Simulation results of the original and optimized MDIEW
protocols. The to-be-witnessed state is the two-qubit Werner state
defined in Eq. (24). Here, we consider that Alice projects onto |�+

AA〉
and Bob projects onto |�−

BB〉. In this case, the original MDIEW cannot
detect entanglement, while the optimized MDIEW protocol detects
all entangled Werner states.

And the MDIEW value is given by

J = 5

8

∑
x=y

p(1,1|ωx,τy) − 3

8

∑
x 
=y

p(1,1|ωx,τy). (28)

In the ideal case, the probability distribution p(1,1|ωx,τy)
is obtained by projecting onto maximally entangled states,
that is,

p(1,1|ωx,τy) = Tr[(MA ⊗ MB) × (ωx ⊗ ρAB ⊗ τy)], (29)

where MA = |�+
AA〉〈�+

AA| and MB = |�+
BB〉〈�+

BB |. However,
in practice, there may exist imperfection in a measurement.
For instance, we consider that Alice’s measurement is perfect
while Bob’s measurement is instead

M ′
B = |�−

BB〉〈�−
BB |, (30)

where |�−
BB〉 = 1/

√
2(|00〉 − |11〉). In the case of quantum

key distribution, projecting onto |�−
BB〉 can be regarded as a

phase error.
As shown in Fig. 4, we plot the original MDIEW and the

optimized MDIEW results. For the original MDIEW result,
as Bob’s measurement is incorrect, no Werner state given
in Eq. (24) can be witnessed to be entangled. Although,
by optimizing over all possible entanglement witness, we
show that ρv

AB is entangled as long as v > 1/3. In this
case, the optimized MDIEW can detect all entangled Werner
states. In our program, we set N = 1000 and we can see
from Fig. 4 that no separable state is falsely identified as
entangled.

V. DISCUSSION

In this work, we propose an optimized MDIEW scheme
to solve the reliability and robustness problems at the same
time in entanglement detection, which maximally exploits the
measurement data to investigate the entanglement property
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without trusting the measurement. By adopting an ε-level EW,
we present an efficient way for the optimization procedure.
As an explicit example, we show that the original MDIEW
may not detect entanglement while our optimized MDIEW
can. As our optimization can be regarded as a postprocessing
of experimental data, our scheme can be easily applied in
practice.

The optimization program finds the ε-level optimal EW
Wε , which as its name indicates, has a probability less than or
equal to ε to detect a separable state to be entangled. To get
a smaller ε, one can use a larger number N of random states.
In this case, the ε can be regarded as the statistical fluctuation
which is inversely related to the number of trials N . On the
one hand, to efficiently get the optimal witness Wε , one has to
introduce a nonzero failure error ε; on the other hand, we can
always add an extra term to the EW to eliminate ε, i.e.,

W = Wε + αI, (31)

where α is chosen to be the minimum value such that W is
an entanglement witness. To efficiently find α, one can make
use of the technique similar to Ref. [27], in which EW can be
systematically constructed.
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APPENDIX: PROOF OF MDIEW

Here, we review the properties of the MDIEW scheme
and refer to Ref. [15] for further reference. First, when the
measurement is to project onto the maximally entangled state,
we show that

J = Tr[WρAB]/dAdB. (A1)

Proof. When Alice and Bob perform both projection mea-
surements onto the maximally entangled state, the conditional

probability distribution is

p(1,1|ωx,τy) = Tr[(|�+
AA〉〈�+

AA|
⊗|�+

BB〉〈�+
BB |)(ωx ⊗ ρAB ⊗ τy)] (A2)

= Tr
[(

ωT
x ⊗ τT

y

)
ρAB

]
/dAdB. (A3)

In this case, the MDIEW value J is

J =
∑
x,y

βx,yTr
[(

ωT
x ⊗ τT

y

)
ρAB

]
/dAdB (A4)

= Tr[WρAB]/dAdB. (A5)

�
Second, we show that for an arbitrary measurement, the

MDIEW value will be non-negative for any separable state σ .
Proof. Suppose Alice and Bob are asked to

witness a separable state σAB = ∑
i piσ

i
A ⊗ σ i

B , where
pi � 0,

∑
i pi = 1, and the measurements are general

positive-operator valued measure elements MA,MB ,
respectively. Consequently, we can represent the conditional
probability distribution as the following:

p(1,1|ωx,τy) = Tr[(MA ⊗ MB)(ωx ⊗ σAB ⊗ τy)] (A6)

=
∑

i

piTr[(Ai
1 ⊗ Bi

1)(ωx ⊗ τy)], (A7)

where Ai
1 = TrA[MA(I ⊗ σ i

A)] and Bi
1 = TrB[MB(I ⊗ σ i

B)].
Therefore, the MDIEW value J is

J =
∑
x,y

βx,y
∑

i

piTr[(Ai
1 ⊗ Bi

1)(ωx ⊗ τy)] (A8)

= Tr

[(∑
i

piA
i
1 ⊗ Bi

1

)
WT

]
(A9)

= Tr

⎡
⎣(∑

i

piA
i
1 ⊗ Bi

1

)T

W

⎤
⎦. (A10)

As W is an EW and (
∑

i piA
i
1 ⊗ Bi

1)
T

is a separable state,
we can see that J � 0 for an arbitrary measurement and
separable state σAB . �

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] J. S. Bell, Physics 1, 195 (1964); Speakable and Unspeakable in
Quantum Mechanics (Cambridge University Press, Cambridge,
1987).

[3] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[4] C. H. Bennett and G. Brassard, in Proceedings of the IEEE
International Conference on Computers, Systems and Signal
Processing (IEEE Press, New York, 1984), pp. 175–179.

[5] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[6] M. Curty, M. Lewenstein, and N. Lütkenhaus, Phys. Rev. Lett.

92, 217903 (2004).
[7] B. M. Terhal, Linear Algebra Appl. 323, 61 (2001).
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