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Abstract

Goal-oriented reinforcement learning has recently been a practical framework for
robotic manipulation tasks, in which an agent is required to reach a certain goal
defined by a function on the state space. However, the sparsity of such reward
definition makes traditional reinforcement learning algorithms very inefficient.
Hindsight Experience Replay (HER), a recent advance, has greatly improved
sample efficiency and practical applicability for such problems. It exploits previous
replays by constructing imaginary goals in a simple heuristic way, acting like an
implicit curriculum to alleviate the challenge of sparse reward signal. In this paper,
we introduce Hindsight Goal Generation (HGG), a novel algorithmic framework
that generates valuable hindsight goals which are easy for an agent to achieve in
the short term and are also potential for guiding the agent to reach the actual goal
in the long term. We have extensively evaluated our goal generation algorithm on a
number of robotic manipulation tasks and demonstrated substantially improvement
over the original HER in terms of sample efficiency.

1 Introduction

Recent advances in deep reinforcement learning (RL), including policy gradient methods (Schulman
et al., 2015, 2017) and Q-learning (Mnih et al., 2015), have demonstrated a large number of successful
applications in solving hard sequential decision problems, including robotics (Levine et al., 2016),
games (Silver et al., 2016; Mnih et al., 2015), and recommendation systems (Karatzoglou et al., 2013),
among others. To train a well-behaved policy, deep reinforcement learning algorithms use neural
networks as functional approximators to learn a state-action value function or a policy distribution
to optimize a long-term expected return. The convergence of the training process, particularly in
Q-learning, is heavily dependent on the temporal pattern of the reward function (Szepesvári, 1998).
For example, if only a non-zero reward/return is provided at the end of an rollout of a trajectory
with length L, while no rewards are observed before the L-th time step, the Bellman updates of the
Q-function would become very inefficient, requiring at least L steps to propagate the final return to the
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Q-function of all earlier state-action pairs. Such sparse or episodic reward signals are ubiquitous in
many real-world problems, including complex games and robotic manipulation tasks (Andrychowicz
et al., 2017). Therefore, despite its notable success, the application of RL is still quite limited to
real-world problems, where the reward functions can be sparse and very hard to engineer (Ng et al.,
1999). In practice, human experts need to design reward functions which would reflect the task
needed to be solved and also be carefully shaped in a dense way for the optimization in RL algorithms
to ensure good performance. However, the design of such dense reward functions is non-trivial in
most real-world problems with sparse rewards. For example, in goal-oriented robotics tasks, an
agent is required to reach some state satisfying predefined conditions or within a state set of interest.
Many previous efforts have shown that the sparse indicator rewards, instead of the engineered dense
rewards, often provide better practical performance when trained with deep Q-learning and policy
optimization algorithms (Andrychowicz et al., 2017). In this paper, we will focus on improving
training and exploration for goal-oriented RL problems.

A notable advance is called Hindsight Experience Replay (HER) (Andrychowicz et al., 2017), which
greatly improves the practical success of off-policy deep Q-learning for goal-oriented RL problems,
including several difficult robotic manipulation tasks. The key idea of HER is to revisit previous
states in the experience replay and construct a number of achieved hindsight goals based on these
visited intermediate states. Then the hindsight goals and the related trajectories are used to train
an universal value function parameterized by a goal input by algorithms such as deep deterministic
policy gradient (DDPG, Lillicrap et al. (2016)). A good way to think of the success of HER is to
view HER as an implicit curriculum which first learns with the intermediate goals that are easy to
achieve using current value function and then later with the more difficult goals that are closer to the
final goal. A notable difference between HER and curriculum learning is that HER does not require
an explicit distribution of the initial environment states, which appears to be more applicable to many
real problems.

In this paper, we study the problem of automatically generating valuable hindsight goals which are
more effective for exploration. Different from the random curriculum heuristics used in the original
HER, where a goal is drawn as an achieved state in a random trajectory, we propose a new approach
that finds intermediate goals that are easy to achieve in the short term and also would likely lead
to reach the final goal in the long term. To do so, we first approximate the value function of the
actual goal distribution by a lower bound that decomposes into two terms, a value function based on
a hindsight goal distribution and the Wasserstein distance between the two distributions. Then, we
introduce an efficient discrete Wasserstein Barycenter solver to generate a set of hindsight goals that
optimizes the lower bound. Finally, such goals are used for exploration.

In the experiments, we evaluate our Hindsight Goal Generation approach on a broad set of robotic
manipulation tasks. By incorporating the hindsight goals, a significant improvement on sample
efficiency is demonstrated over DDPG+HER. Ablation studies show that our exploration strategy is
robust across a wide set of hyper-parameters.

2 Background

Reinforcement Learning The goal of reinforcement learning agent is to interact with a given
environment and maximize its expected cumulative reward. The environment is usually modeled by a
Markov Decision Process (MDP), given by tuples 〈S,A, P,R, γ〉 , where S,A represent the set of
states and actions respectively. P : S × A → S is the transition function and R : S × A → [0, 1]
is the reward function. γ is the discount factor. The agent trys to find a policy π : S → A that
maximizes its expected curriculum reward V π(s0), where s0 = s is usually given or drawn from a
distribution µ0 of initial state. The value function V π(s) is defined as

V π(s) = Es0=s,at∼π(·|st),st+1∼P (·|st,at)

[ ∞∑
t=0

γtR(st, at)

]
.

Goal-oriented MDP In this paper, we consider a specific class of MDP called goal-oriented MDP.
We use G to denote the set of goals. Different from traditional MDP, the reward function R is a
goal-conditioned sparse and binary signal indicating whether the goal is achieved:

Rg(st, at, st+1) :=

{
0, ‖φ(st+1)− g‖2 ≤ δg
−1, otherwise. (1)
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φ : S → G is a known and tractable mapping that defines goal representation. δg is a given threshold
indicating whether the goal is considered to be reached (see Plappert et al. (2018)).

Universal value function The idea of universal value function is to use a single functional approxi-
mator, such as neural networks, to represent a large number of value functions. For the goal-oriented
MDPs, the goal-based value function of a policy π for any given goal g is defined as V π(s, g), for all
state s ∈ S. That is

V π(s, g) := Es0=s,at∼π(·|st,g),st+1∼P (·|st,at)

[ ∞∑
t=0

γtRg(st, at, st+1)

]
. (2)

Let T ∗ : S × G → [0, 1] be the joint distribution over starting state s0 ∈ S and goal g ∈ G.. That is,
at the start of every episode, a state-goal pair (s0, g) will be drawn from the task distribution T ∗. The
agent tries to find a policy π : S × G → A that maximizes the expectation of discounted cumulative
reward

V π(T ∗) := E
(s0,g)∼T ∗

[V π(s0, g)] (3)

Goal-oriented MDP characterizes several reinforcement benchmark tasks, such as the robotics tasks
in the OpenAI gym environment (Plappert et al., 2018). For example, in the FetchPush (see Figure 1)
task, the agent needs to learn pushing a box to a designated point. In this task, the state of the system
s contains the status for both the robot and the box. The goal g, on the other hand, only indicates the
designated position of the box. Thus, the mapping φ is defined as a mapping from a system state s to
the position of the box in s.

Access to Simulator One of the common assumption made by previous work is an universal simulator
that allows the environment to be reset to any given state (Florensa et al., 2017; Ecoffet et al., 2019).
This kind of simulator is excessively powerful, and hard to build when acting in the real world. On
the contrary, our method does not require an universal simulator, and thus is more realizable.

3 Related Work

Multi-Goal RL The role of goal-conditioned policy has been investigated widely in deep reinforce-
ment learning scenarios (Pong et al., 2019). A few examples include grasping skills in imitation
learning (Pathak et al., 2018; Srinivas et al., 2018), disentangling task knowledge from environment
(Mao et al., 2018a; Ghosh et al., 2019), and constituting lower-level controller in hierarchical RL
(Oh et al., 2017; Nachum et al., 2018; Huang et al., 2019; Eysenbach et al., 2019). By learning a
universal value function which parameterizes the goal using a function approximator (Schaul et al.,
2015), an agent is able to learn multiple tasks simultaneously (Kaelbling, 1993; Veeriah et al., 2018)
and identify important decision states (Goyal et al., 2019b). It is shown that multi-task learning with
goal-conditioned policy improves the generalizability to unseen goals (e.g., Schaul et al. (2015)).

Hindsight Experience Replay Hindsight Experience Replay (Andrychowicz et al., 2017) is an
effective experience replay strategy which generates reward signal from failure trajectories. The
idea of hindsight experience replay can be extended to various goal-conditioned problems, such
as hierarchical RL (Levy et al., 2019), dynamic goal pursuit (Fang et al., 2019a), goal-conditioned
imitation (Ding et al., 2019; Sun et al., 2019) and visual robotics applications (Nair et al., 2018;
Sahni et al., 2019). It is also shown that hindsight experience replay can be combined with on-policy
reinforcement learning algorithms by importance sampling (Rauber et al., 2019).

Curriculum Learning in RL Curriculum learning in RL usually suggests using a sequence of
auxiliary tasks to guide policy optimization, which is also related to multi-task learning, lifelong
learning, and transfer learning. The research interest in automatic curriculum design has seen rapid
growth recently, where approaches have been proposed to schedule a given set of auxiliary tasks
(Riedmiller et al., 2018; Colas et al., 2019), and to provide intrinsic motivation (Forestier et al.,
2017; Péré et al., 2018; Sukhbaatar et al., 2018; Colas et al., 2018). Generating goals which leads to
high-value states could substantially improve the sample efficiency of RL agent (Goyal et al., 2019a).
Guided exploration through curriculum generation is also an active research topic, where either
the initial state (Florensa et al., 2017) or the goal position (Baranes and Oudeyer, 2013; Florensa
et al., 2018) is considered as a manipulable factor to generate the intermediate tasks. However, most
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curriculum learning methods are domain-specific, and it is still open to build a generalized framework
for curriculum learning.

4 Automatic Hindsight Goal Generation

Figure 1: Visualization of hind-
sight goals (pink particles).

As discussed in the previous section, HER provides an effective
solution to resolve the sparse reward challenge in object manipu-
lation tasks, in which achieved state in some past trajectories will
be replayed as imaginary goals. In the other words, HER modifies
the task distribution in replay buffer to generate a set of auxiliary
nearby goals which can used for further exploration and improve
the performance of an off-policy RL agent which is expected to
reach a very distant goal. However, the distribution of hindsight
goals where the policy is trained on might differ significantly from
the original task or goal distribution. Take Figure 1 as an example,
the desired goal distribution is lying on the red segment, which is
far away from the initial position. In this situation, those hindsight
goals may not be effective enough to promote policy optimization in original task. The goal of
our work is to develop a new approach to generate valuable hindsight goals that will improve the
performance on the original task.

In the rest of this section, we will present a new algorithmic framework as well as our implementation
for automatic hindsight goal generation for better exploration.

4.1 Algorithmic Framework

Following Florensa et al. (2018), our approach relies on the following generalizability assumption.
Assumption 1. A value function of a policy π for a specific goal g has some generalizability to
another goal g′ close to g.

One possible mathematical characterization for Assumption 1 is via the Lipschitz continuity. Similar
assumptions have been widely applied in many scenarios (Asadi et al., 2018; Luo et al., 2019):

|V π(s, g)− V π(s′, g′)| ≤ L · d((s, g), (s′, g′)), (4)

where d((s, g), (s′, g′)) is a metric defined by

d((s, g), (s′, g′)) = c‖φ(s)− φ(s′)‖2 + ‖g − g′‖2. (5)

for some hyperparameter c > 0 that provides a trade-off between the distances between initial states
and the distance between final goals. φ(·) is a state abstraction to map from the state space to the goal
space. When experimenting with the tasks in the OpenAI Gym environment (Plappert et al., 2018),
we simply adopt the state-goal mappings as defined in (1). Although the Lipschitz continuity may
not hold for every s, s′ ∈ S, g, g′ ∈ G, we only require continuity over some specific region. It is
reasonable to claim that bound Eq. (4) holds for most of the (s, g), (s′, g′) when d((s, g), (s′, g′)) is
not too large.

Partly due to the reward sparsity of the distant goals, optimizing the expected cumulative reward
(see Eq. (3)) from scratch is very difficult. Instead, we propose to optimize a relaxed lower bound
which introduces intermediate goals that may be easier to optimize. Here we provide Theorem 1 that
establishes the such a lower bound.
Theorem 1. Assuming that the generalizability condition (Eq. (4)) holds for two distributions
(s, g) ∼ T and (s′, g′) ∼ T ′, we have

V π(T ′) ≥ V π(T )− L ·D(T , T ′). (6)

where D(·, ·) is the Wasserstein distance based on d(·, ·)

D(T (1), T (2)) = inf
µ∈Γ(T (1),T (2))

(
Eµ[d((s0

(1), g(1)), (s0
(2), g(2)))]

)
where Γ(T (1), T (2)) denotes the collection of all joint distribution µ(s0

(1), g(1), s0
(2), g(2)) whose

marginal probabilities are T (1), T (2), respectively.
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The proof of Theorem 1 is deferred to Appendix A.

It follows from Theorem 1 that optimizing cumulative rewards Eq. (3) can be relaxed into the
following surrogate problem

max
T ,π

V π(T )− L ·D(T , T ∗). (7)

Note that this new objective function is very intuitive. Instead of optimizing with the difficult goal/task
distribution T ∗, we hope to find a collection of surrogate goals T , which are both easy to optimize
and are also close or converging towards T ∗. However the joint optimization of π and T is non-trivial.
This is because a) T is a high-dimensional distribution over tasks, b) policy π is optimized with
respect to a shifting task distribution T , c) the estimation of value function V π(T ) may not be quite
accurate during training.

Inspired by Andrychowicz et al. (2017), we adopt the idea of using hindsight goals here. We first
enforce T to be a finite set of K particles which can only be from those already achieved states/goals
from the replay buffer B. In another word, the support of the set T should lie inside B. In the
meanwhile, we notice that a direct implementation of problem Eq. (7) may lead to degeneration
of hindsight goal selection of the training process, i.e., the goals may be all drawn from a single
trajectory, thus not being able to provide sufficient exploration. Therefore, we introduce an extra
diversity constraint, i.e, for every trajectory τ ∈ B, at most µ states can be selected in T . In practice,
we find that simply setting it to 1 would result in reasonable performance. It is shown in Section 5.3
that this diversity constraint indeed improves the robustness of our algorithm.

Finally, the optimization problem we aim to solve is,

max
π,T :|T |=K

V π(T )− L ·D(T , T ∗)

s.t.
∑

s0,st∈τ
1[(s0, φ(st)) ∈ T ] ≤ 1, ∀τ ∈ B

∑
τ∈B

∑
s0,st∈τ

1[(s0, φ(st)) ∈ T ] = K.

To solve the above optimization, we adapt a two-stage iterative algorithm. First, we apply a policy
optimization algorithm, for example DDPG, to maximize the value function conditioned on the
task set T . Then we fix π and optimize the the hindsight set T subject to the diversity constraint,
which is a variant of the well-known Wasserstein Barycenter problem with a bias term (the value
function) for each particle. Then we iterate the above process until the policy achieves a desirable
performance or we reach a computation budget. It is not hard to see that the first optimization of
value function is straightforward. In our work, we simply use the DDPG+HER framework for it.
The second optimization of hindsight goals is non-trivial. In the following, we describe an efficient
approximation algorithm for it.

4.2 Solving Wasserstein Barycenter Problem via Bipartite Matching

Since we assume that T is hindsight and with K particles, we can approximately solve the above
Wasserstein Barycenter problem in the combinatorial setting as a bipartite matching problem. Instead
of dealing with T ∗, we drawK samples from T ∗ to empirically approximate it by a set ofK particles
T̂ ∗. In this way, the hindsight task set T can be solved in the following way. For every task instance
(ŝi0, ĝ

i) ∈ T̂ ∗, we find a state trajectory τ i = {sit} ∈ B that together minimizes the sum∑
(ŝi0,ĝ

i)∈T̂ ∗

w((ŝi0, ĝ
i), τ i) (8)

where we define

w((ŝi0, ĝ
i), τ i) := c‖φ(ŝi0)− φ(si0)‖2 + min

t

(
‖ĝi − φ(sit)‖2 −

1

L
V π(si0, φ(sit))

)
. (9)

Finally we select each corresponding achieved state st ∈ τ to construct hindsight goal (ŝ0, φ(st)) ∈
T . It is not hard to see that the above combinatorial optimization exactly identifies optimal solution
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T in the above-mentioned Wasserstein Barycenter problem. In practice, the Lipschitz constant L is
unknown and therefore treated as a hyper-parameter.

The optimal solution of the combinatorial problem in Eq. (8) can be solved efficiently by the well-
known maximum weight bipartite matching (Munkres, 1957; Duan and Su, 2012). The bipartite
graph G({Vx, Vy}, E) is constructed as follows. Vertices are split into two partitions Vx, Vy. Every
vertex in Vx represents a task instance (ŝ0, ĝ) ∈ T̂ ∗, and vertex in Vy represents a trajectory τ ∈ B.
The weight of edge connecting (ŝ0, ĝ) and τ is −w((ŝ0, ĝ), τ) as defined in Eq. (9). In this paper, we
apply the Minimum Cost Maximum Flow algorithm to solve this bipartite matching problem (for
example, see Ahuja et al. (1993)).

Algorithm 1 Exploration via Hindsight Goal Generation (HGG)

1: Initialize π . initialize neural networks
2: B ← ∅
3: for iteration = 1, 2, . . . , N do
4: Sample {(ŝi0, ĝi)}Ki=1 ∼ T ∗ . sample from target distribution
5: Find K distinct trajectories {τ i}Ki=1 that minimize . weighted bipartite matching

K∑
i=1

w((ŝi0, ĝ
i), τ i) =

K∑
i=1

(
c‖φ(ŝi0)− φ(si0)‖2 + min

t

(
‖ĝi − φ(sit)‖2 −

1

L
V π(si0, φ(sit))

))
6: Construct intermediate task distribution {(ŝi0, gi)}Mi=1 where

gi = φ

(
arg min
sit∈τi

(
‖ĝi − φ(sit)‖2 −

1

L
V π(si0, φ(sit))

))
7: for i = 1, 2, . . . ,K do
8: (s0, g)← (ŝi0, g

i) . critical step: hindsight goal-oriented exploration
9: for t = 0, 1, . . . ,H − 1 do

10: at ← π(·|st, g) + noise . together with ε-greedy or Gaussian exploration
11: st+1 ∼ P (·|st, at)
12: rt ← Rg(st, at, st+1)

13: τ ← {s0, a0, r0, s1, . . . }
14: B ← B ∪ {τ}
15: for i = 1 . . .M do
16: Sample a minibatch b from replay buffer using HER
17: Perform one step on value and policy update on minibatch b using DDPG

Overall Algorithm The overall description of our algorithm is shown in Algorithm 1. Note that our
exploration strategy the only modification is in Step 8, in which we generate hindsight goals to guide
the agent to collect more valuable trajectories. So it is complementary to other improvements in
DDPG/HER around Step 16, such as the prioritized experience replay strategy (Schaul et al., 2016;
Zhao and Tresp, 2018; Zhao et al., 2019) and other variants of hindsight experience replay (Fang
et al., 2019b; Bai et al., 2019).

5 Experiments

Our experiment environments are based on the standard robotic manipulation environments in the
OpenAI Gym (Brockman et al., 2016)3. In addition to the standard settings, to better visualize the
improvement of the sample efficiency, we vary the target task distributions in the following ways:

• Fetch environments: Initial object position and goal are generated uniformly at random from
two distant segments.

• Hand-manipulation environments : These tasks require the agent to rotate the object into a
given pose, and only the rotations around z-axis are considered here. We restrict the initial

3Our code is available at https://github.com/Stilwell-Git/Hindsight-Goal-Generation.
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axis-angle in a small interval, and the target pose will be generated in its symmetry. That is,
the object needs to be rotated in about π degree.

• Reach environment: FetchReach and HandReach do not support randomization of the initial
state, so we restrict their target distribution to be a subset of the original goal space.

Regarding baseline comparison, we consider the original DDPG+HER algorithm. We also investigate
the integration of the experience replay prioritization strategies, such as the Energy-Based Prioritiza-
tion (EBP) proposed by Zhao and Tresp (2018), which draws the prior knowledge of physics system
to exploit valuable trajectories. More details of experiment settings are included in the Appendix B.

5.1 HGG Generates Better Hindsight Goals for Exploration

HGG

HER

(a) Episode 500 (b) Episode 1000 (c) Episode 2000 (d) Episode 3000

Figure 2: Visualization of goal distribution generated by HGG and HER on FetchPush. The initial
object position is shown as a black box. The blue segment indicates target goal distribution. The
above row presents the distribution of the hindsight goals generated by our HGG method, where
bright green particles is a batch of recently generated goals, and dark green particles present the
goals generated in the previous iterations. The bottom row presents the distribution of replay goals
generated by HER.

We first check whether HGG is able to generate meaningful hindsight goals for exploration. We
compare HGG and HER in the FetchPush environment. It is shown in Figure 2 that HGG algorithm
generates goals that gradually move towards the target region. Since those goals are hindsight, they
are considered to be achieved during training. In comparison, the replay distribution of a DDPG+HER
agent has been stuck around the initial position for many iterations, indicating that those goals may
not be able to efficiently guide exploration.

Performance on benchmark robotics tasks

Figure 3: Learning curves for variant a number of goal-oriented robotic manipulation tasks. All
curves presented in this figure are trained with default hyper-parameters included in Appendix C.1.
Note that since FetchReach and HandReach do not contain object instances for EBP, so we do not
include the +EBP versions for them.
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Then we check whether the exploration provided by the goals generated by HGG can result in better
policy training performance. As shown in Figure 3, we compare the vanilla HER, HER with Energy-
Based Prioritization (HER+EBP), HGG, HGG+EBP. It is worth noting that since EBP is designed
for the Bellman equation updates, it is complementary to our HGG-based exploration approach.
Among the eight environments, HGG substantially outperforms HER on four and has comparable
performance on the other four, which are either too simple or too difficult. When combined with EBP,
HGG+EBP achieves the best performance on six environments that are eligible.

Figure 4: Visualization of FetchPush with obstacle.

Performance on tasks with obstacle In a more
difficult task, crafted metric may be more suit-
able than `2-distance used in Eq. (5). As shown
in Figure 4, we created an environment based on
FetchPush with a rigid obstacle. The object and
the goal are uniformly generated in the green
and the red segments respectively. The brown
block is a static wall which cannot be moved.
In addition to `2, we also construct a distance
metric based on the graph distance of a mesh
grid on the plane, the blue line is a successful trajectory in such hand-craft distance measure. A more
detailed description is deferred to Appendix B.3. Intuitively speaking, this crafted distance should be
better than `2 due to the existence of the obstacle. Experimental results suggest that such a crafted
distance metric provides better guidance for goal generation and training, and significantly improves
sample efficiency over `2 distance. It would be a future direction to investigate ways to obtain or
learn a good metric.

5.2 Comparison with Explicit Curriculum Learning

Figure 5: Comparison with curricu-
lum learning. We compare HGG
with the original HER, HER+GOID
with two threshold values.

Since our method can be seen as an explicit curriculum learn-
ing for exploration, where we generate hindsight goals as
intermediate task distribution, we also compare our method
with another recently proposed curriculum learning method for
RL. Florensa et al. (2018) leverages Least-Squares GAN (Mao
et al., 2018b) to mimic the set called Goals of Intermediate
Difficult as exploration goal generator.

Specifically, in our task settings, we define a goal set
GOID(π) = {g : α ≤ f(π, g) ≤ 1 − α}, where f(π, g)
represents the average success rate in a small region closed by
goal g. To sample from GOID, we implement an oracle goal
generator based on rejection sampling, which could uniformly
sample goals from GOID(π). Result in Figure 5 indicates
that our Hindsight Goal Generation substantially outperforms HER even with GOID from the oracle
generator. Note that this experiment is run on a environment with fixed initial state due to the
limitation of Florensa et al. (2018). The choice of α is also suggested by Florensa et al. (2018).

5.3 Ablation Studies on Hyperparameter Selection

In this section, we set up a set of ablation tests on several hyper-parameters used in the Hindsight
Goal Generation algorithm.

Lipschitz L: The selection of Lipschitz constant is task dependent, since it iss related with scale of
value function and goal distance. For the robotics tasks tested in this paper, we find that it is easier
to set L by first divided it with the upper bound of the distance between any two final goals in a
environment. We test a few choices of L on several environments and find that it is very easy to find
a range of L that works well and shows robustness for all the environments tested in this section. We
show the learning curves on FetchPush with different L. It appears that the performance of HGG is
reasonable as long as L is not too small. For all tasks we tested in the comparisons, we set L = 5.0.

Distance weight c: Parameter c defines the trade-off between the initial state similarity and the goal
similarity. Larger c encourages our algorithm to choose hindsight goals that has closer initial state.

8



Results in Figure 6 indicates that the choice of c is indeed robust. For all tasks we tested in the
comparisons, we set c = 3.0.

Number of hindsight goals K: We find that for the simple tasks, the choice of K is not critical.
Even a greedy approach (corresponds to K = 1) can achieved competitive performance, e.g. on
FetchPush in the third panel of Figure 6. For more difficult environment, such as FetchPickAndPlace,
larger batch size can significantly reduce the variance of training results. For all tasks tested in the
comparisons, we ploted the best results given by K ∈ {50, 100}.

Figure 6: Ablation study of hyper-parameter selection. Several curves are omitted in the forth panel
to provide a clear view of variance comparison. A full version is deferred to Appendix D.4.

6 Conclusion

We present a novel automatic hindsight goal generation algorithm, by which valuable hindsight
imaginary tasks are generated to enable efficient exploration for goal-oriented off-policy reinforcement
learning. We formulate this idea as a surrogate optimization to identify hindsight goals that are easy
to achieve and also likely to lead to the actual goal. We introduce a combinatorial solver to generate
such intermediate tasks. Extensive experiments demonstrated better goal-oriented exploration of
our method over original HER and curriculum learning on a collection of robotic learning tasks. A
future direction is to incorporate the controllable representation learning (Thomas et al., 2017) to
provide task-specific distance metric (Ghosh et al., 2019; Srinivas et al., 2018), which may generalize
our method to more complicated cases where the standard Wasserstein distance cannot be applied
directly.
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A Proof of Theorem 1

In this section we provide the proof of Theorem 1.
Theorem 1. Assuming that the generalizability condition (Eq. (4)) holds for two distributions
(s, g) ∼ T and (s′, g′) ∼ T ′, we have

V π(T ′) ≥ V π(T )− L ·D(T , T ′). (6)

where D(·, ·) is the Wasserstein distance based on d(·, ·)

D(T (1), T (2)) = inf
µ∈Γ(T (1),T (2))

(
Eµ[d((s0

(1), g(1)), (s0
(2), g(2)))]

)
where Γ(T (1), T (2)) denotes the collection of all joint distribution µ(s0

(1), g(1), s0
(2), g(2)) whose

marginal probabilities are T (1), T (2), respectively.

Proof. By Eq. (4), for any quadruple (s, g, s′, g′), we have

V π(s′, g′) ≥ V π(s, g)− L · d((s, g), (s′, g′)). (10)

For any µ ∈ Γ(T , T ′), we sample (s, g, s′, g′) ∼ µ and take the expectation on both sides of Eq. (10),
and get

V π(T ′) ≥ V π(T )− L · Eµ[d((s, g), (s′, g′))]. (11)

Since Eq. (11) holds for any µ ∈ Γ(T , T ′), we have

V π(T ′) ≥ V π(T )− L · inf
µ∈Γ(T ,T ′)

(Eµ[d((s, g), (s′, g′))]) = V π(T )− L ·D(T , T ′).

B Experiment Settings

B.1 Modified Environments

Figure 7: Visualization of modified task distribution in Fetch environments. The object is uniformly
generated on the green segment, and the goal is uniformly generated on the red segment.

Fetch Environments:

• FetchPush-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coordi-
nate on the table. The object is uniformly generated on the segment (−0.15,−0.15, 0)−
(0.15,−0.15, 0), and the goal is uniformly generated on the segment (−0.15, 0.15, 0) −
(0.15, 0.15, 0).
• FetchPickAndPlace-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coor-

dinate on the table. The object is uniformly generated on the segment (−0.15,−0.15, 0)−
(0.15,−0.15, 0), and the goal is uniformly generated on the segment (−0.15, 0.15, 0.45)−
(0.15, 0.15, 0.45).
• FetchSlide-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coordi-

nate on the table. The object is uniformly generated on the segment (−0.05,−0.1, 0) −
(−0.05, 0.1, 0), and the goal is uniformly generated on the segment (0.55,−0.15, 0) −
(0.55, 0.15, 0).
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Hand Environments:

• HandManipulateBlockRotate-v0, HandManipulateEggRotate-v0: Let s0 be the default
initial state defined in original simulator (Plappert et al., 2018). The initial pose is generated
by applying a rotation around z-axis, where the rotation degree will be uniformly sampled
from [−π/4, π/4]. The goal is also rotated from s0 around z-axis, where the degree is
uniformly sampled from [π − π/4, π + π/4].

• HandManipulatePenRotate-v0: We use the same setting as the original simulator.

Reach Environments:

• FetchReach-v1: Let the origin (0, 0, 0) denote the coordinate of gripper’s initial position.
Goal is uniformly generated on the segment (−0.15, 0.15, 0.15)− (0.15, 0.15, 0.15).

• HandReach-v0: Uniformly select one dimension of meeting point and add an offset of 0.005,
where meeting point is defined in original simulator (Plappert et al., 2018)

Other attributes of the environment (such as horizon H , reward function Rg) are kept the same as
default.

B.2 Evaluation Details

• All curves presented in this paper are plotted from 10 runs with random task initializations
and seeds.

• Shaded region indicates 60% population around median.

• All curves are plotted using the same hyper-parameters (except ablation section).

• Following Andrychowicz et al. (2017), an episode is considered successful if ‖φ(sH) −
g‖2 ≤ δg is achieved, where φ(sH) is the object position at the end of the episode. δg is the
same threshold using in reward function (1).

B.3 Details of Experiment with obstacle

Using the same coordinate system as Appendix B.1. Let the origin (0, 0, 0) denote the projec-
tion of gripper’s initial coordinate on the table. The object is uniformly generated on the seg-
ment (−0.15,−0.15, 0)− (−0.045,−0.15, 0), and the goal is uniformly generated on the segment
(−0.15, 0.15, 0)− (−0.045, 0.15, 0). The wall lies on (−0.3, 0, 0)− (0, 0, 0).

The crafted distance used in Figure 4 is calculated by the following rules.

• The distance metric between two initial states is kept as before.

• The distance between the hindsight goal g and the desired goal g∗ is evaluated as the
summation of two parts. The first part is the `2 distance between the goal g and its closest
point g′ on the blue polygonal line shown in Figure 4. The second part the distance between
g′ and g∗ along the blue line.

• The above two terms are comined with the same ratio used in Eq. (5).

B.4 Details of Experiment 5.2

• Since the environment is deterministic, the success rate f(π, g) is defines as

f(π, g) =

∫
g′∈B(g,δg)

1[π achieves success for the goal g′] dg′,

where B(g, δg) indicates a ball with radius δg, centered at g. And δg is the same threshold
using in reward function (1) and success testing.

• The average success rate oracle f(π, g) is estimated by 102 samples.
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Figure 8: Visualization of modified task distribution in Experiment 5.2. The initial position of the
object is as shown in this figure, and the goal is uniformly generated in the blue region.

C Implementation Details

C.1 Hyper-Parameters

Almost all hyper-parameters using DDPG and HER are kept the same as benchmark results, only
following terms differ with Plappert et al. (2018):

• number of MPI workers: 1;

• buffer size: 104 trajectories.

Other hyper-parameters:

• Actor and critic networks: 3 layers with 256 units and ReLU activation;

• Adam optimizer with 10−3 learning rate;

• Polyak-averaging coefficient: 0.95;

• Action L2-norm penalty coefficient: 1.0;

• Batch size: 256;

• Probability of random actions: 0.3;

• Scale of additive Gaussian noise: 0.2;

• Probability of HER experience replay: 0.8;

• Number of batches to replay after collecting one trajectory: 20.

Hyper-parameters in weighted bipartite matching:

• Lipschitz constant L: 5.0;

• Distance weight c: 3.0;

• Number of hindsight goals K: 50 or 100.

C.2 Details on Data Processing

• In policy training of HGG, we sample minibatches using HER.

• As a normalization step, we use Lipschitz constant L∗ = L
(1−γ)dmax in back-end computa-

tion, where dmax is the `2-diameter of the goal space G, and L corresponds to the amount
discussed in ablation study.

• To reduce computational cost of bipartite matching, we approximate the buffer set by a
First-In-First-Out queue containing 103 recent trajectories.

• An additional Gaussian noise N (0, 0.05I) is added to goals generated by HGG in Fetch
environments. We don’t add this term in Hand environments because the goal space is not
Rd.
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D Additional Experiment Results

D.1 Additional Visualization of Hindsight Goals Generated by HGG

(a) (b) (c)

Figure 9: Additional visualization to illustrate the hindsight goals generated by HGG.

To give better intuitive illustrations on our motivation, we provide an additional visualization of goal
distribution generated by HGG on a complex manipulation task FetchPickAndPlace (Figures 9a and
9b). In Figure 9a, “blue to green” corresponds to the generated goals during training. HGG will
guide the agent to understand the location of the object in the early stage, and move it to its nearby
region. Then it will learn to move the object towards the easiest direction, i.e. pushing the object
to the location underneath the actual goal, and finally pick it up. For those tasks which are hard to
visualize, such as the HandManipultation tasks, we plotted the curves of distances between proposed
exploratory goals and actually desired goals (Figure 9c), all experiment followed the similar learning
dynamics.

D.2 Evaluation on Standard Tasks

In this section, we provide experiment results on standard Fetch tasks. The learning are shown in
Figure 10.

Figure 10: Learning curves for HGG and HER in standard task distribution created by Andrychowicz
et al. (2017).

D.3 Additional Experiment Results on Section 5.2

We provide the comparison of the performance of HGG and explicit curriculum learning on Fetch-
PickAndPlace environment (see Figure 11), showing that the result given in Section 5.2 generalizes
to a different environment.
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Figure 11: Comparison with explicit curriculum learning in FetchPickAndPlace. The initial position
of the object is as shown in the left figure, and the goal is generated in the blue region following the
default distribution created by Andrychowicz et al. (2017).

D.4 Ablation Study

We provide full experiments on ablation study in Figure 12.

Figure 12: A full version of ablation study.
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