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In classical computational chemistry, the coupled-cluster ansatz is one of the most commonly used ab initio
methods, which is critically limited by its nonunitary nature. The unitary modification as an ideal solution to the
problem is, however, extremely inefficient in classical conventional computation. Here, we provide experimental
evidence that indeed the unitary version of the coupled-cluster ansatz can be reliably performed in a physical
quantum system, a trapped-ion system. We perform a simulation on the electronic structure of a molecular ion
(HeH+), where the ground-state energy surface curve is probed, the energies of the excited states are studied, and
bond dissociation is simulated nonperturbatively. Our simulation takes advantages from quantum computation to
overcome the intrinsic limitations in classical computation, and our experimental results indicate that the method
is promising for preparing molecular ground states for quantum simulations.
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The central problem in quantum chemistry and molecular
physics is the determination the electronic structure and the
ground-state energy of atoms and molecules by solving the
quantum many-body equations, which is generally intractable
due to the exponential scaling to the size of the system.
Quantum simulation [1–6] can provide the solution for such
an “exponential catastrophe” problem. The key ingredient
of quantum molecular simulation consists of (i) ground-
(excited-) state preparation and (ii) energy estimation of the
corresponding state [3,4]. Recently, the assessed costs for the
energy estimation of a well-prepared ground state in quantum
computation have been immensely reduced [7–11], indicating
that chemistry simulation can be one of the main applications
of a quantum computer in the near future. However, it is still
a remaining major obstacle to efficiently and reliably find the
molecular ground state, which belongs to a class of extremely
hard problems called quantum Merlin Arthur, the quantum
analog of the NP -hard problem [12,13]. Recently, various
theoretical schemes for the ground-state problem have been
proposed and proof-of-principle experimental demonstrations
have been performed, including adiabatic [14–16] and algo-
rithmic preparations [17–20].

For the ground-state problem, developments in conven-
tional quantum chemistry can be adopted to quantum com-
putation. In computational chemistry, it has been the main
focus to circumvent the problem by approximating the many-
body Schrödinger equation, and a series of theoretical and
numerical methods have been developed. The coupled-cluster
method is one of the most prominent ab initio methods for
finding a molecular ground state and it is considered to
be the current benchmark [21–24]. However, the coupled-
cluster ansatz is built with a nonunitary operation, which
leads to drawbacks such as lacking a variational bound on
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the ground-state energy [22–26]. The unitary version of the
coupled-cluster methods would perfectly resolve the problem,
whereas it is classically inefficient without proper truncation
of the infinite series expansion. It has been a long-standing
challenge to build an efficient computational scheme for
the unitary coupled-cluster (UCC) ansatz. The authors of
Refs. [6,27] pointed out that the UCC ansatz can be efficiently
implemented in a quantum computer. In other words, the
quantum implementation of the UCC method can outperform
the classical computation for the problem of finding the
molecular ground state.

Recently, a variational method of approximating molecular
ground states has been experimentally tried in a photonic
system [27]. Due to challenges in the system, however, the
variational ansatz employed in the experimental demonstration
was not the UCC ansatz, but the “device ansatz,” which is
a device-specific method, and therefore is not scalable. As
discussed in Ref. [6], the UCC ansatz provides a generic and
scalable scheme for generating a parametrized state for the
variational method and can be implemented efficiently with
quantum devices including trapped ions.

Here, we report on an experimental realization of the UCC
ansatz with a minimal basis, based on a quantum simulation in
a multilevel of a trapped 171Yb+ ion. We simulate the electronic
structure of a molecular ion (HeH+) [27,28] and reliably
find the molecular ground state as well as the corresponding
energy by the UCC ansatz and the variational method, which
can be considered as an alternative method for the energy
estimation [29,30]. Moreover, we apply the quantum UCC
method to compute excited states and chemical-bond softening
nonperturbatively.

The coupled-cluster approach is based on the variational
method with the trial state of the exponential ansatz in the form
of eT |G〉. Here, |G〉 is a reference state, such as the Hartree-
Fock ground state, and the cluster operator T is constructed
as a sum of the n-electron excitation operator Tn with the
transition amplitudes as variational parameters [see Eq. (S1) in
the Supplemental Material (SM) [31]]. However, the operator
T is not necessarily Hermitian and energy estimation by the
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ansatz is not guaranteed to be bounded by the variational
theorem [25,26].

The UCC scheme is based on the form of the following
ansatz,

|ψUCC〉 = eT −T † |G〉 , (1)

which apparently provides a solution of the non-Hermitianity
problem in the coupled-cluster theory. However, classical
implementations of the UCC have intrinsic limitations,
e.g., an infinite series of the expansion [26] (see also SM,
Sec. B: Classical implementation of UCC ansatz [31]). As
a result, all classical applications of UCC involve some
types of truncations with potentially uncontrollable errors.
On the other hand, the unitary operator U ≡ eT −T †

can be
considered as a time-evolution operator, i.e., U ≡ e−iHeff ,
driven by an effective Hamiltonian Heff ≡ i(T − T †) with
the dimensionless time interval set to 1. Since the time
evolution is efficiently simulated in a quantum system [32],
the quantum implementation of the UCC ansatz can reduce
the computational cost more than the classical requirement.

The whole procedure of finding the ground state of a target
molecule is shown in Fig. 1(a), which is also discussed in
Refs. [6,27]. After efficiently preparing a trial state with the
UCC ansatz in a quantum system that maps the classical basis
set of the target molecule, we measure the average energy of
the state. The preparation of the UCC ansatz and the energy
measurement are performed in the quantum system. Based
on a classical feedback algorithm, we adjust the parameters,
i.e., the cluster amplitudes of the UCC ansatz. We repeat the
quantum process of preparation and measurement until we find
the variational minimum of the target Hamiltonian.

Target molecule (see also SM, Sec. C: The Hamiltonian of
HeH+). We choose the helium hydride cation (HeH+) [27,28]
for the computation of the energy curve. In the second quan-
tization representation with the minimal Slater-type orbital
(STO-3G) basis set [24] from the 1s orbitals of hydrogen and
helium, the Hamiltonian of HeH+ is described by

H (R) =
∑

pq

hpq(R)â†
pâq + 1

2

∑

pqrs

hpqrs(R)â†
pâ†

q âr âs , (2)

where R is the nuclear separation between hydrogen and
helium, hpq(R) and hpqrs(R) are related to one-electron and
two-electron transitions, respectively, and the index p,q,r,s

stands for the four possible states in our Hilbert space. The
terms of hpq(R) and hpqrs(R) are computed numerically by
the Hartree-Fock method with a scaling of O(M4), where M is
the number of molecular orbits. The creation and annihilation
operators in the Hamiltonian (2) are mapped to spin Pauli
operators by performing the Jordan-Wigner transformation,
and pairs of Pauli operators are mapped to four-level systems.
After the mapping, the Hartree-Fock basis for HeH+ consists
of the following set of four states, {|G〉 , |E11〉 , |E12〉 , |E2〉},
as shown in Fig. 1(b).

Mapping of HeH+ on 171Yb+ ion. The electron excitation
operators, which excite the electrons out of the Hartree-Fock
ground state, up to two electron excitations, are given by

T1 = t11a
†
2↓a1↓ + t12a

†
2↑a1↑, T2 = t2a

†
2↓a

†
2↑a1↑a1↓. (3)

FIG. 1. (a) The conceptual procedure and (b)–(f) the experimental
realization of the UCC simulation to find the ground state of the target
molecule. (b) The Hartree-Fock basis states of the target molecule,
HeH+. (c) The mapping of the basis states on the energy levels
of 171Yb+ including cluster amplitudes t11, t12, and t2, which are
controlled by the duration of microwave pulses. (d) The microwave
pulse sequence for the preparation of the UCC ansatz. The effective
time evolution operator eT −T †

is expanded by the Suzuki-Trotter
scheme (see SM, Sec. C: Quantum implementation of the UCC
ansatz [31]). (e) The measurement of energy 〈H 〉 of the UCC ansatz
given cluster amplitudes. (f) A classical minimum search algorithm
(Nelder-Mead) is applied to determine the cluster amplitudes for the
next UCC ansatz and the final ground state.

Note that all the terms are spin preserving, and the t11,t12,t2
are in general complex numbers to be determined by an
optimization process. After the same mapping process of the
Hamiltonian (2), the effective Hamiltonian Heff ≡ i(T − T †)
for the cluster operators is written as

Heff = it11(|E11〉 〈G| + |E2〉 〈E12|)
+ it12(|E12〉 〈G| + |E2〉 〈E11|)
+ it2 |E2〉 〈G| + H.c. (4)

We realize the effective Hamiltonian Heff in a quantum system
of multiple energy levels in the trapped 171Yb+ ion. As shown
in Fig. 1(c), four energy levels in the ground-state manifold of
2S1/2 of the 171Yb+ are employed [33,34] to map the basis state
as |F = 0,mF = 0〉 ≡ |G〉 and |F = 1,mF = −1,1,0〉 ≡
{|E11〉 , |E12〉 , |E2〉}, which are separated by ωHF − ωz,
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ωHF + ωz, and ωHF, where the hyperfine splitting of
ωHF = (2π )12.642 821 GHz, Zeeman splitting of ωz =
(2π )13.586 MHz, with a static magnetic field of B = 9.694 G.

Preparation of the UCC ansatz (see also SM Sec. D:
Quantum implementation of the UCC ansatz [31]). The
unitary operator U ≡ e−iHeff is implemented as a time
evolution of the system with the effective Hamiltonian Heff

as shown in Fig. 1(d). The initialization of the state to |G〉
is performed by the standard optical pumping technique. The
transitions {|G〉 ↔ |E11〉 , |G〉 ↔ |E12〉 , |G〉 ↔ |E2〉} are
implemented by applying resonant microwaves. The other
transitions {|E11〉 ↔ |E2〉 , |E12〉 ↔ |E2〉} are achieved by
applying the composite pulse sequences shown in the insets of
Fig. 1(d). Consequently, the experimental implementation of
the unitary operator U is achieved by the sequence depicted in
Fig. 1(d), which results from the second-order Suzuki-Trotter
expansion. In the experiment, the UCC amplitudes t11, t12,

and t2 are controlled by the durations of the corresponding
microwave transitions. We note that for HeH+, the amplitudes
near the molecular ground state are much smaller than 1
and the errors from small Trotter expansions (N = 2 in our
experiment) are negligible.

Energy measurement of the UCC ansatz. We can ob-
tain the energy 〈H 〉 = ∑

pq 〈Hpq〉 + ∑
pqrs 〈Hpqrs〉, where

Hpq = hpqâ
†
pâq and Hpqrs = hpqrs â

†
pâ

†
q âr âs , by term-by-term

measurements and the addition of all of them in the target
Hamiltonian (2). For our case of HeH+ in the minimal basis, it
requires 24 measurements (see SM, Sec. C: The Hamiltonian
of HeH+ [31]), which requires the information for all the
components in the density matrix of the UCC ansatz (see
also SM, Sec. E: Measurement of the energy for HeH+ [31]).
Note that as the system size increases, we do not need full
knowledge of the density matrix of the state for the energy
measurement, since the number of terms in the Hamiltonian (2)
scales polynomially [6,27]. Since we need full knowledge
of the density matrix for our small-scale simulation, we
reconstruct the full density matrix ρ

exp
UCC by standard quantum

state tomography, which requires 15 measurements, and obtain
the energy by Tr(ρexp

UCCH ). For the relevant components of
the density matrix, we repeat the standard measurements up
to 1000 times, which give a 3.2% projection uncertainty of
standard deviation.

Classical minimization algorithm. The preparation and the
measurement of a UCC ansatz are performed in a quantum
system and the minimization process is supported by the
classical algorithm. The measured value of 〈H 〉 for the
prepared UCC ansatz is taken as an input for a classical
optimization algorithm, which compares it to the previous
values and suggests a new set of {t11,t12,t2}, so that the same
procedure is repeated until the resulting 〈H 〉 converges to some
value. As a result, we obtain an optimized state with minimal
energy for approximating the ground state of HeH+ in the form
of a UCC ansatz in Eq. (1). In our realization, we use a popular
Nelder-Mead minimum search algorithm [35].

Figure 2 shows an instance of the energy optimization
process, when the nuclei separation of HeH+ is fixed to be
R = 1.7 a.u. Note that throughout this Rapid Communication,
atomic units (a.u.) are used. The algorithm is capable of finding
the minimum energy and state in around 100 iterations with
the full six-parameter simulations as shown in Fig. 2(a). About
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FIG. 2. The search process for the minimum energy at R =
1.7 a.u. assisted by the classical Nelder-Mead algorithm with the
UCC ansatz. The measured energy 〈H 〉 (dots) and the fidelity of
the prepared state (bars) to the ideal ground state depending on
the number of iterations (a) with the full six parameters and (b)
with two parameters. For both cases, the algorithm converges to the
ground-state energy obtained by exact diagonalization with decent
fidelity of the state. Red dots show the successful steps that contribute
to the convergence. (c) The side view and (d) the bottom view of
the searching process with two parameters for the successful steps.
Atomic units (a.u.) are used for the energy through all the figures.

half as many iterations shown in Fig. 2(b) can be achieved for
an ansatz simplified to contain two parameters (see SM, Sec.
F: Reduction of parameters [31]). Since both cases provide
equivalent results, we focus on the two-parameter ansatz in
the following discussion. Figures 2(c) and 2(d) show a typical
search for the minimum energy by the classical Nelder-Mead
algorithm with two parameters.

Figure 3 shows the energy curve of the ground state of
HeH+ depending on the nuclear distance R, where each point
is obtained by the procedure of Fig. 2. The experimental data
are in agreement with the energy (orange line) calculated by
exact diagonalization of the full matrix of Hamiltonian (2)
within the error bars. From the energy curve, the equilibrium
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FIG. 3. The ground-state energy of HeH+ depending on the
internucleus distance R. The error bars of the experimental data
mainly come from the quantum projection noise of 1000 repetitions
for each term of the Hamiltonian (2).
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FIG. 4. Applications of the UCC simulation. (a) The ground-state energy of HeH+ subject to a static electric field along the nuclei axis
for different strengths. (b) A comparison between the UCC quantum simulation and the perturbation theory at a given internucleus distance
R = 1.7 a.u. (c) The search process for energies of the excited states of H by finding the ground-state energy of the Hamiltonian (H − λ)2 by
scanning the values of λ. When λ is the energy of an excited state, the experimental minimum value of 〈(H − λ)2〉 tends to be zero. We can
also calculate the excited-state energy from other nonzero values of 〈(H − λ)2〉. If λ is on the left (right) side of the excited energy, the positive
(negative) solution of Emeas = 〈(H − λ)2〉 provides the excited energy.

distance between the nuclei is located at R = 1.73 a.u. with a
corresponding energy of E = −2.86 ± 0.05 a.u.

Furthermore, the same procedure can be used to study
the nonperturbative behaviors of the HeH+ molecular ion
under strong electric field with the new target Hamiltonian
including the effect of the electric field as E · (r1 + r2) − E ·
(2RHe + RH) (see SM, Sec. F: The electric field effect on
HeH+ [31]). Figure 4(a) shows the phenomenon of chemical-
bond softening of HeH+ (at R = 1.7 a.u.) as the strength of the
electric field increases, which eventually leads to a dissociation
of the molecular ions [36]. We compare our nonperturbative
results with those obtained through the first- and second-order
perturbation theories shown in Fig. 4(b).

Finally, we also study the excited states of H by changing
the target Hamiltonian to (H − λ)2, where λ is a parameter
close to the energy of an excited state, which turns the excited
state of H into the ground state of (H − λ)2 (see SM, Sec.
G: The computation of excited states energy [31]). In the
experiment, we uniformly scan the values of λ and apply
the same UCC procedure to find the minimum energy in a
given λ. As shown in Fig. 4(c), we observe that the required
precision for the computation of excited states should be much
higher than the separation of the energies. In the current limited
system, we obtain the energy of the highest excitation that has
a relatively large energy gap to other states, but the rest of them
are not well resolved.

Our current realization is capable of simulating any
molecule up to four electronic levels with a single ion. In
general, a molecule of a system of N electrons in M molecular
orbitals (M � N ) can be implemented with a system of

M qubits or M/2 qudits, four-level systems shown in our
realization, through the Jordan-Wigner transformation and
four-level mapping. For the UCC implementation with a
M-qubit system, it requires simulation of the time evolution of
the M-body interaction, which is equivalent to the nonlocal
product of M Pauli operators. The simulation of such an
M-body interaction, which is the most challenging operation in
the UCC protocol, can be performed by applying 2M times of
a controlled-NOT (CNOT) gate or two times of the multiparticle
Mølmer-Sørensen gates [6,37,38]. The measurement of the
M-qubit Hamiltonian with the O(M4) terms has been already
well established in the trapped-ion system. For the M/2-qudit
Hamiltonian, we can simply use the same measurement
scheme used in our experimental demonstration. The UCC
scheme for the trapped ions can be applied to other physical
platforms [5,39,40].

We emphasize that the computational complexity of the
quantum implementation of the UCC method scales polyno-
mially with the number of orbitals M . Including the maximum
excitation up to k, each cluster operator contains k creation
operators and k annihilation operators. For a total of M orbital
modes, therefore, we have a total of O(M (2k)) terms. After
the Jordan-Wigner transformation, the fermionic operators are
mapped into spin operators, which require O(M) operations.
The total number of scalings as the number of molecular
orbits M is O(M (2k+1)). Moreover, the time evolutions and the
measurements in our UCC implementation allow a parallel
computation [6,27], which boosts the performance. Our
experimental realization of the UCC method opens another
dimension of quantum simulation and offers a solution for
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the classical coupled-cluster methods. We note that some
other current developments in and understanding of the
coupled-cluster schemes could be adapted in the quantum UCC
scheme. Moreover, our UCC scheme could be applied to other
large eigenvalue problems in network search algorithms and
condensed-matter physics.

Note added. Recently, the authors noted that a paper
reporting on the scalable quantum simulation of molecular
energies was published in [41].
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