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Witnessing entanglement is crucial in quantum information processing. With properly preparing ancillary
states, it has been shown previously that genuine entanglement can be witnessed without trusting measurement
devices. In this work we generalize the scenario and show that generic multipartite entanglement structures,
including entanglement of subsystems and entanglement depth, can be witnessed via measurement-device-
independent means. As the original measurement-device-independent entanglement witness scheme exploits
only one out of four Bell measurement outcomes for each party, a direct generalization to multipartite quantum
states will inevitably cause inefficiency in entanglement detection after taking account of statistical fluctuations.
To resolve this problem, we also present a way to utilize all the measurement outcomes. The scheme is efficient
for multipartite entanglement detection and can be realized with state-of-the-art technologies.
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I. INTRODUCTION

Manipulating quantum information provides remarkable
advantages in many tasks, including quantum communication
and computation [1,2]. It is widely believed that quantum
entanglement [3] is an essential resource for many quantum
information schemes, including Bell nonlocality test [4],
quantum key distribution [5,6], and quantum computing [1].
Hence, witnessing the existence of entanglement is a vital
benchmark step for those schemes. A conventional way for
witnessing entanglement is by measuring a Hermitian operator
W that satisfies Tr[σW ] � 0 for all separable states σ and
Tr[ρW ] < 0 for a certain entangled state ρ. Such a method is
generally called entanglement witness (EW) [7]. For a review
of the subject, see Ref. [8] and references therein.

The conclusion of conventional EW relies on faithful
realization of measurements. Imperfect measurements can
lead to inaccurate estimation of the expected value Tr[ρW ],
which can cause false identification of entanglement even for
separable states [9]. One possible solution to such a problem is
by running nonlocality tests [10–12], such as Bell’s inequality
tests, which can witness entanglement without assuming
the realization devices. While realizing a loophole-free Bell
test for an arbitrary quantum state is still technically chal-
lenging, a compromised method, called measurement-device-
independent entanglement witness (MDIEW), is shown to
be able to detect arbitrary entangled state [13] and be
experimental friendly [9,14]. As shown in Fig. 1, the MDIEW
scheme shares a strong similarity to the MDI quantum key
distribution protocol [15], which can also be regarded as a
modification of the Bell test [16]. In the bipartite scenario,
Alice and Bob first prepare ancillary inputs τs and ωt according
to local random numbers s and t , respectively. Then Alice
(resp. Bob) performs a Bell state measurement (BSM) on the
joint state of ρA (resp. ρB) and the ancillary input τs (resp. ωt ).
Based on the probability distribution of inputs and outputs, it
is shown that the witness of entanglement does not rely on the
measurement devices.

For multipartite systems, states can have rich entanglement
structures. For instance, when dividing a state into subsys-
tems, how the subsystem entangles with each other deter-
mines the entanglement structure of the state. Additionally,

entanglement structure also have some high-level properties,
such as entanglement depth, which is related to the concept
of k-producible states [17,18]. A k-producible pure state
|φ〉 can be expressed as a tensor product of subsystems,
|φ〉 = ⊗m

i=1 |φi〉, where each subsystem |φi〉 involves at most
k parties. A mixed state is k-producible if it can be expressed
as a mixture of k-producible pure states. If an N -partite state is
k-producible but not (k − 1)-producible, then such a state has
a depth of k. When an N -partite state has depth of N , we call
it genuinely entangled. In the original MDIEW scheme [13], it
is shown that genuine entanglement can be detected in an MDI
manner, while multipartite entanglement apart from genuine
entanglement also has important applications in quantum
information processing, e.g., high-precision metrology [19]
and extreme spin squeezing [20]. Therefore, it is also important
to detect general multipartite entanglement structures. Many
works have provided ways to detect entanglement relationships
between subsystems [21,22] and entanglement depth [20,23]
with trusted measurement devices. However, it is left open
whether one can detect general multipartite entanglement
structures, including entanglement between subsystems and
entanglement depth, via MDI means.

Also, it is worth mentioning that the original MDIEW
protocol is inefficient for detecting multipartite entanglement,
especially when the number of parties is large. In the bipartite
qubit scenario, only one out of four BSM outcomes of each
party is collected for the final estimation of entanglement. As
there are four BSM outcomes for each party and in total 16
outcomes for both parties, only a small fraction of experiment
data is exploited. When extending the scenario to N parties,
only a ratio of 4−N outcomes is useful for witness.

In this work we present an explicit MDI entanglement
detection scheme for a multipartite entanglement structure. In
Sec. II we first review the original MDIEW scheme and point
out its inefficiency. In Sec. III we propose a more efficient
MDIEW method that exploits all BSM outcomes to faithfully
detect entanglement. As an example, we show how to detect
a general two-qubit Werner state. In Sec. IV we show that
the efficient MDIEW can be used for detecting multipartite
entanglement structure. Finally in Sec. V we discuss our result,
its possible application in practice, and prospective works.
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FIG. 1. Measurement device-independent entanglement witness.
Two users, Alice and Bob, are asked to witness the entanglement of a
bipartite state ρAB . In the MDIEW scheme, Alice and Bob randomly
prepare ancillary states and perform a Bell state measurement jointly
on the to-be-witnessed state and the ancillary state.

II. MDIEW

Many efforts have been devoted to detect the existence
of entanglement [8,24]. Recently a Bell-like scenario with
quantum inputs was proposed to witness entanglement without
trusting the measurement devices, usually referred to as
MDIEW [13]. In the bipartite case, two users, Alice and
Bob, share a bipartite state ρAB defined in a Hilbert space
HA ⊗ HB with dimensions dA and dB , respectively. To witness
the entanglement of ρAB , Alice and Bob randomly prepare
quantum state τs and ωt and then perform BSM on the
to-be-witnessed state and the ancillary state jointly. In the
original protocol, only one projection outcome is considered
as a successful measure, denoted by 1, and other inconclusive
outcomes including losses are regarded as a failure, denoted
by 0. Conditioned on the input ancillary states, the probability
of a successful measurement is denoted by P (1,1|τs,ωt ),

P (1,1|τs,ωt ) = Tr[(|φ+〉 〈φ+| ⊗ |φ+〉 〈φ+|)(τs ⊗ ρAB ⊗ ωt )]

= Tr
[(

τT
s ⊗ ωT

t

)
ρAB

]
, (1)

where |φ+〉 = (|00〉 + |11〉)/√2 is a Bell state and corre-
sponds to the selected BSM outcome. The MDIEW value is
defined by a linear combination of P (1,1|τs,ωt ):

I (ρAB) =
∑
s,t

βs,tP (1,1|τs,ωt ). (2)

Here βs,t are properly chosen coefficients such that I (σAB ) � 0
for any separable state σAB even with arbitrary measurement.
Hence, a negative value for I (ρAB) implies nonzero entangle-
ment in ρAB .

In this original scheme, only one measurement outcome
is utilized for constructing the MDIEW. When assuming that
all BSM outcomes have the same probability, only 1/dAdB

measurement data are utilized in the bipartite qubit scenario.
For a multipartite system with Hilbert space H1 ⊗ H2 · · · ⊗
HN and dimHi = di for i = 1 · · · N , the fraction of exploited
data becomes (d1d2 · · · dN )−2. Therefore, the original MDIEW
scheme will be highly inefficient for detecting multipartite
entanglement, especially when statistical fluctuations are taken
into consideration.

To be more precise, we consider a practical scenario where
an MDIEW experiment for an N partite qubit state runs G � 1

times. Denote the input ancillary states, the coefficients, and
the outcome probability to be τ1,x1 ⊗ · · · ⊗ τN,xN

, βx1,...,xN
,

and P (1, · · · 1|τ1,x1 · · · τN,xN
), respectively. Then the MDIEW

value is given by

I (ρ1,2,...,N ) =
∑

x1,···xN

βx1,··· ,xN
P

(
1, . . . ,1

∣∣τ1,x1 · · · τN,xN

)
. (3)

As shown below, the statistical fluctuation with finite size data
can be large for a multipartite system.

Denote the observed MDIEW value as Ī (ρ1,2,...,N ). In
practice, even if Ī (ρ1,2,...,N ) is negative, due to statistical
fluctuations, it is still possible to get it from measuring a
separable state when the data size G is finite. Consider the
experiment data as a test, then we can use the p-value to
quantify the probability of getting such a negative value
with separable states. Suppose independent and identically
distributed data and a large G, then the observed probability
(rate) P̄ (1, . . . ,1|τ1,x1 · · · τxN

) follows a Gaussian distribution.
As the input ancillary states are randomly prepared, the average
value Ī (ρ1,2,...,N ) also follows a Gaussian distribution with the
expected value defined in Eq. (3). When measuring a separable
state, the average value Ī (ρ1,2,...,N ) at least equals 0 when G

goes to infinity. Therefore, we can compute the p value of an
observed negative value with G experiment runs. Then, we
find that the p value will be in the order of e−G/O((d1d2···dN )2).
Details of the calculation can be found in the Appendix.

In order to maintain a certain p value, the number of
experiment runs G needs to increase exponentially with the
number of parties N . In the following discussion, we will
show that such inefficiency is caused by the poor exploitation
of measurement outcomes. By slightly modifying the MDIEW
scheme, all measurement outcomes can be utilized.

III. MDIEW USING COMPLETE
MEASUREMENT INFORMATION

In this section, we focus on the bipartite qubit case and show
how to construct MDIEW with all measurement outcomes. The
method can be naturally extended to the qudit case. MDIEW in
the multipartite scenario will be discussed in the next section.

The BSM is defined by projection measurement onto
the Bell basis {|φ+〉 , |φ−〉 , |ψ+〉 , |ψ−〉}, where |φ±〉 =

1√
2
(|00〉 ± |11〉) and |ψ±〉 = 1√

2
(|01〉 ± |10〉). Label the four

BSM outcomes for Alice and Bob by i and j ∈ {1,2,3,4},
respectively. Then the probability distribution of outcome i,j

given inputs τs,ωt can be denoted by P (i,j |τs,ωt ).
Theorem 1. For every entangled state ρAB , there exist

coefficients β
i,j
s,t such that

I (ρAB) =
∑
s,t,i,j

β
i,j
s,t P (i,j |τs,ωt ), (4)

where the summation takes over i,j = 1,2,3,4 and the choice
of s,t is an MDIEW for ρAB .

Proof. In conventional EW, for every entangled state
ρAB , there exists a witness W such that Tr[WρAB] < 0, but
Tr[WσAB] � 0 for any separable state [25]. The witness W

can always be decomposed as a linear combination of a tensor
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product of local density matrices in HA and HB,

W =
∑
s,t

βs,t (τs)
T ⊗ (ωt )

T, (5)

where βs,t are real coefficients, (τs)T ∈ HA, (ωt )T ∈ HB are
density matrices, and T denotes a matrix transpose. As the
transposition map preserves eigenvalues, their transpose τs and
ωt are also density matrices. Alice and Bob choose ancillary
states be the transpose of the bases, {τs}s and {ωt }t . The
conditional probability P (1,1|τs,ωt ), shown in Eq. (1), is
proportional to the witness value given by W [13].

Now we need to utilize all the BSM outcomes into
the EW. Note that |φ−〉 = σz |φ+〉, |ψ+〉 = σx |φ+〉, |ψ−〉 =
σxσz |φ+〉, where σz = [1 0

0 −1], σx = [0 1
1 0] are Pauli matri-

ces performed on the second party of Bell states. Define new
sets of bases τ i

s and ω
j
t , for i,j ∈ {1,2,3,4},
τ i
s = miτsm

†
i ,

ω
j
t = mjωtm

†
j , (6)

where m1 = I,m2 = σZ,m3 = σX,m4 = σXσZ . For each i,j ,
the witness W can always be decomposed to

W =
∑
s,t

β
i,j
s,t (τ i

s )T ⊗ (ωj
t )T, (7)

with corresponding real coefficients β
i,j
s,t . Note that, for

different i,j , the coefficients β
i,j
s,t are generally different.

Now, we prove that the witness I (ρAB) defined in Eq. (4)
is an MDIEW with coefficients according to Eq. (7) in the
following two steps. First, we prove the witness to be MDI
with the following lemma.

Lemma 1. The witness value I (σAB) is nonnegative for any
separable state, σAB = ∑

x pxσ
x
A ⊗ σx

B , where
∑

x px = 1,
and an arbitrary measurement {Ai}i=1,2,3,4 ⊗ {Bj }j=1,2,3,4;
that is,

I (σAB) =
∑
s,t,i,j

β
i,j
s,t P (i,j |τs,ωt ) � 0. (8)

Proof. The probability distribution of P (i,j |τs,ωt ) is given
by

P (i,j |τs,ωt ) = Tr[(Ai ⊗ Bj )(τs ⊗ σAB ⊗ ωt )]

=
∑

x

pxTr
[(

Ax
i ⊗ Bx

j

)
(τs ⊗ ωt )

]
, (9)

where Ax
i = TrA[Ai(I ⊗ σx

A)] and Bx
j = TrB[Bj (σx

B ⊗ I)] and
TrA,TrB are the partial trace over systems A,B, respectively.

Considering the transformation in Eq. (6), the probability
distribution of P (i,j |τs,ωt ) can be written as

P (i,j |τs,ωt )

=
∑

x

pxTr
{[(

miA
x
i m

†
i

) ⊗ (
mjB

x
j m

†
j

)](
τ i
s ⊗ ω

j
t

)}
. (10)

Thus, the MDIEW value I (σAB) is given by

I (σAB) =
∑
s,t,i,j

β
i,j
s,t P (i,j |τs,ωt )

=
∑
s,t,i,j

β
i,j
s,t

∑
x

pxTr
{[(

miA
x
i m

†
i

) ⊗ (
mjB

x
j m

†
j

)]

× (
τ i
s ⊗ ω

j
t

)}

=
∑
i,j

∑
x

pxTr

{[(
miA

x
i m

†
i

) ⊗ (
mjB

x
j m

†
j

)]

×
∑
s,t

β
i,j
s,t

(
τ i
s ⊗ ω

j
t

)}

=
∑
i,j

∑
x

pxTr
{[(

miA
x
i m

†
i

) ⊗ (
mjB

x
j m

†
j

)]
WT}

.

(11)

Note that for i,j ∈ {1,2,3,4}, (miA
x
i m

†
i )

T and (mjB
x
j m

†
j )T

are all positive Hermitian matrix. Then Tr{[(miA
x
i m

†
i ) ⊗

(mjB
x
j m

†
j )]WT} = Tr {W [ (miA

x
i m

†
i )

T ⊗ (mjB
x
j m

†
j )T ] } � 0.

Consequently, we prove that I (σAB) � 0. �
The second step is to show it to be a witness.
Lemma 2. The entanglement of ρAB can be witnessed when

the BSM is faithfully performed.
Proof. When the measurement is perfectly realized, the

probability distribution P (i,j |τs,ωt ) is

P (i,j |τs,ωt )

= Tr[(mi |φ+〉 〈φ+| m†
i ⊗ mj |φ+〉 〈φ+| m†

j )

× (τs ⊗ ρAB ⊗ ωt )]

= 1
4 Tr

[(
τ i
s

)T ⊗ (
ω

j
t

)T
ρAB

]
. (12)

Then the witness value is

I (ρAB) =
∑
s,t,i,j

β
i,j
s,t P (i,j |τs,ωt )

= 1

4

∑
i,j

Tr

[∑
s,t

β
i,j
s,t

(
τ i
s

)T ⊗ (
ω

j
t

)T
ρAB

]

= 1

4

∑
i,j

Tr[WρAB]

= 4Tr[WρAB] < 0. (13)

Here the third equality holds because for each pair of outcome
i,j , the summation over s,t can construct W according to
Eq. (7). The fourth equality holds because of the summation
over all i,j that involves 16 pairs of outcome in total. �

With Lemmas 1 and 2, we thus show that a negative value
of I (ρAB) implies the entanglement of ρAB even though the
measurement devices are not trusted.

Example

Now, we will show an example to illustrate the modified
MDIEW scheme. We choose a typical state, called the Werner
state [26], as the target state. The Werner state is defined by a
mixture of a maximal entangled state and the maximal mixed
state,

ρAB = p |ψ−〉 〈ψ−| + 1 − p

4
I, (14)

where |ψ−〉 = (|01〉 − |10〉)/√2 is a singlet state and p ∈
[0,1]. The witness for the Werner state is given by

W = 1
2 − |ψ−〉 〈ψ−| , (15)
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which gives Tr[WρAB]=(1−3p)/4. When p> 1
3 , we have

Tr[WρAB]<0, which implies that the Werner state is entangled.
Suppose Alice and Bob choose ancillary states τ1 = ω1 =

I
2 , τ2 = ω2 = I+σx

2 , τ3 = ω3 = I+σy

2 , τ4 = ω4 = I+σz

2 , where I
is identity and σx,σy,σz are Pauli matrices. The witness W can
be decomposed in the basis (τ i

s )T ⊗ (ωj
t )T. For certain outputs

i,j , the corresponding coefficient matrices β
i,j
s,t are calculated:

β1,1
s,t = β2,2

s,t = β3,3
s,t = β4,4

s,t =

⎡
⎢⎣

4 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

⎤
⎥⎦, (16)

β1,2
s,t = β2,1

s,t = β3,4
s,t = β4,3

s,t =

⎡
⎢⎣

0 −1 1 1
−1 1 0 0

1 0 −1 0
1 0 0 −1

⎤
⎥⎦, (17)

β1,3
s,t = β2,4

s,t = β3,1
s,t = β4,2

s,t =

⎡
⎢⎣

0 1 1 −1
1 −1 0 0
1 0 −1 0

−1 0 0 1

⎤
⎥⎦, (18)

β1,4
s,t = β3,2

s,t = β2,3
s,t = β4,1

s,t =

⎡
⎢⎣

0 1 −1 1
1 −1 0 0

−1 0 1 0
1 0 0 −1

⎤
⎥⎦. (19)

With these coefficients, it is easy to verify that the MDIEW
value I (ρAB), given in Eq. (4), equals to 1 − 3p when the
measurement is perfectly realized.

IV. MDI DETECTION OF MULTIPARTITE
ENTANGLEMENT STRUCTURE

In this section, we show that our MDIEW scheme can
be applied for efficiently detecting multipartite entanglement
structures. First, we focus on applying the modified MDIEW
scheme to detect entanglement between subsystems. Then
we extend it to detect a high-level multipartite entanglement
property, such as entanglement depth.

A. Detecting entanglement between subsystems

In the trusted device scenario, the entanglement between
subsystems has been well studied [21,22]. For simplicity, we
focus on the case of bipartition {A}{B} of an N -partite state
ρ1,2,··· ,N in the Hilbert space H1 ⊗ · · · ⊗ HN . Note that the
extension from bipartition to multipartition is a rather natural.
{A}{B} are the two subsystems involving k,N − k parties,
respectively, with HA = H1 ⊗ · · · ⊗ Hk and HB = Hk+1 ⊗
· · · ⊗ HN . Here we denote S{A}{B} to be the set of states that
are separable regarding to the partition:

S{A}{B} =
{

ρ ∈ HA ⊗ HB |ρ =
∑

x

pxρ
x
A ⊗ ρx

B,
∑

px = 1,

∀x,px � 0,ρx
A ∈ HA,ρx

B ∈ HB

}
. (20)

Furthermore, define a map M,

M(ρ1,2,...,N ) = Trρ1,2,...,N [(M1 ⊗ · · · ⊗ MN )

× (I1 ⊗ · · · ⊗ IN ⊗ ρ1,2,...,N )], (21)

where for each 1 � k � N , Mk is a positive-operator valued
measure (POVM) acting on the Ik and the kth quantum system
of ρ1,2,··· ,N , and Trρ1,2,...,N denotes the partial trace over the space
of ρ1,2,...,N . Now we have the following lemma.

Lemma 3. The map M cannot generate entanglement from
separable states between two subsystems {A}{B}, that is,

M(S{A}{B}) ⊆ S{A}{B}, (22)

where S{A}{B} is defined in Eq. (20).
Proof. For any state ρ ∈ S{A}{B}, it can be expressed as

ρ = ∑
x pxρ

x
A ⊗ ρx

B with
∑

x px = 1, px � 0,∀x, ρx
A ∈ HA,

and ρx
B ∈ HB . In this case, Eq. (21) can be written as

M(ρ) =
∑

x

pxTrρ
[
(MA ⊗ MB)

(
IA ⊗ IB ⊗ ρx

A ⊗ ρx
B

)]
,

(23)

with MA = M1 ⊗ · · · ⊗ Mk , MB = Mk+1 ⊗ · · · ⊗ MN , IA =
I1 ⊗ · · · ⊗ Ik , and IB = Ik+1 ⊗ · · · ⊗ IN . It can be further
written as

M(ρ) =
∑

x

pxM
x
A ⊗ Mx

B, (24)

where Mx
A = TrA[MA(IA ⊗ ρx

A)] and Mx
B = TrB[MB(ρx

B ⊗
IB)], and TrA,TrB are the partial traces over HA and HB,
respectively. Note that MA and MB are POVMs and ρx

A ∈ HA,
ρx

B ∈ HB , so Mx
A and Mx

B are all density matrices, and
M(ρ) ∈ S{A}{B}. �

In the trusted device scenario, the entanglement of a
bipartition can also be detected with an EW [27,28], W1,2,...,N .
Similar to Eq. (5), W1,2,...,N can be decomposed to a linear
combination of a tense product of local density matrices in Hk

for 1 � k � N :

W1,2,...,N =
∑

x1,x2,...,xN

βx1,x2,...,xN

(
τ1,x1

)T ⊗ (
τ2,x2

)T

⊗ · · · ⊗ (
τN,xN

)T
(25)

with xk ∈ {1,2,3,4} where βx1,x2,...,xN
are real coefficients,

(τk,xk
)T ∈ Hi are density matrices, and T denotes a matrix

transpose. The transpose matrices τk,xk
are also density

matrices, which are chosen to be the ancillary states for thekth
party. In order to utilize all the BSM outcomes into the EW,
given input ancillary states τk,xk

and outcomes ik for kth party,
we can decompose W1,2,...,N to

W1,2,...,N =
∑

x1,x2,...,xN

βi1,i2,...,iN
x1,x2,...,xN

(
τ

i1
1,x1

)T

⊗(
τ

i2
2,x2

)T ⊗ · · · ⊗ (
τ

iN
N,xN

)T
. (26)
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Here τ
ik
k,xk

, with 1 � k � N and ik = 1,2,3,4, is defined by

τ
ik
k,xk

= mikτk,xk
m

†
ik
, (27)

where m1 = I,m2 = σz,m3 = σx,m4 = σxσz. With the co-
efficients βi1,i2,...,iN

x1,x2,...,xN
, we can define MDIEW for general

entanglement structure by

I (ρ1,2,...,N ) =
∑

i1,...,iN ,x1,...,xN

βi1,i2,...,iN
x1,x2,...,xN

×P
(
i1,i2, . . . iN |τ1,x1τ2,x2 · · · τN,xN

)
. (28)

Theorem 2. If W1,2,...,N detects the entanglement structure
of a state ρ1,2,...,N , I (ρ1,2,...,N ) defined in Eq. (28) is an MDIEW
for the same structure of ρ1,2,...,N .

Proof. Here we focus on the two-partition case {A}{B}.
The proof is similar to the one of Theorem 1 by extending
it to more parties. For a separable state ρAB ∈ S{A}{B}, the
probability distribution P (i1,i2, . . . ,iN |τ1,x1τ2,x2 · · · τN,xN

) is
given by

P
(
i1,i2, . . . ,iN

∣∣τ1,x1τ2,x2 · · · τN,xN

)
= Tr

[
N⊗

k=1

Mk

(
N⊗

k=1

τk,xk
⊗ ρAB

)]

= Tr

{
Trρ

[
N⊗

k=1

Mi

(
N⊗

k=1

Ik ⊗ ρAB

)]
N⊗

k=1

τk,xk

}

= Tr

[
N⊗

k=1

τk,xk
M(ρAB)

]
, (29)

where M(ρAB) is the map defined in Eq. (21). Thus

I (ρAB) =
∑

i1,...,iN ,x1,...,xN

βi1,i2,...,iN
x1,x2,...,xN

N⊗
k=1

τk,xk
M(ρAB)

=
∑

i1,...,iN

Tr[WM(ρAB)]. (30)

According to Lemma 3, we have thatM(ρAB) ∈ S{A}{B}. Thus,
we prove that I (ρAB) � 0 for all ρAB ∈ S{A}{B}.

To show I (ρ1,2,...,N ) to be a witness for ρ1,2,...,N with ideal
measurements, we refer to Lemma 4. �

Lemma 4. The entanglement structure of ρ1,2,...,N can be
witnessed by I (ρ1,2,...,N ) when the BSM is faithfully realized.

Proof. When the BSM is faithfully performed, the proba-
bility distribution P (i1,i2, . . . ,iN |τ1,x1τ2,x2 · · · τN,xN

) is given
by

P
(
i1,i2, . . . ,iN

∣∣τ1,x1τ2,x2 · · · τN,xN

)
= Tr

[(
N⊗

k=1

mik |φ+〉 〈φ+| m†
ik

)
×

(
N⊗

k=1

τk,xk
⊗ ρ1,2,...,N

)]

= 2−NTr

[
N⊗

k=1

(
τ

ik
k,xk

)T
ρ1,2,...,N

]
. (31)

Then

I (ρ1,2,...,N )

=
∑

i1,...,iN ,x1,...,xN

βi1,i2,...,iN
x1,x2,...,xN

Tr

[
N⊗

k=1

(
τ

ik
k,xk

)T
ρ1,2,...,N

]/
2N

=
∑

i1,...iN

Tr[W1,2,...,Nρ1,2,...,N ]/2N

= 2N Tr[W1,2,...,Nρ1,2,...,N ] < 0. (32)

�
Similar to Eq. (20), we can also define the multipartition

states. The proofs of Lemma 3 and Theorem 2 mainly focus
on the bipartition case but can be extended to multipartition
cases naturally. Notice that Lemma 4 is in general independent
of total party number N and entanglement structure. As long
as there exists a witness W , then I (ρ1,2,...,N ) is a witness under
the ideal measurements assumption.

B. Detecting entanglement depth

Besides the entanglement of subsystems, there are other
high-level entanglement properties for multipartite quantum
states, such as entanglement depth [20,23]. There exists a
conventional witness W1,2,...,N for detecting the depth of a
quantum state [20,23]. Following a similar way of detecting
entanglement structure of subsystems, one can define an
MDIEW for detecting entanglement depth similar to Eq. (28).
Then, according to Lemma 4, one can easily see that it is
indeed a witness for depth when the measurement is ideally
realized. Now we need to prove that such a witness is MDI
with the following lemma.

Lemma 5. The mapM, defined in Eq. (21), cannot increase
the entanglement depth.

Proof. An N -partite state ρ that has k-depth entanglement
can be expressed as follows:

ρ =
∑

x

px

mx⊗
i=1

ρx
i , (33)

where mx � N ,
∑

x px = 1, and for any x, px � 0,
∑

x px =
1, and for every i and x, the state ρx

i contains at most k parties.
After the map M, we have

M(ρ) =
∑

x

pxTrρ[(M1 ⊗ · · · ⊗ Mn)(I1 ⊗ · · · ⊗ IN ⊗ ρ)]

=
∑

x

pxTrρ

[(
mx⊗
i=1

Mx
i

)(
mx⊗
i=1

Ix
i ⊗

mx⊗
i=1

ρx
i

)]

=
∑

x

px

mx⊗
i=1

σx
i , (34)

where σx
i = Trρx

i
[Mx

i (Ix
i ⊗ ρx

i )] is a positive Hermitian ma-
trices and involves at most k parties. Thus M(ρ) is at most
k-depth entangled. �

Theorem 3. If W1,2,...,N detects entanglement depth for state
ρ1,2,...,N , then I (ρ1,2,...,N ) defined in Eq. (28) is an MDIEW for
ρ1,2,...,N .

Proof. We skip the proof, since it is very similar to the one
for Theorem 2, where we only need to replace Lemma 3 with
Lemma 5. �
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In summary, our MDI scheme can detect entanglement
structure and entanglement depth. In particular, when an
N -partite quantum state has a depth of N , it is also called
genuinely entangled. Thus, our scheme can also be used for
detecting genuine entanglement.

C. Example

Here we show an explicit example to illustrate the MDI
entanglement depth detection method. We consider a mixture
of the tripartite W -state and white noise as the target state,

ρ = p |ψW 〉 〈ψW | + 1 − p

8
I, (35)

where |ψW 〉 = (|001〉 + |010〉 + |100〉)/√3 is the W -state. To
detect the entanglement of this state, we utilize a witness

W = α − |ψW 〉 〈ψW | , (36)

which gives an average value of

Tr[Wρ] = α − 1
8 − 7

8p. (37)

For different values of α, it is shown in Ref. [27] that
the witness can detect different entanglement depths of the
state. For example, when α = 2/3, a negative value Tr[Wρ] <

0 would indicate ρ to be genuinely entangled. That is, its
entanglement depth is three. When α = 4/9, a negative value
Tr[Wρ] < 0 will indicate ρ to be entangled instead of fully
separable; that is, its entanglement depth is at least two. The
target state, defined in Eq. (35), is genuinely entangled with a
depth of three when p > 13/21; and it is not fully separable
with a depth at least two when p > 23/63.

Now we show the MDI detection for entanglement depth.
Suppose that the ancillary input states are τk,1 = I

2 , τk,2 =
I+σx

2 , τk,3 = I+σy

2 , τk,4 = I+σz

2 , where the indexes k = {1,2,3}
denote the three parties, I is the identity matrix, and σx,σy,σz

are Pauli matrices. The witness W can be decomposed in
the basis (τ i1

1,x1
)T ⊗ (τ i2

2,x2
)T ⊗ (τ i3

3,x3
)T. Here for simplicity, we

show only the coefficient matrices βi1,i2,i3
x1,x2,x3

for certain outputs
i1 = i2 = i3 = 1,

β
1,1,1
x1,x2,1

=

⎡
⎢⎣

4/9 0 0 0
0 0 0 2/3
0 0 0 −2/3
0 2/3 −2/3 −2/3

⎤
⎥⎦, (38)

β
1,1,1
x1,x2,2

=

⎡
⎢⎣

0 0 0 2/3
0 0 0 −2/3
0 0 0 0

2/3 −2/3 0 0

⎤
⎥⎦, (39)

β
1,1,1
x1,x2,3

=

⎡
⎢⎣

0 0 0 −2/3
0 0 0 0
0 0 0 2/3

−2/3 0 2/3 0

⎤
⎥⎦, (40)

β
1,1,1
x1,x2,4

=

⎡
⎢⎣

−4/3 2/3 2/3 −2/3
2/3 −2/3 0 0
2/3 0 −2/3 0

−2/3 0 0 1

⎤
⎥⎦, (41)

where the matrix indexes run over different values of x1 and
x2. For the other outputs, the witness W can be similarly

decomposed in the other base according to Eq. (27), and the
coefficient matrices βi1,i2,i3

x1,x2,x3
for other outputs can be obtained

in a similar way. In total, the scheme involves 64 different
outputs cases. With these coefficients, we can verify that the
MDIEW value I (ρ), given in Eq. (28), equals 8α − 1 − 7p

when measurement is perfectly realized. For different values
of α, a negative MDIEW value of I (ρ) can be used to detect
the entanglement depth.

V. DISCUSSION

In this work, we propose an efficient measurement-device-
independent entanglement witness scheme that can be applied
for detecting multipartite entanglement structures. Compared
to the original proposal [13], which cannot detect multipartite
entanglement efficiently, we make use of all measurement
outcomes for overcoming this problem. Furthermore, we
show that our scheme can detect complex entanglement
structures, including entanglement between subsystems and
entanglement depth. Our result can be applied to the state-of-
the-art experiment for witnessing multipartite entanglement
without trusting the measurement devices.

Recently, improved MDIEW schemes that maximally ex-
ploit the experiment data have been proposed [29,30]. In these
schemes, one can additionally run a postprocessing program
to find the optimal coefficient that minimize the MDIEW value
given the probability distribution. In this case, all measurement
outcomes can be maximally exploited after the optimization.
However, although the optimization works efficiently for
small-scale systems, it will become exponentially hard with
increasing number of parties. Thus, how to apply the optimal
scheme for efficiently detecting multipartite entanglement is an
interesting prospective project. Conventional EW is originally
designed to efficiently detect the entanglement of states. As
our MDIEW is based on conventional EW, it can be used
for efficient and practical entanglement detection. Whether
the combination of these two methods will lead to a better
performance is also an interesting open problem.

In our MDIEW scheme, the ancillary states for each party
should form a basis for Hermitian operators, in which all
witness operator can be decomposed. The Hermitian operator
for qubits has a basis that consists of four elements. In this case,
when the input ancillary states are independently prepared for
each party, there are at least 4N different types of inputs, which
is exponential to the number of parties N . Such a problem
can be resolved by noticing a beautiful property of MDIEW
found in Ref. [31]: the MDIEW scheme is valid even though
shared randomness and classical communications are allowed.
In this case, as long as the input ancillary states as a whole
are randomly prepared, the MDIEW scheme will be reliable.
It has been shown that we only need to randomly prepare
input ancillary states for each party without worrying about
whether the sample size is large enough for all different input
conditions [9]. However, it is still an interesting open question
to see whether the number of different input ancillary states
that define an MDIEW can be polynomial to the number of
parties N .

In the Bell test, three famous loopholes should be closed for
guaranteeing a faithful violation of Bell inequality [32]. The
locality loophole requires that different parties are sufficiently
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separated such that they cannot signaling. The efficiency
loophole requires that the detection efficiency should be larger
than a certain threshold [33,34]. The randomness or freewill
loophole requires that the input randomness needs to be
random enough [35–37]. When the three loopholes are closed,
a faithful violation of Bell inequality can witness the existence
of entanglement. In the MDIEW scheme, we can see that the
locality and efficiency loopholes are not problems any longer
[31]. On the other hand, it is still meaningful to discuss the
randomness or freewill loophole. In one extreme case where all
the inputs are perfectly random, the MDIEW is secure; while in
the other extreme case where the inputs are all pre-determined,
the MDIEW becomes unreliable. Therefore, it would be an
interesting question to investigate the randomness requirement
that guarantees the security of the MDIEW scheme.

We show that MDIEW can efficiently detect a multipartite
entanglement stricture. It would be interesting to see whether
more complex entanglement properties can be detected in an

MDI manner. For instance, it is well known that multipartite
entanglement can be categorized into different classes un-
der stochastic local operations and classical communication
[38,39]. Conventional witness can be used for detecting a
different entanglement class [40]. The key of the MDIEW for
entanglement structure is that the map M defined in Eq. (21)
cannot generate entanglement. As the MDIEW scheme allows
classical communication, in transforming a conventional EW
to an MDI one may not change the entanglement class
intuitively. However, it is still an open question to design
MDIEW for entanglement classification.
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APPENDIX: CALCULATION OF THE p VALUE

Given an observed negative average MDIEW value Ī (ρ1,2,...,N ), we need to avoid reaching the wrong conclusion. In statistics,
we can apply a p value to quantify the probability of getting such a negative value with separable states. Under the assumption
of independent and identically distributed data and large G, P̄ (1, . . . ,1|τ1,x1 · · · τxN

), Ī (ρ1,2,...,N ) both follow the Gaussian
distribution. Therefore, the p value of an observed negative value with G experiment runs is

p = e−M[Ī (ρ1,2,...,N )]2
/(2σ 2). (A1)

Here σ is the standard deviation of I (ρ1,2,...,N ), which is given by

σ =
√ ∑

x1,···xN

β2
x1,...,xN

σ 2(τ1,x1 · · · τN,xN
), (A2)

where σ (τ1,x1 · · · τxN
) is the standard deviation of P (1, . . . ,1|τ1,x1 · · · τN,xN

) and can be expressed as follows:

σ
(
τ1,x1 · · · τxN

) =
√

P
(
1, . . . ,1

∣∣τ1,x1 · · · τN,xN

)[
1 − P

(
1, . . . ,1

∣∣τ1,x1 · · · τN,xN

)]
. (A3)

The probability distribution is

P
(
1, . . . ,1

∣∣τ1,x1 · · · τxN

) = Tr
[
(|φ+〉 〈φ+| ⊗ · · · ⊗ |φ+〉 〈φ+|)(τ1,x1 ⊗ · · · τxN

) ⊗ ρ1,2,...,N )
]

= Tr
[(

τT
1,x1

⊗ · · · ⊗ τT
xN

)
ρ1,2,...,N )

]
/(d1d2 · · · dN ), (A4)

where |φ+〉 = 1√
2
(|00〉 + |11〉), and di and τi,xi

(i = 1, . . . ,N) are the dimension and ancillary state for the ith party, respectively.
For a randomly chosen state, ρ1,2,...,N = Id1d2...dN

/(d1d2 · · · dN ), where Id1d2···dN
is the identity matrix with size d1d2 · · · dN , we

further have that

P
(
1, . . . ,1

∣∣τ1,x1 · · · τxN

) = Tr
[(

τT
1,x1

⊗ · · · ⊗ τT
xN

)
Id1d2...dN

/(d1d2 · · · dN )
]
/(d1d2 · · · dN ) = 1/(d1d2 · · · dN )2. (A5)

Thus roughly speaking, we have that

P
(
1, . . . ,1

∣∣τ1,x1 · · · τN,xN

) ∼ 1/(d1d2 · · · dN )2. (A6)

Consequently, we find that the p value is an order of e−G/O[(d1d2···dN )2].
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