
4102 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 9, SEPTEMBER 2017

Convolution Neural Networks With Two Pathways
for Image Style Recognition

Tiancheng Sun, Yulong Wang, Jian Yang, and Xiaolin Hu, Senior Member, IEEE

Abstract— Automatic recognition of an image’s style is impor-
tant for many applications, including artwork analysis, photo
organization, and image retrieval. Traditional convolution neural
network (CNN) approach uses only object features for image style
recognition. This approach may not be optimal, because the same
object in two images may have different styles. We propose a
CNN architecture with two pathways extracting object features
and texture features, respectively. The object pathway represents
the standard CNN architecture and the texture pathway inter-
mixes the object pathway by outputting the gram matrices of
intermediate features in the object pathway. The two pathways
are jointly trained. In experiments, two deep CNNs, AlexNet
and VGG-19, pretrained on the ImageNet classification data set
are fine-tuned for this task. For any model, the two-pathway
architecture performs much better than individual pathways,
which indicates that the two pathways contain complementary
information of an image’s style. In particular, the model based on
VGG-19 achieves the state-of-the-art results on three benchmark
data sets, WikiPaintings, Flickr Style, and AVA Style.

Index Terms— Image style recognition, neural network.

I. INTRODUCTION

THE style in a painting or photograph plays a significant
role in people’s perception of the image. Take Figure 1

as an example: the lower picture conveys a nostalgia feeling
compared to the upper one, notwithstanding the same scene
depicted in the pictures. Human beings can sense this subtle
difference easily, but it is still a difficult task for computers.
In this study, our focus is to design an efficient algorithm to
recognize the style of an image.

Manuscript received October 10, 2016; revised April 23, 2017; accepted
May 21, 2017. Date of publication June 9, 2017; date of current version
June 23, 2017. This work was supported in part by the National Basic
Research Program (973 Program) of China under Grant 2013CB329403 and
Grant 2014CB349303, in part by the National Natural Science Foundation of
China under Grant 91420201, Grant 61332007, Grant 61621136008, Grant
61620106010, and Grant 61472187, in part by the Program for Changjiang
Scholars, and in part by a Grant from Sensetime. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Peter Tay. (Corresponding author: Xiaolin Hu.)

T. Sun is with the Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing 100084, China.

Y. Wang is with the Tsinghua National Laboratory for Information Science
and Technology, Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China.

J. Yang is with the Department of Computer Science, Nanjing University
of Science and Technology, Nanjing 210094, China.

X. Hu is with the Tsinghua National Laboratory for Information Science
and Technology, Department of Computer Science and Technology, and the
Center for Brain-Inspired Computing Research, Tsinghua University, Beijing
100084, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2710631

Fig. 1. Two images with similar content but different styles.

Paintings and artistic photographs are two important types
of images that have distinctive styles. The styles of paintings
are usually named according to art movements, which is
marked by a trend in the art history. For instance, the famous
Impressionism is an art movement in 1880s, which is charac-
terized by relatively small, thin, yet visible brush strokes, and
accurate depiction of light. This kind of styles are well defined
yet not easy for non-artists to distinguish. In contrast, the styles
of photographs are easier for ordinary people to distinguish
as the names of the styles often come from the feeling the
photos convey (e.g., Romantic), or just the technique used
when taking the photo (e.g., HDR).

The research on automatic image style recognition has not
gained much progress until recent years [1]. One reason is
that the style information of an image may be encoded in
any component of the image including local and global, shape
and color features. Another reason is that the definition of a
style is often subjective, especially for photography works,
which may vary from person to person. It is hard to be

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SUN et al.: CNNs WITH TWO PATHWAYS FOR IMAGE STYLE RECOGNITION 4103

accurately related to a set of image features. In recent years,
along with great success of deep convolution neural net-
work (CNN) on image classification [2], [3], the accuracy of
image style recognition has been boosted significantly by using
CNN-based approaches [4], [5]. Most of these works rely on
the ability of CNN for feature representation. In addition, they
usually adopt high-level features. The underlying assumption
is that CNN’s features, which are good at distinguishing
high-level semantic contents (e.g., objects) are also good at
distinguishing image styles. This turns out to be true. That is
why these CNN-based approaches have yielded better results
than previous approaches.

However, it is possible that these features are still insuffi-
cient to characterize image styles. In fact, a recent study [6]
reveals that texture information is also important for human
perception of image style, which is not emphasised in recent
deep learning models [4], [5] for style recognition. By sepa-
rating texture and content information of an image encoded
in intermediate layers of a CNN, Gatys et al. proposed a
method that can change the texture of an image without
modifying its content, which leads to the change of the style
of the image [6]. In this way, an ordinary photograph can
be converted to, for example, an image with the style of
The Starry Night by the famous painter Vincent van Gogh
in 1889.

The results in [6] motivate us to evaluate the effectiveness
of texture information for image style recognition. We aim
to propose a CNN-based model that integrates both content
(or object) information and texture information for image
style recognition. Our primary concern is whether texture
information will help to boost the accuracy of deep learning
models.

Object information can be obtained in the same way as
in standard feedforward deep learning models for general
image classification. It is defined as responses of features in
one or more layers of a deep learning model, assuming the
features (or filters) are local or global object detectors, which
makes sense by visualizing the features [7]. But the definition
of texture information is abstract. According to Sarfraz [8],
texture “gives information about the spatial arrangement of
color or intensities in an image or selected region of an
image”. Gatys et al. [6], [9] suggested a powerful and practical
approach for extracting this information. The basic idea is
to characterize it using the correlation between responses of
all (or a subset of all) features in certain layers of a CNN. Since
this metric is independent of feature location, it measures
the distribution of features across the entire image, which
is a hallmark of texture. By considering its simplicity and
effectiveness in style transformation, we adopt this approach
to extract texture in our study. But unlike in Gatys et al.’s
works [6], [9] where the texture features were fixed because
the network models were fixed (the variables there were input
pixel values), in our case, a set of optimal texture features
need to be learned by adapting the network weights for style
recognition.

The main contribution of this work is the proposal of a
deep learning network consisting of an object pathway and a
texture pathway for image style recognition. It outperforms the

state-of-the-art models on three benchmark datasets. The rest
of the paper is organized as follows. A review of previous
works related to this topic is presented in Section II. The
architecture of the model and training method are presented in
Section III. Experimental results on three benchmark datasets
are presented in Section IV. Finally, Section V concludes the
paper with a discussion of possible directions to improve the
proposed approach.

II. RELATED WORK

A. Convolutional Neural Network

The convolutional neural network (CNN) was proposed for
image classification first in 1989 [10]. But it had not gained
much attention until 2012 when a large CNN outperformed
other methods on a large image classification benchmark
dataset ImageNet [11]. Along with the vast advancement of
parallel computing techniques, CNN has exhibited excellent
performance in many computer vision tasks ranging from
low-level image processing such as super-resolution [12]
to high-level image understanding such as image classifica-
tion [2], [3], [11], [13], object detection [14]–[16] and scene
labeling [17], [18]. The success of CNN is mainly attributed
to its ability for different levels of representation of complex
natural images. Basically, it has two types of operations in
different layers, convolution and pooling. Convolutional layers
perform template matching and pooling layers perform sub-
sampling, and both perform feature integration but with differ-
ent methods. Nonlinear transformations (i.e., neural activation)
are often combined with them. Note that subsampling can
be also realized by convolutions with larger stride than one.
With this trick, a recent work showed that pooling could be
omitted in CNN [19]. Besides the two types of layers, in recent
years, many other types of layers have been proposed to
facilitate training and improve generalization ability including
local response normalization layer [11], batch normalization
layer [20] and dropout layer [21].

B. Image Style Recognition

Style recognition has been studied for many years. An early
work [22] proposed to divide a painting into small blocks and
extract DCT coefficients in the blocks as local features. Then
the naive Bayes is applied to identify its painter. Another
work [23] proposed to identify not only the painter of a
painting but also the school of art it represents (impressionism,
surrealism or abstract expressionism) based on a large set of
local features including Radon transform features [24], Gabor
filters, Haralick features [25]. A recent work [26] proposed
a multi-task dictionary learning strategy which can dissociate
artist-specific and style-specific patterns in paintings. However,
the effectiveness of these works were only demonstrated on
a small number of artworks. The largest dataset among these
had only 1616 images [26].

In recent years, several large datasets were constructed for
image style analysis. The AVA Style dataset was introduced
by Murray et al. [27] which has about 14000 images with
photographic styles. The WikiPainting dataset and Flickr Style

4104 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 9, SEPTEMBER 2017

dataset were introduced by Karayev et al. [1], which con-
tain 85,000 images and 80,000 images, respectively. They
were designed for painting styles and photography styles
classification, respectively. Traditional image features such as
SIFT and LBP were used for style recognition on the AVA
Style dataset [27]. It was shown that high level CNN features
outperformed traditional features on this dataset [1]. Fusion of
these features achieved better results than single features on all
of the three datasets [1]. An independent study by Bar et al. [4]
arrived at the same conclusion about the effect of feature
fusion on the WikiPainting dataset. But it is possible that CNN
features alone can achieve better results [5]. In view that style
recognition requires both holistic information and fine-grained
details, Lu et al. [5] proposed to aggregate the outputs of
CNNs on multiple patches of an image. This approach keeps
the record of result on the AVA Style dataset.

C. Texture Synthesis

As mentioned in Section I, the style of an image is closely
related to its texture. Texture synthesis is a hot topic in
computer graphics. One class of approaches make use of
local regions of the original image by copying, transformation
and stitching [28], [29]. Another class of approaches take
statistical measurements on filter responses on the original
image and try to make the synthesized image match these
measurements [30]–[32]. It is reasonable to infer that the
performance of the latter class of approaches relies on the
filters. In [30]–[32] only simple filters such as Gabor filters are
used. In the era of deep learning, a natural extension of those
works is to substitute the simple features with sophisticated
CNN features. This is the basic idea of Gatyes et al.’s
works [6], [9]. They found that the texture of images can
be effectively represented by the gram matrix of intermediate
layers of a CNN pretrained on a large image classification
dataset ImageNet. By optimizing the values of input pixels,
a new image can be created with the same texture as the
original image. If the content of the original image, which is
represented by filter responses at different layers of the CNN,
is intentionally preserved, the method performs texture syn-
thesis [9]. If the content of the original image (say, image A)
is changed to that of another image (say, image B), then a
new image with image B’s content and image A’s texture (or
style) is created [6]. Later works further optimized the running
time [33], [34] and flexibility [38] of the framework: produc-
ing images with multiple styles in real time now becomes
possible.

III. THE MODEL

The proposed model consists of two pathways for style
recognition. The “object pathway” is the standard pathway of
a CNN, which is from the bottom layer to the output layer.
The “texture pathway” has multiple paths to the output layer,
and each path carries the correlations between filter responses
in a particular layer of the texture pathway. Therefore two
pathways are not independent. Their predictions about the style
of the image are averaged as the final output. The overall
structure of the model is illustrated in Figure 2.

Fig. 2. The structure of the proposed model. The two pathways make their
predictions based on softmax functions separately, which are averaged to give
the final prediction.

A. Object Pathway

The object information is computed using CNN: the image
is sequentially passed through different layers of CNN. A typ-
ical CNN has many layers including convolutional layers,
pooling layers, local normalization layer, fully connected
layers and so on. The proposed method in the present paper
is not limited to specific a CNN architecture, and any existing
CNN can be used. The output layer of the object pathway is
a classification layer which gives an object-base prediction
of the image style. The softmax function is used as the
output function and the cross-entropy error is used as the loss
function.

B. Texture Pathway

The texture pathway consists of multiple gram layers, each
of which computes correlations between filter responses in a
particular layer in the object pathway. In practice, we calculate
the inner products of filter responses in a layer and obtain a
gram matrix. The gram matrices calculated in lower layers
capture finer texture information and the gram matrices in
higher layers capture coarser texture information. This rep-
resentation of texture follows Gatys et al.’s idea for image
synthesis [6], [9].

Specifically, to get the texture information of an image,
we first pass the image through CNN and compute the
response of each intermediate convolutional layer l. Assume
that layer l contains Nl filters and therefore Nl feature maps,
and each map is vectorized to a vector with length Ml

(Figure 3). Then, these feature maps can be represented
as a two-dimension matrix Fl in the space RNl ×Ml . The
correlations between each pair of feature maps is an element

SUN et al.: CNNs WITH TWO PATHWAYS FOR IMAGE STYLE RECOGNITION 4105

Fig. 3. The computing process of the gram layer. The feature maps of a
layer in the object pathway are first converted to a two-dimensional matrix,
then go through multiple stages of processing.

in the gram matrix

Gl = Fl · Fl� (1)

where � denotes transpose.
To improve generalization ability of the proposed model,

one usually uses existing CNNs pretrained on the ImageNet
dataset. Such CNNs usually have tens of filters or even more
in a layer. Then there would be thousands of elements in the
gram matrix, which are too many to forward to the next layer.
In order to shrink the size of the gram matrix, before the
gram matrix computation, we first down-sample the feature
maps from Nl × Ml to N ′

l × Ml , which means we choose one
fixed feature map out of every Nl/N ′

l feature maps. Note that
we do not use max pooling and average pooling here because
nearby elements in the gram matrix are not correlated as in
the case of image or feature map. In addition, since the gram
matrix is symmetric, only the lower triangle part of the matrix
is fed into the final classification layer. Then, each gram matrix
contributes N ′

l (N ′
l +1)/2 inputs to the next layer. In summary,

the forward computation of the gram layer involves multiple
stages: (1) down-sample feature maps, (2) calculate the gram
matrix, (3) remove the upper triangle and (4) connect to the
next layer. Each stage can be implemented as a sublayer. These
stages are illustrated in Figure 3.

Backward computation is required for each sublayer. The
last sublayer can be realized as a fully-connected layer in
most off-the-shelf deep learning tools such as Caffe [35].
The other three sublayers do not involve parameters, and we
only need to compute the local sensitivity (also called local
gradient), which is defined as the derivative of the loss function
with respect to the total input to each neuron. For the two
downsampling sublayers, this can be done by simply copying

the local sensitivities in corresponding locations. The problem
then reduces to calculating the local sensitivity for the first
sublayer, whose forward calculation is described in (1). Since
the input to each neuron is Fl

mn , the local sensitivity is

∂ E

∂ Fl
mn

=
∑

i, j

∂ E

∂Gl
i j

· ∂Gl
i j

∂ Fl
mn

=
∑

i

∂ E

∂Gl
im

· ∂Gl
im

∂ Fl
mn

+
∑

i

∂ E

∂Gl
mi

· ∂Gl
mi

∂ Fl
mn

=
∑

i

∂ E

∂Gl
im

· Fl
in +

∑

i

∂ E

∂Gl
mi

· Fl
in

=
∑

i

(
∂ E

∂Gl
im

+ ∂ E

∂Gl
mi

)
· Fl

in (2)

or in matrix form

∂ E

∂Fl =
(

∂ E

∂Gl + ∂ E

∂Gl�

)
· Fl . (3)

Note that ∂E
∂Gl is the local sensitivity in the second sublayer

defined before, since Gl represents input to neurons in this
sublayer. The local sensitivity ∂E

∂Fl in the first sublayer will be
used for calculating the local sensitivity and the derivative of
the loss function with respect to parameters in the layer just
before the gram matrix layer.

The outputs of multiple gram layers from different layers
of the object pathway are then concatenated and go through a
scaling layer,

y = a � x + b

where x and y denote the input and output of the scaling layer,
respectively, a and b are trainable parameters which have the
same length as x, and � denotes elementwise multiplication.
This layer is designed to scale the output of gram layer,
which is usually in the order of 109, to normal values.
The output of this scaling layer y is fully connected to a
multiplayer Perceptron (MLP) to give the prediction of the
texture pathway (Figure 2).

Note that the texture pathway has multiple paths from the
input layer to the output layer. In the forward pass, the outputs
of some layers are fed into multiple layers. As a result, when
doing backpropagation, the gradients from multiple layers will
be added and backpropagated to the current layer. This is
explained as follows. Suppose the intermediate result x is fed
into two layers to get y and z, then according to the chain rule
in calculus,

∂ E

∂x
= ∂ E

∂y
· ∂y

∂x
+ ∂ E

∂z
· ∂z

∂x
,

where E is the loss function for this pathway.

C. Merging

The object pathway and the texture pathway have their own
cross-entropy error functions. Since many layers are shared by
the two pathways, the gradients of the loss functions in these
layers are summed over the two pathways. The final prediction
of the proposed model is based on the averaged outputs of

4106 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 9, SEPTEMBER 2017

Fig. 4. Example images in three datasets.

the softmax functions in the last layers of the two pathways.
It is possible to merge the pathways by concatenating their
penultimate layers and connect it to a single classifier. But we
experimentally found that the current approach was better than
this “early merging” approach.

One feature of the proposed model is that intermediate
layers of a standard CNN (i.e., the object pathway) are
forwarded to two separate pathways for classification. Similar
strategies were used in other deep learning models including
the deeply-supervised nets (DSN) [36] and GoogLeNet [2],
though in the latter the auxiliary classifiers connected to inter-
mediate layers were only present at training time but discarded
at inference time. We experimentally found that, however, this
“deep supervision” strategy was not the main cause of good
performance of the proposed model. See Section IV-D for
details.

IV. EXPERIMENTAL RESULTS

The proposed approach is applied on two pretrained CNNs,
AlexNet [11] and VGG-19 [3]. Three style recognition datasets
are experimented: WikiPainting, Flickr Style, and AVA Style.
All experiments were carried out on the Dell R720 server
equipped with Nvidia Titan X GPUs using the deep learning
tool caffe [35]. The source code is available.1

A. Datasets

1) Wikipainting: The WikiPainting dataset was introduced
by Karayev et al. [1]. It contains 85,000 artistic images –
mostly paintings – with 25 style/genre labels such as Impres-
sionism, Realism, Romanticism and so on. Figure 4 shows
several samples with their labels indicated below. Each style
has more than 1,000 images. As far as we know, this is
the largest dataset of artistic works with style labels. Unlike
many other datasets, this dataset only provides a url for
each image. But some url’s are no longer valid, and some
downloadable images are corrupted. After removing these
samples, we obtained 82405 valid samples. The specified split
ratio of train/validation/test is 60:20:20.

The distribution of samples in the 25 categories is highly
unbalanced (Figure 5, left). In the sequel, the distribution of

1https://github.com/kevinkingo/ImageStyle-TwoPath

samples in the training set would also be highly unbalanced
since the samples were randomly selected, which would dete-
riorate the performance of the models. In order to have a
balanced distribution of the data, we cropped multiple patches
from every image in the training set, and the number of patches
from an image was roughly proportional to the inverse of the
portion of its style category in the training set. The images
were first resized to 256 × 256, then 224 × 224 patches were
randomly cropped from them. The distribution of the cropped
patches is shown in the right panel of Figure 5. Only one
patch was randomly cropped in every image in the validation
set. For every test image, four patches were cropped and the
final prediction was based on the average probabilities over
the four patches.

2) Flickr Style: The Flickr Style was also introduced by
Karayev et al. [1]. It contains 80,000 images with 20 style
labels. The labels were grouped into several categories (Optical
techniques, Atmosphere, Mood,Composition styles, Color and
Genre) and each category contains two to five labels. For
example, the Atmosphere category has two labels, Hazy and
Sunny. Figure 4 shows several samples with their labels
indicated below. The train/validation/test split is specified and
the ratio is 60:20:20.

The images were preprocessed by resizing to 256 × 256.
Then four 224 × 224 patches were randomly cropped from
every image. This step augmented the training set. For test
images, we cropped four patches per image in the same way.
The final prediction was the average of the predictions over
four patches.

3) AVA Style: The AVA Style dataset is part of the AVA
dataset which was introduced by Murray et al. [27]. It con-
tains 14,079 photographs from www.dpchallenge.org with
14 labels: Complementary Colors, Duotones, High Dynamic
Range, Image Grain, Light on White, Long Exposure, Macro,
Motion Blur, Negative Image, Rule of Thirds, Shallow DOF,
Silhouettes, Soft Focus, Vanishing Point. The train/test split is
prescribed. The training set has 11,270 photographs and the
test set has 2,809 photographs. In contrast to the other two
datasets discussed above, the test image of AVA Style may
have multiple labels. However, some photographs in the test
set do not have labels, which were excluded in our experi-
ments (same as in [5]). This resulted in 2,573 photographs

SUN et al.: CNNs WITH TWO PATHWAYS FOR IMAGE STYLE RECOGNITION 4107

Fig. 5. The distribution of images in WikiPainting categories. Left: The distribution on the entire dataset; Right: The distribution on the training set after
data balance operation.

TABLE I

ALEXNET SETTING

in the test set. We did a random train/validation split on the
original training set with ratio 6:1.

The images were preprocessed by resizing to 256 × 256.
Then eight 224 × 224 patches were randomly cropped from
every image to augment the training data. For test images,
we cropped eight patches per image in the same way. The
final prediction was the average of the predictions over eight
patches.

B. Settings

We tested our method on two deep CNNs, AlexNet [11] and
VGG-19 [3], which were pretrained on the ImageNet classifi-
cation dataset. Their structures are shown in Tables I and II,
respectively, where the convolution parameters are denote as
“conv〈kernel window size〉-〈channel number〉”. The ReLU
layers [11] are omitted in the tables. For both networks, five
intermediate layers were used to calculate texture features,
which are denoted by gram layer 1 to gram layer 5 in the
tables.

TABLE II

VGG-19 SETTING

In the object pathway, only the last layer FC-1000 was
substituted with a fully connected layer which had proper
output size. In the texture pathway, a multi-layer percep-
tron (MLP) with two hidden layers were used, which took
the output of the scaling layer as input. The two hidden layers
had 2048 and 1024 neurons respectively. The output was the
softmax function.

For both networks, the second and third gram layers were
down-sampled to 64 × 64, and the other gram layers were
down-sampled to 32 × 32.

4108 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 9, SEPTEMBER 2017

Our model has two pathways. Although the final predic-
tion was based on the average of their predictions, the two
pathways were jointly fine-tuned during training. To have
a deep understanding of the performance of the model,
we also measured the performance of the two pathways sep-
arately, which are called Object Pathway Network (OPN) and
Texture Pathway Network (TPN), respectively. They were
trained using the corresponding cross-entropy errors, respec-
tively. For example, for measuring the performance of OPN,
only the cross-entropy error on the object pathway was used,
but those layers shared by the two pathways took part in the
training process. For convenience, we denote the entire model
with the two pathways by Merged Network (MNet).

The OPN, TPN and MNet were fine-tuned from pre-
trained deep CNNs separately. Stochastic gradient descent
optimization method was used. We set a base learning rate
α0 = 10−4, which was multiplied by 0.1 once the accuracy
on the validation set did not increase. The layers which are not
part of the original CNNs were initialized using the method
proposed by Glorot and Bengio [37] and their learning rate
was 10 times as the base learning rate. The learning rates for
different networks were set using different strategies, which
are specified in what follows.

For OPN, the learning rate for the last layer was 10α0 and
α0 for other layers.

TPN and MNet have branching paths from input to output.
As mentioned in Section III, during backward computation
in training, a branching layer should add the gradient from
multiple layers next to it in the forward computation. Since
there are many branches in the two models, the gradients may
accumulate to an improperly large value, which may lead to
stability issue in training. To avoid is problem, we used smaller
learning rates in lower convolutional layers and larger learning
rates in higher convolutional layers during the fine-tuning stage
so that the magnitude changes on different convolution layers
were roughly the same.

Specifically, a two-stage fine-tuning strategy was used for
TPN. In the first stage, we trained the fully connected lay-
ers only by fixing the weights shared with OPN. In other
words, the learning rate was 10α0 for the fully connected
layers (because they were randomly initialized) and 0 for the
convolutional layers. To avoid weight dependance between
TPN and OPN, and ensure fair comparison, the convolu-
tional weights were initialized with the weights pretrained on
ImageNet classification dataset, not with the weights in
OPN fine-tuned for style classification as described before.
In the second stage, we trained all layers by changing the
learning rates for the fully connected layers from 10α0 to α0
and the rates for the convolutional layers from 0 to the values
specified in Tables I and II.

Since the calculation of gram matrix is relatively slow,
to accelerate the training process for TPN, during the first
fine-tuning stage, the input to the scaling layer was saved on
the hard disk for reusing in later training epochs. Then each
image went through the shared layers between OPN and TPN
only once in this stage.

Similarly, a two-stage fine-tuning strategy was used for
MNet. The first stage was designed to obtain better initial

weights for training the texture pathway. Therefore it was
the same as the the first stage for fine-tuning TPN. In the
second stage, we trained all layers by using the learning rates
described as follows: (1) the learning rate for the last layer in
the object pathway was 10α0 (because this layer was randomly
initialized); (2) the learning rates for the fully connected layers
specific to the texture pathway were α0; and (3) the learning
rates for the convolutional layers (shared by the two pathways)
were specified in Tables I and II.

C. Evaluation Metrics

Three metrics were used to evaluate the performance of
the models: Sample Accuracy, Category Accuracy and Mean
Average Precision. The first two were for single-label classifi-
cation only and third was for both single-label and multi-label
classifications.

Sample Accuracy (SA) is defined as the ratio of correct
predictions among all predictions, while every image has one
and only one prediction for its category label. This metric
is biased to categories with more samples then others. For
unbalanced distribution of samples in different categories,
this metric cannot reflect the performance of a model on all
categories.

Category Accuracy (CA) is introduced to circumvent the
problem of SA for unbalanced distribution of samples. We first
calculate the accuracy for each category, that is, the number
of correct predictions for a category divided by the number
of samples in this category, then we average the results over
categories.

Mean Average Precision (mAP): We need to define Average
Precision first, which is the area under the precision-recall
curve. Let D denote the dataset. For category i , we sort all
the data in the descending order according to the predicted
probability of belonging to that category (note that many
classifiers, including softmax function used in this study, can
produce a probability of belonging to a category), then each
data j gets an index in category i , denoted by indexi (j).
Let δi (j) be an indicator function which is 1 if data j is in
category i and 0 otherwise. Then AP for category i is defined
as

AP(i) =
∑

j P@ j (i) · δi (j)

|{ j | j ∈ D, δi (j) = 1}| ,
where

P@k(i) = |{ j |indexi (j) ≤ indexi (k), j ∈ D, δi (j) = 1}|
|{ j | j ∈ D, indexi (j) ≤ indexi (k)}| .

mAP is the mean of AP for each category

mAP = 1

|T |
∑

i∈T

AP(i),

where T denotes the set of categories.

D. Results

1) WikiPainting: OPN performed slightly better than TPN
for both AlexNet and VGG-19 (see Table III). By merging
them together, state-of-the-art results were obtained. Note that
though with two pathways, MNet do not have much more

SUN et al.: CNNs WITH TWO PATHWAYS FOR IMAGE STYLE RECOGNITION 4109

TABLE III

RESULTS ON THE WIKIPAINTING DATASET

TABLE IV

THE NUMBER OF PARAMETERS OF DIFFERENT NETWORKS

TABLE V

CONFIGURATION OF THE POOLING LAYERS IN THE CONTROL MODEL

parameters than OPN, the standard CNN structure (Table IV).
For example, using VGG-19 as the basic structure, the former
has 137 million parameters, which are only 11.4% more than
that of the latter.

The results of VGG-19 were better than those of AlexNet,
which verified the importance of depth for deep learning
models. For this reason, we only analyzed the results of
VGG-19, as detailed below.

First of all, to dissociate the contributions of the texture
features and the “deep supervision” strategy in the texture
pathway, we designed a control model to verify our point.
In the control model, we substituted the gram layers in MNet
with the average pooling layers,2 which reduced the size of
the feature maps. For fair comparison, the pooling sizes and
strides were chosen such that the number of parameters in
the control model was not smaller than that of MNet. The
specific configuration is shown in Table V. For comparison,
the output sizes of the five gram layers are also shown in the
table; see the rightmost column. Other parts of the network
remained the same. The same training strategy as before was
employed. The control model performed similarly to VGG-
19-based OPN (see Table III) on this dataset, even its number
of parameters exceeds that of OPN for a huge amount. For SA
it performed worse than VGG-19-based OPN but for CA and
mAP it performed better. We found that the SA of the side

2We empirically found that average pooling performed better than max
pooling.

Fig. 6. SA of the two pathways in the VGG-19-based MNet on the
WikiPainting test set.

Fig. 7. Sample images from two style categories in the WikiPainting
dataset which had higher SA for one pathway than the other pathway in the
VGG-19-based MNet. Left: The object pathway had higher SA. Right: The
texture pathway had higher SA.

pathway was 32.8%, which was quite low compared with that
of the texture pathway in MNet, 49.8%. This partly explains
why the addition of the side pathway in the control model has
not led to much improvement to the original CNN, that is,
VGG-19-based OPN. These results show that it were the tex-
ture features in the gram layers that led to good performance
of the proposed model, not the “deep supervision” strategy.

Then we investigated relative contributions of the two path-
ways in MNet. The performances of OPN and TPN provided
some information, but since they were not trained jointly,
the comparison might be unfair. As both pathways in the
proposed model MNet made their own predictions, we com-
pared these predictions. The accuracies of the two pathways
of the model based on VGG-19 are shown in Figure 6. For

4110 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 9, SEPTEMBER 2017

Fig. 8. SA of the TPN after removing a gram layer.

Fig. 9. SA of the two pathways in the VGG-19-based MNet on the Flickr
Style test set.

most styles the accuracies were similar, but for several styles,
the accuracy of one pathway was much higher than that of
the other. For example, for the style Northern Renaissance the
object pathway had higher accuracy, but for the style Naive
Art (Primitivism) the texture pathway had higher accuracy.
Some representative paintings from the two styles are shown
in Figure 7. The Northern Renaissance paintings often depict
religious occasions, which are easier to be captured by the
object pathway. Therefore the object pathway played a more
important role in this case. In contrast, Naive Art paintings
are characterized by hasty strokes, though sometimes they also
contain people. This information is easier to be captured by
the texture pathway. Therefore the texture pathway played a
more important role in this case.

Both MNet and TPN have five gram layers, whose inputs
are from different layers of CNN. We investigated relative
contributions of the layers to style prediction based on TPN.
We trained TPN by removing a gram layer and repeated the
process for each gram layer. For fair comparison, the gram
matrices of all layers were down-sampled to the same dimen-
sion 32 × 32. The results on the validation set showed that

Fig. 10. Sample images from two style categories in the Flickr Style
dataset which had higher SA for one pathway than the other pathway in the
VGG-19-based MNet. Left: The object pathway had higher SA. Right: The
texture pathway had higher SA.

Fig. 11. SA of the two pathways in the VGG-19-based MNet on the AVA
Style test set.

removing the second and third gram layers affected most to
the performance of the model (Figure 8). It suggests that
texture features produced based on middle-level features of
CNN would be most important for texture discrimination. That
is why we down-sampled the gram matrices in the second and
third gram layers to 64 × 64 and the gram matrices in other
layers to 32 × 32.

2) Flickr Style: The results on this dataset showed that
though the performances of OPN and TPN based on AlexNet
were not as good as that of the model proposed by
Karayev et al. [1], the performance of the merged
network MNet was better (Table VI). Using better object
features or texture features alone also led to higher accu-
racy than Karayev et al.’s model (see VGG-19-based OPN
and VGG-19-based TPN in Table VI). Their combination
resulted in even higher accuracy with a significant margin (see
VGG-19-based MNet in Table VI). To the best of our knowl-
edge, Karayev et al.’s model is the only model evaluated
on this dataset and reported in the literature. The proposed

SUN et al.: CNNs WITH TWO PATHWAYS FOR IMAGE STYLE RECOGNITION 4111

Fig. 12. Sample images in the AVA Style test set having two labels predicted correctly by two pathways in the VGG-19-based MNet. The upper label under
each image is predicted by the object pathway and the lower label is predicted by the texture pathway.

TABLE VI

RESULTS ON THE FLICKR STYLE DATASET

MNet based on VGG-19 performed better on this dataset.
In addition, this MNet achieved better results than the control
model, which further validates the effectiveness of the gram
layers.

The prediction accuracies of the object pathway and texture
pathway based on VGG-19 for individual styles are plotted
in Figure 9. The accuracies of the two pathways differed much
more than the results on the WikiPainting dataset. For instance,
the accuracy of the texture pathway for Pastel style was almost
twice of that of the object pathway. In fact, the images of the
Pastel style contain a diverse set of objects (Figure 10), which
are difficult to be classified into one category by using the
object pathway. In contrast, images of style Detailed often
contain objects which have a lot of sharp edges (Figure 10),
such as flowers, leaves, or brick walls. In this case, the object
pathway contributed more to the recognition performance.

3) AVA Style: The AVA Style dataset is a little different from
the other two datasets as the test images have multiple labels.
The SA and CA defined in Section IV-C do not apply here.
Therefore only mAP was used to measure the performance
of the models (Table VII). The two MNets based on AlexNet

TABLE VII

RESULTS ON THE AVA STYLE DATASET

and VGG-19 achieved higher mAP than their single pathway
networks OPNs or TPNs, which verified the assumption that
object features and texture features are complementary for
this task. The best result was obtained by MNet based on
VGG-19, which was higher than that of the state-of-the-art
model proposed by Lu et al. [5]. The control model performed
better than VGG-19-based OPN but worse than VGG-19-based
MNet.

The prediction accuracies of the object pathway and texture
pathway based on VGG-19 for individual styles are plotted
in Figure 11. Again, for some styles the object pathway
had more correct predictions and for some styles the texture
pathway had more correct predictions. Since there may be
multiple labels for a single image, we investigated how the
two pathways perform differently on the same images. Among
2,573 test images, there are 1,086 images having more than
one label. By outputting top two predictions, the MNet based
on VGG-19 correctly predicted two labels for 412 images.
Considering that the prediction was the average of the pre-
dictions of two pathways, we further analyzed individual

4112 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 9, SEPTEMBER 2017

predictions of the two pathways for these 412 images. Among
them, 149 images’ two labels were predicted correctly by the
two pathways, respectively (Figure 12). The gap between these
two numbers (412 and 149) indicates the contribution of the
cooperation between the two pathways.

V. CONCLUSION AND DISCUSSION

In this paper, we present a deep learning model with two
pathways for image style recognition, which extract object
features and texture features of images respectively. Two deep
CNNs, AlexNet and VGG-19 were adapted for this purpose.
Experiments showed that the two kinds of features contained
complementary information for the style of an image as the
two-pathway architecture always achieved better results than
single pathway architectures. In addition, the model based
on VGG-19 achieved the state-of-the-art results on three
benchmark datasets, WikiPainting, Flickr Style and AVA Style.

The key to the success of the proposed model is the texture
features, which essentially represent the correlations between
object features on images. It was originally used to change the
style of images [6], but there these features were fixed as a
reference style and the task was to modify an image to match
it. In our model, these features need to be learned. Therefore a
unified training method is proposed to learn the object features
and texture features together according to the given labels.

One limitation of the approach for extracting texture features
is intense computation. For this reason we used only a subset
of object features for producing these texture features in exper-
iments. The good performance of the model indicates much
redundance among the full set of texture features. Anyway,
this subsampling method is somehow arbitrary. One possible
improvement is to choose an optimal set of object features.
But it is favorable to have a more concise representation of
texture or style than gram matrix. We leave it as future work.

ACKNOWLEDGMENT

The authors would like to thank the editor and the anony-
mous reviewers for their critical and constructive comments
and suggestions. They would also like to thank Fangzhou Liao
for useful discussion.

REFERENCES

[1] S. Karayev et al., “Recognizing image style,” in Proc. Brit. Mach. Vis.
Conf. (BMVC), 2014, pp. 1–20.

[2] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[3] K. Simonyan and A. Zisserman. (Sep. 2014). “Very deep convolu-
tional networks for large-scale image recognition.” [Online]. Available:
https://arxiv.org/abs/1409.1556

[4] Y. Bar, N. Levy, and L. Wolf, “Classification of artistic styles using
binarized features derived from a deep neural network,” in Proc. Eur.
Conf. Comput. Vis. Workshops, 2014, pp. 71–84.

[5] X. Lu, Z. Lin, X. Shen, R. Mech, and J. Z. Wang, “Deep multi-
patch aggregation network for image style, aesthetics, and quality
estimation,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Santiago,
Chile, Dec. 2015, pp. 990–998.

[6] L. A. Gatys, A. S. Ecker, and M. Bethge. (Aug. 2015). “A neural
algorithm of artistic style.” [Online]. Available: https://arxiv.org/abs/
1508.06576

[7] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818–833.

[8] M. Sarfraz, Computer Vision and Image Processing in Intelligent Sys-
tems and Multimedia Technologies. Hershey, PA, USA: IGI Global,
2014.

[9] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convo-
lutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 262–270.

[10] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[12] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in Proc. Eur. Conf. Comput. Vis.,
2014, pp. 184–199.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Imagenet classification with
deep convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Dec. 2016, pp. 770–778.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in
deep convolutional networks for visual recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[15] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), 2015, pp. 1440–1448.

[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 91–99.

[17] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis., 2014, pp. 740–755.

[18] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The Pascal visual object classes (VOC) challenge,” Int.
J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Sep. 2009.

[19] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller.
(Dec. 2014). “Striving for simplicity: The all convolutional net.”
[Online]. Available: https://arxiv.org/abs/1412.6806

[20] S. Ioffe and C. Szegedy. (Feb. 2015). “Batch normalization: Accelerating
deep network training by reducing internal covariate shift.” [Online].
Available: https://arxiv.org/abs/1502.03167

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[22] D. Keren, “Painter identification using local features and naive Bayes,”
in Proc. 16th Int. Conf. Pattern Recognit., vol. 2. Aug. 2002,
pp. 474–477.

[23] L. Shamir, T. Macura, N. Orlov, D. M. Eckley, and I. G. Goldberg,
“Impressionism, expressionism, surrealism: Automated recognition of
painters and schools of art,” ACM Trans. Appl. Perception, vol. 7, no. 2,
p. 8, Feb. 2010.

[24] J. S. Lim, Two-Dimensional Signal and Image Processing.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1990.

[25] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for
image classification,” EEE Trans. Syst., Man, Cybern., vol. 3, no. 6,
pp. 610–621, Nov. 1973.

[26] G. Liu et al., “Inferring painting style with multi-task dictionary
learning,” in Proc. 24th Int. Joint Conf. Artif. Intell. (IJCAI), 2015,
pp. 2162–2168.

[27] N. Murray, L. Marchesotti, and F. Perronnin, “AVA: A large-scale
database for aesthetic visual analysis,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2012, pp. 2408–2415.

[28] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis and
transfer,” in Proc. 28th Annu. Conf. Comput. Graph. Interact. Techn.,
2001, pp. 341–346.

[29] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut
textures: Image and video synthesis using graph cuts,” ACM Trans.
Graph. (ToG), vol. 22, no. 3, pp. 277–286, 2003.

[30] B. Julesz, “Visual pattern discrimination,” IRE Trans. Inf. Theory, vol. 8,
no. 2, pp. 84–92, Feb. 1962.

[31] D. J. Heeger and J. R. Bergen, “Pyramid-based texture analy-
sis/synthesis,” in Proc. 22nd Annu. Conf. Comput. Graph. Interact.
Techn., 1995, pp. 229–238.

[32] J. Portilla and E. P. Simoncelli, “A parametric texture model based on
joint statistics of complex wavelet coefficients,” Int. J. Comput. Vis.,
vol. 40, no. 1, pp. 49–70, Oct. 2000.

[33] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky, “Texture
networks: Feed-forward synthesis of textures and stylized images,” in
Proc. Int. Conf. Mach. Learn. (ICML), 2016, pp. 1–9.

SUN et al.: CNNs WITH TWO PATHWAYS FOR IMAGE STYLE RECOGNITION 4113

[34] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proc. Eur. Conf. Comput. Vis.,
2016, pp. 694–711.

[35] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. ACM Int. Conf. Multimedia, 2014, pp. 675–678.

[36] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised
nets,” in Proc. AISTATS, 2015, vol. 2. no. 3, p. 6.

[37] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[38] V. Dumoulin, J. Shlens, and M. Kudlur, “A learned representation for
artistic style,” in Proc. Int. Conf. Learn. Represent., Toulon, France,
Apr. 2017.

Tiancheng Sun is currently pursuing the bachelor’s
degree with the Institute of Interdisciplinary Infor-
mation Science, Tsinghua University. He is going
to begin the Ph.D. degree with the University of
California, San Diego in 2017. His research interests
include machine learning, material representation,
and light field capture and display.

Yulong Wang received the B.E. degree in
electronic engineering from Tsinghua University,
Beijing, China, in 2015. He is currently the
Ph.D. degree with the Department of Com-
puter Science and Technology, Tsinghua University,
Beijing, China. His current research interests include
computer vision and deep learning.

Jian Yang received the Ph.D. degree in pat-
tern recognition and intelligence systems from the
Nanjing University of Science and Technology
(NUST) in 2002. In 2003, he was a Post-Doctoral
Researcher with the University of Zaragoza. From
2004 to 2006, he was a Post-Doctoral Fellow with
the Biometrics Centre, Hong Kong Polytechnic Uni-
versity. From 2006 to 2007, he was a Post-Doctoral
Fellow with the Department of Computer Science,
New Jersey Institute of Technology. He is currently a
Chang-Jiang Professor with the School of Computer

Science and Technology, NUST. He has authored over 100 scientific papers in
pattern recognition and computer vision. His journal papers have been cited
more than 4000 times in the ISI Web of Science, and 9000 times in the
Web of Scholar Google. His research interests include pattern recognition,
computer vision, and machine learning. He is a fellow of IAPR. He is also an
Associate Editor of the Pattern Recognition Letters, the IEEE TRANSACTIONS
ON NEURAL NETWORKS AND LEARNING SYSTEMS, and Neurocomputing.

Xiaolin Hu (S’01–M’08–SM’13) received the B.E.
and M.E. degrees in automotive engineering from
the Wuhan University of Technology, Wuhan, China,
and the Ph.D. degree in automation and computer-
aided engineering from The Chinese University
of Hong Kong, Hong Kong, in 2001, 2004, and
2007, respectively. He is currently an Associate
Professor with the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing,
China. His current research interests include artificial
neural networks, computer vision and computational

neuroscience. He is also an Associate Editor of the IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

