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Quantum replication at the Heisenberg limit
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No process in nature can perfectly clone an arbitrary quantum state. But is it possible to

engineer processes that replicate quantum information with vanishingly small error? Here we

demonstrate the possibility of probabilistic super-replication phenomena where N equally

prepared quantum clocks are transformed into a much larger number of M nearly perfect

replicas, with an error that rapidly vanishes whenever M is small compared with N2.

The quadratic replication rate is the ultimate limit imposed by quantum mechanics to the

proliferation of information and is fundamentally linked with the Heisenberg limit of quantum

metrology.
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N
o physical process can copy arbitrary quantum states on
demand1,2; if such a process existed, we could build a
device that distinguishes quantum states with arbitrary

precision, violating the uncertainty principle and enabling
faster-than-light communication3. Probabilistic processes like
stimulated emission, however, seem to evade this restriction. In
Einstein’s treatment of stimulated emission4, an excited atom
interacting with a polarized photon is expected to produce
sometimes a second photon with the same polarization,
effectively delivering a perfect clone. True that some other
times the atom will spontaneously emit a photon of random
polarization, but still, when stimulated emission occurs, a perfect
clone has been produced. If we had on our side a quantum
version of Maxwell demon, who separates the photons produced
by stimulated emission from those produced by spontaneous
emission, we would be able to generate any desired number of
clones with a non-zero probability. Unfortunately, our imaginary
helper is not allowed by the laws of quantum mechanics, even with
tiny probability, knowing whether or not stimulated emission took
place would lead to a violation of the no-signalling principle
(incidentally, this observation should be taken as a reminder that
Einstein’s treatment is just an approximation, whereas in the
actual quantum dynamics stimulated and spontaneous emission
happen in a coherent superposition). However, nothing forbids
that other probabilistic processes, akin to spontaneous emission,
could proliferate quantum information beyond any previously
conceived limit. This possibility raises new fundamental questions:
is it possible to engineer a process that duplicates a beam of N
equally prepared particles, producing a beam of 2N almost perfect
clones? What is the ultimate rate at which quantum information
proliferate without significant errors?

Here we answer both questions: although it is impossible to
duplicate arbitrary quantum states, we devise a probabilistic
mechanism that transforms an input beam of N particles, equally
prepared in a state ctj i ¼ e� itH cj i generated by time evolution,
into an output beam of magnified intensity, consisting of an
overwhelming number M of nearly perfect clones with a small
error that vanishes rapidly whenever M is small compared with
N2. We name this new phenomenon super-replication and show
that it is intrinsically probabilistic, by proving that deterministic
processes can only produce a negligible number of nearly perfect
replicas. For example, for 100 linearly polarized photons, super-
replication allows one to produce 1,000 replicas with fidelity
99.9%, whereas the best deterministic process can only achieve
fidelity 57%. In addition, we show that no physical process,
deterministic or not, can proliferate quantum information at a
rate larger than quadratic; any attempt to replicate quantum
information beyond this limit is doomed to produce a joint
output that has vanishing fidelity with the desired state. To
explain the roots of this fundamental limitation, we establish a
deep link between quantum cloning and the precision limits of
quantum metrology5–11, showing that the Heisenberg limit (HL)
sets the ultimate bound to the replication rate of probabilistic
processes, while the standard quantum limit (SQL) sets the
corresponding bound in the deterministic regime.

Results
The SQL for information replication. Optimal cloning is a
fundamental primitive in quantum information12–14. Its goal is to
transform N input copies of a quantum state cxj i, randomly
drawn from a set { cxj i}xAX, into M approximate copies that are
as faithful as possible. The simplest figure of merit here is
the fidelity FN-M between the M-particle state produced by the
process and M exact copies of the desired state, evaluated on the
worst-case input state. Inspired by information theory, we now

consider a sequence of cloning processes that transform N input
copies into M¼M(N) approximate copies and we say that
the replication is reliable if the replication error vanishes in the
limit of large N. As an error measure, we use the infidelity
eN-M:¼ 1� FN-M. Here the crucial question is how large can
M grow as a function of N in a reliable replication process? To
answer the question, we introduce the notion of replication rate,
saying that a replication process has rate a if the number of extra
copies scales like Na. We say that a rate is achievable if there exists
a sequence of reliable replication processes with that rate. We will
now see that the achievable replication rates are determined by
the precision limits of quantum metrology. Our first key result in
this direction is a SQL for quantum replication: No deterministic
process can reliably replicate a continuous set of quantum states
at a rate larger than 1. In other words, deterministic processes can
only embezzle from nature a negligible number of extra copies.

The derivation of the SQL for quantum replication is based on
the SQL for quantum metrology15, applied to an arbitrary curve
of states { ctj i | tA(� E, E)} contained in the set of states that we
are trying to clone. A sketch of proof is as follows: the SQL states
that the variance in the estimation of t from N copies is lower
bounded by VN;t � c

N, for a constant c that can be set to c¼ 1 with
a suitable choice of parametrization. Now, suppose that there is a
sequence of reliable deterministic processes with rate a. The Nth
process will produce an M-particle output state rout

M;t , where
MZNþ aNa for some constant a40, approaching the ideal
target ctj i�M in the large N limit. For simplicity, let us assume
that the trace distance between rout

M;t and ctj i
�M vanishes as

O(M� b) for some exponent bZ1 (for sets of states of the form
f ctj i ¼ e� itH cj it 2 Rg, this assumption is lifted in
Supplementary Note 1). Now, if two states are close, so is the
variance in the estimation of t from these two states: for every
fixed estimation strategy, we have the bound
Vout

M;t � VM;t þ gM� b, where Vout
M;t is the variance in the

estimation of t from rout
M;t , VM,t is the variance in the estimation

of t from M copies and g40 is a suitable constant. However,
applying a deterministic transformation cannot reduce the
variance of the optimal estimation strategy, denoted by Vmin

N;t .
Hence, we have the bound Vmin

N;t � Vout
M;t � VM;t þ gM�b.

Choosing the best estimation strategy, we then obtain
Vmin

N;t � Vmin
M;t þ gM�b. Now, since the SQL is asymptotically

achievable by a suitable strategy (cf. Methods), for large N the
bound becomes 1/Nr1/(Nþ aNa)þ g(Nþ aNa)� b, up to terms
that are negligible with respect to N� 1. Clearly, this implies ar1
because otherwise we would have a contradiction for large N. This
establishes the SQL for quantum replication. As a by-product of
the derivation, we also have that no deterministic process can
replicate information with error vanishing faster than N� 4.
Indeed, by Taylor expanding on the right hand side of the
inequality 1/Nr1/(Nþ aNa)þ g(Nþ aNa)� b, we obtain the
condition br2� a, which implies br2. Using the relation
between fidelity and trace distance16, this means that the
replication error is lower bounded as eN-MZO(N� 4). In other
words, for a reliable replication process the error cannot vanish
faster than a low-degree polynomial.

The SQL limits not only deterministic replication but also
some instances of probabilistic replication; for example, prob-
abilistic cloning has no advantage for arbitrary pure states (this
fact was observed in ref. 17 for 1-to-M cloning, but the argument
can be easily extended to N-to-M cloning). More generally, it is
easy to see that if the set of states { cxj i} has strong symmetries,
probabilistic processes do not lead to any improvement (cf.
Methods). A sketch of the argument is the following: any
probabilistic process can be decomposed into the application of a
filter—that transforms an input state cxj i into the output state
fxj i ¼ Myes cxj i= k Myes fxj i k for some suitable operator Myes—
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followed by a deterministic process. Now, if the set of states has
strong symmetries, the optimal operator Myes is forced to be equal
to the identity, and the probabilistic process becomes equivalent
to a deterministic one. This is the case for cloning of arbitrary
pure states18, coherent states19 or coherent spin states20, where
the replication rates are bound to satisfy the SQL.

The HL for information replication. We now restrict our
attention to the replication of states of the form ctj i ¼ e�itHjci,
tAR, where H¼Hw is a suitable Hamiltonian. We call these states
clock states, as they can be generated through a time evolution
obeying the Schrödinger equation. For simplicity, we focus on
finite-dimensional quantum systems and we ignore the unin-
teresting case where H is a multiple of the identity. The main
result here is a HL for the probabilistic replication of clock states.
To get the result, we first establish a precision limit for prob-
abilistic metrology where one is allowed to take advantage of fil-
ters21,22. Our strategy is to apply the quantum Cramér-Rao bound
(CRB)7,23,24 to the states ftj i ¼ Myes ctj i= k Myes ctj i k emerging
from the filter. By explicit calculation (see Supplementary Note 2),
we bound the variance at a given point t as

Vprob
t � 1

4 hft jK
y
t Kt jfti� hft jKt jfti

2
� � ; ð1Þ

where Kt ¼ MyesHM� 1
yes þ

hct j ½H;M
y
yesMyes� jcti

2kMyes jctik2 . This innocent-

looking application of the CRB leads immediately to a surprise:
optimizing over all filters Myes, the right hand side of equation (1)
can be made arbitrarily small, suggesting the possibility of
unlimited precision (cf. Methods). Note, however, that to attain
the equality in equation (1), one should adapt the choice of filter to
the value of t, the unknown parameter that one is trying to
estimate. In practice, this is not a realistic scenario. In the case of
periodic evolution, a more realistic setting is to have t distributed
according to a uniform prior p(t) over the period. In this case, the
precision that can be achieved on average is still limited: denoting
by Vprob

p the expected variance when the particles pass the filter, in
Supplementary Note 3 we prove the bound

Vprob
p � 1

ðEmax�EminÞ2
; ð2Þ

where Emax (Emin) is the maximum (minimum) eigenvalue of the
energy such that |c i has non-zero overlap with the corresponding
eigenspace. We note that (Emax�Emin)2/4 is equal to the
maximum of the variance of H over all possible states |f i
contained in the subspace generated by the input states { ctj i}.
Such maximum is achieved by the ‘NOON state’
fj i ¼ ð j Emaxiþ j EminiÞ=

ffiffiffi
2
p

, where |Emax i (|Emin i) is an
eigenstate of H corresponding to the eigenvalues Emax (Emin).
Since these states are the best states for deterministic metrology25,
our result implies that the best strategy for probabilistic metrology
with uniform prior consists just in using a filter that generates the
NOON state, and then applying the optimal deterministic
estimation strategy. Up to a small correction, the same result of
equation (2) can be obtained when the evolution is non-periodic,
by approximating the uniform distribution with a Gaussian with
large variance (cf. Supplementary Note 4).

When N identical copies of ctj i are available, equation (2)
gives the Heisenberg scaling

Vprob
p;N �

1

N2ðEmax�EminÞ2
: ð3Þ

Equipped with this bound, we can now derive the HL for
quantum replication; no physical process can reliably replicate a

set of clock states at a rate larger than 2. Here is a sketch of
the proof: the filter transforms the product state ctj i

�N into the
entangled state Myes ctj i�N= k Myes ctj i�Nk. For this state,

equation (3) gives the bound Vprob
p;N � c=N2 with c¼ (Emax�

Emin)� 2þ E (E¼ 0 in the case of periodic evolution). Now,
suppose that there exists a sequence of probabilistic processes
with replication rate a41, and suppose that the Nth process in
the sequence produces MZNþ aNa approximate copies, with a
trace distance from the ideal target vanishing asymptotically as
O(1/Mb), bZ1 (this assumption is lifted in Supplementary Note
5). Then, the variance of the estimation from the output state
rout

M;t—denoted by Vout
M;t—will be close to the variance of the

estimation from ctj i#M: for every t, we will have
Vout

M;t � VM;t þ g=Mb, for some constant g independent of t.
Taking the average variance over the uniform prior p(t), we
obtain the relation Vout

M;t � VM;pþ g=Mb, where Vout
M;p and VM,p are

the averages of Vout
M;t and VM,t, respectively. By definition, the

average variance VM,p is lower bounded by the SQL and the
bound is attained in the large M limit by choosing a suitable
measurement (cf. Methods). Hence, by Taylor expanding the
terms in M and keeping the leading order terms, we obtain
cN� 2r4N� aþO(N� a), which implies ar2. Note that here b
disappeared from the equation as there is no upper bound on b,
in principle the error can vanish faster than any polynomial! The
HL leaves lots of room for replicating quantum information: for
every rate 1oao2, one has the chance not only to duplicate the
input copies but also to produce an overwhelming number of
replicas, with an error that vanish faster than any polynomial. In
the next paragraph, we will exhibit explicit protocols that have all
these features. Our protocols are necessarily probabilistic, as a
consequence of the SQL, which constrains deterministic processes
to produce a negligible number of extra replicas.

Probabilistic super-replication. Here we show that clock states
can be reliably replicated at any rate allowed by the HL. When the
rate is larger than (or equal to) 1, we call the process super-
replication to emphasize the fact that it beats the SQL. The key
idea to achieve super-replication is to devise a filter that mod-
ulates the Fourier amplitudes of the wavefunction in a way that
enhances the replication performances to the maximum rate
allowed by quantum mechanics. To move to the Fourier picture,
we express the input states as ctj i ¼

P
E2SpecðHÞ

ffiffiffiffiffi
pE
p

e� itE Ej i,
where Spec(H) denotes the spectrum of the Hamiltonian, Ej i is an
eigenvector of H with eigenvalue E and pE is the probability that a
measurement of the energy gives outcome E. When N identical
copies are given, the joint state can be expressed as

ctj i
�N¼

X
E2SpecðHðNÞ Þ

e� itE ffiffiffiffiffiffiffiffi
pN;E
p

N; Ej i; ð4Þ

where H(N)¼
PN

i¼1 Hi is the total Hamiltonian (Hi denoting the
operator H acting on the ith system), |N,E i is an eigenvector of
H(N) for the eigenvalue E and pN,E is the probability that a
measurement of the total energy gives outcome E. Choosing a
filter Myes that is diagonal in the energy eigenbasis, we can
modulate the Fourier amplitudes of the state (4) in any way we
like. Of course, since we aim at producing M perfect copies, the
natural choice is to replace N with M in the probability dis-
tribution pN,E. However, the spectrum of H(N) may be not be
contained in the spectrum of H(M) and in general one needs to
shift the energy values by a suitable amount dE0E(M�N)
hc|H|c i (see Supplementary Note 6). With this choice, the state
after the filter is projected to the entangled state FN

t

�� �
/P

E2SpecðH �N Þ e� itE ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pM;Eþ dE0

p
N; Ej i.
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The state FN
t

�� �
will now act as a quantum programme,

containing the instructions that will be used by a deterministic
quantum device to generate M approximate clones. For this
purpose, we use a device that coherently transforms each
eigenstate |N,E i into the corresponding eigenstate |M,Eþ
dE0 i, thus producing the state cM

t

�� �
/
P

E2SpecðHðNÞÞ e� itEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pM;Eþ dE0

p
M; Eþ dE0ij . It is not hard to see that the state

cM
t

�� �
has high fidelity with the desired state ctj i

�M for every
replication rate allowed by the HL. Precisely, for large enough N
one has the bound

FN!M � 1� 2K exp � 2p2
minN2

M
þ 4N

MK

� �
; ð5Þ

where K is the number of energy levels E such that pEa0 and
pmin¼min{pE : pEa0} (see Supplementary Note 7 for the proof).
Equation (5) shows that the fidelity approaches 1 faster than any
polynomial whenever M is of order Na with ao2, that is,
whenever the replication rate satisfies the HL. A strong converse
can be proven: every process replicating quantum states at a rate
higher than 2 must have vanishing fidelity in the limit of large N,
as showed in Supplementary Note 5.

Thanks to our filter, we have been able to embezzle from
nature a large number of replicas. The improvement is striking if
one compares it with the performances of standard cloning
processes. Let us illustrate this fact for the replication of linear
polarization states ctj i ¼ cos t Vj i þ sin t Hj i. In this case, the best
deterministic process is the phase-covariant cloner of ref. 26, and
its fidelity is Fdet

N!M � 2
ffiffiffiffiffiffi
MN
p

MþN in the asymptotic limit of large N
and M. In agreement with our SQL, the fidelity vanishes
whenever M is of order N1þ E, E40. As we proved in general,
deterministic processes can only produce a number of extra
replicas that is a negligible fraction of the number of input
photons. In stark contrast, for N¼ 100 input photons, our filter
can produce M¼ 1,000 approximate copies with fidelity

Fprob¼ 0.9986, whereas the fidelity of the optimal deterministic
cloner is only Fdet¼ 0.5739. In the example of linearly polarized
photons, our filter is provenly optimal, as it coincides with the
optimal probabilistic cloner of ref. 17. Quite surprisingly, the
possibility of super-replication was not recognized in ref. 17
where the advantage of probabilistic processing was conjectured
to be only of the order of one percent.

The different features of replication processes at the HL and at
the SQL are illustrated in Fig. 1 in the case of linearly polarized
photons.

The advantage of the filter is clear also in the non-asymptotic
setting: a plot comparing the performances of replication with
and without the filter in the case N¼ 20 is presented in Fig. 2.

What makes the improvement even more dramatic is that the
quality of the replicas is measured by the global fidelity between
the output state and the desired joint state of M perfect copies,
which is much smaller than the fidelity that each single copy has
with the state ctj i.

Maximizing the probability of success. The dazzling perfor-
mances of super-replication come at a price: the probability that
the input systems pass the filter has to decay with N. Indeed, in
Supplementary Note 1 we already showed a strong converse of
the SQL: every deterministic process producing replicas at a rate
higher than the SQL must have vanishing fidelity.

For our filter, the probability of super-replication at rate a41
decreases exponentially fast as pyes[N-M]re� kN for a suitable
constant k40 independent of a (see Supplementary Note 8). One
may ask whether there are ways to achieve super-replication with
a larger success probability. It turns out that the answer is yes. In
Supplementary Note 9, we show that a process producing
MrO(N) replicas can have a success probability pyes[N-M]
going to zero as 1/Nd for every desired d40. Most importantly,
for a super-replication process with rate a¼ 1þ E, E40, we show

a

b

Figure 1 | The advantages of probabilistic super-replication. (a) Every deterministic process is constrained by the SQL: the number of clones that

can be produced reliably from N input copies is of order N and the fidelity of the clones cannot approach 1 faster than the inverse of a polynomial of degree

4. (b) Super-replication at the HL: the cloning performances can be dramatically increased by a probabilistic filter, depicted here as a ‘quantum

Maxwell demon’ that separates two branches of the wavefunction. In the successful branch, any number of clones of order N2� E can be produced

with fidelity approaching 1 faster than any polynomial.
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how to increase the success probability to pyes[N-M]Ze�Nd for
every desired exponent d4E. However, no further improvement
is possible below the critical value dc¼ E; any process with success
probability scaling as pyes[N-M]¼ ae� bNd, doE, a,b40 must
have vanishing fidelity in the asymptotic limit, as observed in
Supplementary Note 1.

These results identify the optimal exponent for the decay of the
success probability in a super-replication process, pinning down
the trade-off between the replication rate and success probability.
Interestingly, the choice between the advantage of a high
replication rate and that of a unit success probability can be
always delayed to the very last moment. Indeed, it is easy to see
that asymptotically the best deterministic replication process is
just given by the coherent transformation j N; Ei7! j M; Eþ dE0i
that we used in our protocol. Hence, an alternative way to achieve
super-replication is to apply first the best deterministic process
and later to modulate the Fourier amplitudes of the wavefunction
using a probabilistic filter.

Many-worlds fairness. Super-replication can be achieved not
only for one-parameter families of clock states but also for dif-
ferent manifolds of states, including the manifold of all maximally
entangled states of two identical systems. However, super-repli-
cation is not a generic feature. As we already mentioned, if one
tries to copy an arbitrary—as opposed to linear—polarization
state, then no filter is going to help; the performances with filter
are equal to the performances without filter. More generally, for
generic quantum systems, no probabilistic filter can make an
arbitrary quantum state more copiable. This property is quite
compelling when considered from the angle of the many-worlds
interpretation of quantum mechanics27 because it states that no-
branch of the wavefunction of the universe offers an advantage
over the others in replicating the information contained in a
completely unknown state. Regarding different branches as
‘different worlds’, we can formulate this as a fundamental
principle, which we name many-worlds fairness: the maximum
rate at which arbitrary information can proliferate is the same in
all possible worlds. Many world fairness rules out quantum

mechanics on real Hilbert spaces28, an alternative physical theory
where photons can have only linear polarizations. Thanks to this
observation, one can provide a new answer to the old
question‘why are physical systems described by complex—
instead of real—Hilbert spaces?’. Traditionally, the standard
answer has been to invoke local tomography, the property that
one can completely identify a mixed state from the statistics of
local measurement on the components. However, one may
consider this as an ad hoc requirement29, and, in fact, there are
even reasons to prefer real quantum mechanics to its complex
version, as it was recently pointed out by Wootters30. Balancing
this fact, many-world fairness offers a new reason (other that the
usual local tomography) in favour of complex quantum
mechanics.

Discussion
Super-replication has been introduced here from a theoretical
point of view. But is it possible to implement it experimentally?
Luckily, very recently there have been experimental break-
throughs on the closely related topic of probabilistic amplification
of coherent states of light31–35. Although the translation to our
case is not immediate, we suggest that super-replication of
linearly polarized photons could be achieved through a suitable
sequence of amplitude-damping channels, which for the
polarization play the role of the photon subtraction for
coherent states. An alternative approach is to first encode the
state of the input copies into a coherent state via matter-light
teleportation36, amplify the coherent state in a probabilistic
fashion, and then teleport back. This scheme provides a new
application of the existing experimental schemes for coherent
state amplification, making them the building block for the
replication of quantum information at the HL. Finally, a third
avenue towards implementing super-replication would be through
stimulated emission, combined with a suitable monitoring of the
emitting atoms. Simulated emission has been discussed extensively
in connection with deterministic cloning37–39, but its potential for
implementing probabilistic processes is still unexplored.

In relation to the existing literature, it is interesting to
comment on the relation between our results and previous works
on probabilistic cloning and probabilistic estimation. The idea
that in some situations even non-orthogonal states can be copied
perfectly using a probabilistic device was first introduced by Duan
and Guo40 who showed that a set of pure quantum states can be
copied perfectly if and only if they are linearly independent. This
means that for a single photon, one can perfectly copy two
polarization states, while for N photons one can copy at most
Nþ 1 states. Subsequent works17,41,42 showed that probabilistic
devices can improve the performances of approximate cloning for
continuous sets of states, leading to nearly ideal performances in
the case of coherent states with fixed amplitude. The nearly
perfect cloning of coherent states may lead one to believe that in
general there is no limit to the amount of clones that can be
produced probabilistically. Contrarily to this intuition, we have
proven here that for finite quantum systems, the HL sets the
ultimate bound M¼O(N2) to the number of clones that can be
produced reliably. Moreover, we have shown that for arbitrary
one-parameter families of states, any replication rate allowed by
the HL can be achieved and we identified exactly the exponent at
which the probability of success has to decay.

Finally, the relation between cloning and estimation has been
extensively investigated in the literature43–47 in terms of single-
copy fidelities. However, none of the approaches proposed so far
was suitable to derive limits on the asymptotic replication rates,
nor to connect the latter with quantum metrology. Recently, it
has been observed that the precision of quantum estimation can
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Figure 2 | Replication of linearly polarized photons. The fidelity of the

best cloning processes for linearly polarized photons ctj i¼ cos t|V i
þ sin t|H i is plotted here for N¼ 20 input copies, with the number M of

output clones ranging from 20 to 400. The red (green) line refers to

optimal cloning with (without) filter.
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be improved using probabilistic strategies21,22 where depending
on the outcome of the filter, one can decide to abstain from
estimating the parameter. The mechanism of abstention can
sometimes boost the precision from the SQL 1/N to the HL 1/N2.
The connection between these results and super-replication is
made clear by our approach: the fact that a probabilistic filter can
improve estimation until the HL implies that N2, rather than N, is
the upper bound for the replication rate of the states
ctj i ¼ e� itH ctj i. However, there is an important catch: the

filter that achieves replication at the HL is not the same filter that
achieves estimation at the HL. In fact, if we were to use the same
filter needed in refs 21,22, we would not be able to reduce the
error down to zero.

Methods
Decomposition of quantum instruments. To describe the most general prob-
abilistic processes allowed by quantum mechanics, we use the framework of
quantum instruments48-50. A quantum instrument with input (output) Hilbert
space Hin (Hout) is a collection of completely positive (CP), trace non-increasing
linear maps {Pj}jAY, where each map transforms density matrices on Hin into
(sub-normalized) density matrices on Hout. If the input system is prepared in the
density matrix r, the probability that outcome j is p(j|r)¼Tr[Pj(r)].
Conditionally, to the occurrence of outcome j, the state of the output system is
rout

j ¼ PjðrÞ=Tr½PjðrÞ�. We note an elementary fact about quantum instruments:
any quantum instrument can be decomposed into a pure measurement on the
input system followed by quantum channel depending on the outcome. By ‘pure
measurement on the input system’, we mean a quantum instrument {Mj}jAY of the
special form MjðrÞ ¼ MjrM

y
j for some operator Mj on Hin. By ‘quantum

channel’, we mean a trace-preserving CP map Cj, transforming density matrices on
Hin into (normalized) density matrices on Hout. In formula, our claim is that
every CP map Pj can be decomposed as

Pj ¼ CjMj: ð6Þ

The proof is as follows: let Pyj be the adjoint of the map Pj, defined by

Tr½Pyj ðAÞr� ¼ Tr½APjðrÞ� for every operator A and for every density matrix r.

Define the operator Mj :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Pyj ðIÞ

q
and the map Lj by the relation

LjðrÞ :¼ PjðM� 1
j rM� 1

j Þ, where M� 1
j is the inverse of Mj on its support. If Mj is

invertible, then Cj:¼Lj is trace preserving:

Tr½LjðrÞ� ¼ Tr½PjðM� 1
j rM� 1

j Þ�

¼ Tr Pyj ðIÞ P
y
j ðIÞ

h i� 1=2

r Pyj ðIÞ
h i� 1=2

	 

¼ Tr½r�:

In this case, by definition we have PjðrÞ ¼ CjðMjrM
y
j Þ for every r. If Mj is not

invertible, we can define the trace-preserving map Cj(r):¼Lj(r)þP>rP>, where

P> is the projector on the kernel of Mj. Again, the definition implies P jðrÞ ¼

CjðMjrM
y
j Þ for every state r.

For the purposes of this paper, it is enough to consider measurements with two
outcomes (yes,no), referred to as filters. The filter induces a bifurcation of the
wavefunction and selects one particular branch, corresponding to the successful
outcome yes.

Symmetry constraints on probabilistic cloning. Consider a quantum cloning
problem where the set of states { cxj i} has a group of symmetries, denoted by G.
This means that, for every unitary operator Ug representing the action of a sym-
metry transformation in the group, one has {Ug cxj i}xAX¼ { cxj i}xAX. A prob-
abilistic cloner is described by a quantum instrument {Pyes, Pno} from the space of
N copies to that of M copies, where the CP maps Pyes and Pno correspond to the
successful and unsuccessful instances, respectively. Conditional to the successful
outcome, the fidelity of the output state with the desired M-copy state is

Fprob
x ½Pyes� ¼

hcx j �M Pyes ð j cxihcx j Þ
�N� �

j cxi
�M

Tr Pyes ð j cxihcx j Þ
�N� �
 � : ð7Þ

The goal of cloning is to maximize the worst-case fidelity
Fprob

wc ½Pyes� :¼ inf xFprob
x ½Pyes�. Because of the symmetry of the set of states, the

maximization can be restricted without loss of generality to the set of covariant CP
maps, that is, of CP maps satisfying the relation

U �M
g PyesðrÞ

� �
Uy�M

g ¼ Pyes U �N
g rUy�N

g

� �
; ð8Þ

for every group element g and for every quantum state r. The proof is standard and
we refer the interested reader to similar proofs provided in the literature, such as

those of refs 51,52 for covariant measurements and that of ref. 53 for covariant
cloning channels.

Let us work out the implication of symmetry, starting from the decomposition
Pyes¼CyesMyes of equation (6). It is easy to see that the covariance of Pyes implies
the commutation relation ½Myes;U �N

g � ¼ 0, for every group element g. Indeed,

using the definition Myes :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PyesðIÞ

p
and the covariance of P

y
yes, we have

U �N
g MyesUy�N

g ¼ U �N
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PyyesðIÞ

q
Uy�N

g

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pyyes U �M

g Uy�M
g

� �r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PyyesðIÞ

q
¼ Myes:

Now, if the group of symmetries is sufficiently large, the action of the unitaries
U �N

g can be irreducible in the subspace containing the input states cxj i
�N . When

this happens, the Schur’s lemma imposes that the filter Myes be a multiple of the
identity, and, therefore PyespCyes. By equation (7), this means that the fidelity
achieved by the CP map Pyes is the same as the fidelity achieved by the quantum
channel Cyes. In summary, we have proven the following fact: the maximum of the
fidelity over all probabilistic cloners is equal to the maximum of the fidelity over
deterministic cloners whenever the action of the unitaries fU �N

g g is irreducible in

the subspace spanned by the input states { cxj i�N }. This simple observation has
several important consequences. A first consequence, noted by Fiurášek17, is that
the probabilistic processes do not offer any advantage for 1-to-M cloning of
arbitrary pure states. Our approach allows to reach the same conclusion in a fairly
broader range of cloning problems: in particular, it implies that probabilistic
processes offer no advantage in the case of N-to-M cloning of arbitrary pure
states18, N-to-M cloning of coherent states19 and spin-coherent states20, 1-to-M
cloning of two Fourier transformed bases53 and of all the sets of states considered
in ref. 53, and 1-to-M phase-covariant cloning for qubit states on the equator of the
Bloch sphere26.

Pointwise versus average CRB. The CRB is the cornerstone of quantum
metrology5–9,11. For a family of clock states ctj i¼ e� itH cj i, it states that the
variance in the estimation of t from the state ctj i is lower bounded by VtZ1/Qt,
where Qt:¼ 4( cth jH2 ctj i � cth jH ctj i2) is the quantum Fisher information (QFI).
The equality in the CRB can be achieved if one adapts the estimation strategy to the
value of t. This can be done in an asymptotic scenario when one is given a large
number of copies of ctj i and uses a fraction of them to obtain a rough estimate of t
(ref. 54). However, if instead of having N copies one has a single N-particle
entangled state, the CRB may not give an achievable lower bound. For example,
Hayashi55 showed that the CRB for phase estimation predicts the correct scaling c/
N2, but with a constant c that is not achievable. In the case of probabilistic
metrology, the issue about the achievability of the CRB appears in a more dramatic
way: if we allow one to adapt also the choice of the filter Myes to the value of t, then
the CRB promises unlimited precision. It is instructive to see how this
phenomenon can happen. For a given t0, choose a parametrization where
ct0

� ��H ct0

�� �
¼ 0 (this can always be done by redefining H as

H0 ¼H� ct0

� ��H ct0

�� �
). Then, define the vector

jc?t0
i :¼ H ct0

�� �
k H ct0

�� �
k ;

which by construction satisfies hc?t0
jft0
i ¼ 0. Now, choose the filter operator

Myes;t0 :¼ E ct0

�� �
ct0

� ��þ c?t0

�� E
c?t0

D ��
The filter does not change the state ct0

�� �
:

ft0

�� �
¼ Myes;t0 ct0

�� �
k Myes;t0 ct0

�� �
k � ct0

�� �
:

However, it amplifies the time derivative at t0:

id ftj i
dt

����
t¼t0

¼ Kt0 ft0

�� �

¼ Myes;t0 HM� 1
yes;t0

� �
ct0

�� �

¼ H Ct0j i
E

¼ 1
E

id ctj i
dt

����
t¼t0

;

where in the second line we used the explicit expression

Kt0 ¼ Myes;t0 HM� 1
yes;t0
þ

ct0

� �� H;M
y
yes;t0

Myes;t0

h i
ct0

�� �
2 k Myes ct0

�� �
k2

;
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along with the observation that ct0

� ��½H;Myyes;t0
Myes;t0 � ct0

�� �
¼ 0. As a result, the

probabilistic QFI at t0, defined as the QFI associated to the states ftj if g, satisfies

Qprob
t0
¼ ft0

� ��Kyt0
Kt0 ft0

�� �
� ft0

� ��Kt0 ft0

�� �2

¼ Qt0

E2

This equation means that, whenever the original QFI is non-zero at a specific value
t0, the probabilistic QFI can be made arbitrarily large with a suitable choice of e.
This fact, combined with the CRB, seems to suggest that one can have unlimited
precision. However, such a conclusion is an artifact of the pointwise character of
the CRB: the probabilistic estimation scheme shown above has unlimited precision
only in an infinitesimally small neighbourhood of t0. In light of this observation, for
probabilistic metrology, it is more sensible to choose the filter Myes independent of
t, to assign a prior p(t) to the unknown parameter and to minimize the expected
variance. Note that, since the estimate is produced only when the system passes
through the filter, the expectation has to be computed with respect to the
conditional probability distribution pðt j yesÞ /k Myes ctj i k2 pðtÞ. The expected
variance, denoted by Vprob

p :¼
R

dt pðt j yesÞVt , is lower bounded by the inverse of
the expected QFI, denoted by Qprob

p :¼
R

dt pðt j yesÞQt in formula

Vprob
p � 1

Qprob
p

: ð9Þ

The proof of equation (9) is an elementary application of the pointwise quantum
CRB and of the Schwartz inequality:

1 �
Z

dtpðt j yesÞ
ffiffiffiffiffiffiffiffiffiffi
Vt Qt

p� �2

�
Z

dtpðt j yesÞVt

� � Z
dtpðt j yesÞQt

� �

� Vprob
p Qprob

p :

Note that the average CRB of equation (9) is just a lower bound and the equality
may not be achievable. However, achievability is of no consequence for our
arguments about the replication rates.
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