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Quantum random number generation with uncharacterized
laser and sunlight
Yu-Huai Li1,2, Xuan Han1,2, Yuan Cao1,2*, Xiao Yuan1,2,3, Zheng-Ping Li1,2, Jian-Yu Guan1,2, Juan Yin1,2, Qiang Zhang1,2, Xiongfeng Ma3*,
Cheng-Zhi Peng1,2* and Jian-Wei Pan1,2

The entropy or randomness source is an essential ingredient in random number generation. Quantum random number generators
generally require well modeled and calibrated light sources, such as a laser, to generate randomness. With uncharacterized light
sources, such as sunlight or an uncharacterized laser, genuine randomness is practically hard to be quantified or extracted owing to
its unknown or complicated structure. By exploiting a recently proposed source-independent randomness generation protocol, we
theoretically modify it by considering practical issues and experimentally realize the modified scheme with an uncharacterized laser
and a sunlight source. The extracted randomness is guaranteed to be secure independent of its source and the randomness
generation speed reaches 1 Mbps, three orders of magnitude higher than the original realization. Our result signifies the power of
quantum technology in randomness generation and paves the way to high-speed semi-self-testing quantum random number
generators with practical light sources.
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INTRODUCTION
Random numbers play a vital role in various tasks, such as
cryptography,1 numerical simulation,2 and lottery. For example, in
the well-known quantum key distribution (QKD) protocol pro-
posed by Bennett and Brassard,3 the security is guaranteed by
random choices of the encoding and measurement bases. Distinct
from deterministic evolution of classical processes, quantum
mechanics endows the capability of generating genuine random-
ness by collapsing the coherence in the measurement basis.4,5

According to the generation speed and the randomness
reliability, quantum random number generators (QRNGs) can be
categorized into following three types. Practical QRNGs, which
assume well characterized devices, normally have a fast genera-
tion speed.6–8 Fully self-testing QRNGs, which adopt no assump-
tions on device implementations, generally have a low
randomness generation speed owing to the stringent require-
ments.9–13 Semi-self-testing QRNGs lies somewhere in between,
which have certain assumptions of device implementations while
have high randomness generation speed in the meantime.14–21

We refer to ref. 22 for a detailed review of the developments of
different types of QRNGs. For these three types, a tradeoff
between the randomness generation speed and the randomness
reliability exists in practice. In many tasks such as QKD, both the
randomness generation speed and the reliability are required in
order to ensure the key generation rate and the security. For those
tasks, semi-self-testing QRNGs serve as promising candidates that
fulfill both requirements.
Recently, several semi-self-testing QRNG schemes have been

proposed.14–21 By assuming the underlying dimension and the
independence of the source and the measurement, a QRNG
scheme14 has been proposed such that the output randomness
can be self-tested. While, as the randomness is certified by the
input and output statistics, the random number generation rate is

only about 23 bps. The generation rate was further improved to
the order of MHz with input and output statistics and weaker
assumptions.18,19 Later, with trusted measurement but unchar-
acterized randomness source, a source-independent (SI) QRNG
scheme is proposed,15 where the randomness generation speed is
analyzed to be comparable to practical QRNGs that has
characterized devices. Conventionally, QRNGs make use of special
light sources, such as lasers, and specific physical model to
characterize the randomness source. With more common light
sources, such as sunlight, and no assumptions of the randomness
origin, the SI-QRNG scheme can still faithfully generate random
numbers.
In this work, we explore randomness generation with general

light sources, laser and sunlight without assuming the physical
structures. By exploiting the SI-QRNG scheme15 and considering
practical issues of measurement device imperfections, we
experimentally demonstrate the possibility of fast and reliable
randomness generation.

RESULTS
Scheme
As shown in Fig. 1, a conventional QRNG is composed of the
randomness source and the detection device.22 In the source part,
it consists of a light source and a state preparation device.
Generally, practical QRNGs6–8 make use of specific models to
describe the structure of the randomness source. While the SI-
QRNG scheme15 supplies the possibility of randomness generation
without assuming neither the light source nor the state
preparation devices.
First, we review the concept of SI-QRNG based on the scheme of

ref. 15 The SI randomness generation procedure is summarized by
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source, squashing, random sampling, parameter estimation, and
randomness extraction, as follows.

● The state preparation device is expected to prepare the light
in the polarization state of þj i ¼ ð Hj i þ Vj iÞ= ffiffiffi

2
p

, where Z ¼
f Hj i; Vj ig is the computational basis. While no assumption is
made on the photon source, it is untrusted and could be
controlled by Eve. Thus, the actual prepared quantum state
may have an arbitrary and unknown dimension. Randomness
can still be quantified and extracted with the following steps.

● The squashing process maps arbitrary quantum states
into qubits and vacuum states. The vacuum components
are regarded as loss. In practice, the squashing process
can be realized by adding a series of spectrum, spatial and
temporal filters to post-select the expected optical modes.

● In the measurement, we randomly choose the X ¼ f ±j i ¼
ð Hj i± Vj iÞ= ffiffiffi

2
p g and Z basis to measure according to a

random seed. The random seed needed is exponentially
smaller than the number of extracted random bits.15

Suppose that the number of runs in total is N, including
NX in the X basis and NZ in the Z basis. Due to the loss, the
output of detection could be null. In this case, the number
of qubits measured in total is n, including nX in the X basis
and nZ in the Z basis. It is worth noting that this protocol is
loss tolerance. In the ideal case, the measurement device
chooses the measurement basis after confirming the
received state is not a vacuum state. In practice, the
measurement basis is chosen before the confirmation of
loss, which is usually done by observing whether detectors
click or not. However, the detection device does not
anticipate the position of losses. Thus the effect of loss only
decreases nX and nZ , but the positions of the effective X
and Z measurements are still uniformly random.

● When measuring in the X basis, the result of �j i is defined
to be an error, and a double click is considered as a half
error. Then, we can evaluate the phase error epZ in the Z
basis according to the bit error rate ebX in the X basis and
its statistical deviation θ23 according to

εθ ¼ Prob ðepZ > ebX þ θÞ� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qXð1� qXÞebXð1� ebXÞn

p 2�nξðθÞ;

(1)

where ξðθÞ¼HðebXþθ�qXθÞ�qXHðebXÞ�ð1� qXÞHðebX þ θÞ.
Here qX ¼ nX=n is the ratio of the X basis measurement.
HðxÞ ¼ �xlog2ðxÞ � ð1� xÞlog2ð1� xÞ is the binary Shannon
entropy function. Since the dimension of the source is
unlimited, it may emit multiphoton states. When using
threshold detectors, multiphoton states may cause double
clicks, which directly contribute to the error rate ebX and
decrease the number of extracted random bits.

● By utilizing the Toeplitz-matrix hashing method,24 the phase
error can be corrected by consuming nZHðebX þ θÞ number of
bits with a failing probability of 2�te .25 Thus, we can finally
extract

R0 ¼ nZ � nZHðebX þ θÞ � te (2)

number of random bits and the final failure probability (in

trace-distance measure) is given by
ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεθ þ 2�teÞð2� εθ � 2�teÞ

p
.

Here, R0 is the number of extracted random bits without
considering the imperfections of the measurement devices. In
practice, the measurement bases may not be exactly comple-
mentary to each other, and the detection efficiencies of the two
detectors might be different. With a slight modification to Eq. (2),
the number of extracted random bits with imperfect measure-
ment devices Rfinal can still be quantified when these imperfec-
tions are characterized. On the other hand, dark counts of the
detectors may also increase the phase error rate and decrease the
number of extracted random bits. Since the dark counts are
independent with respect to the measurement basis, the effect of
dark counts can be regarded as noise of the photon source which
has already been considered in the analysis.
In the original theoretical proposal, the X and Z basis

measurements are assumed perfect. In our work, we also take
measurement imperfections into account. Specifically, we consider
the case that the actual measurement bases X 0 and Z0 are not
complementary to each other. In this case, we can make use of the
general uncertainty relation for two general bases,26

HðZ0Þ � �log2maxx0;z0 jhx0jz0ij2 � HðX 0Þ; (3)

where fjx0ig and fjz0ig are, respectively, the eigenstates of X 0 and
Z0, and HðZ0Þ and HðX 0Þ are, respectively, the entropy of the
measurement outcome of X 0 and Z0. In quantum random number
generation, we can regard �log2maxx0;z0 jhx0jz0ij2 as the random-
ness that we can obtained by measuring an eigenstate of the X 0
basis, and regard HðX 0Þ as the amount of states that are required
to distill the eigenstate.5,27 That is, given N copies of the quantum
state ρ, one can effectively first perform a dephasing operation in
the X 0 basis to collapse them into one of its eigenstates. Then we
aim to distill the dephased state into a specific eigenstate, which
costs NHðX 0Þ copies of states. For each eigenstate, it generates
�log2maxx0;z0 jhx0jz0ij2 randomness. Therefore, the total random-
ness obtained is �Nlog2maxx0;z0 jhx0jz0ij2 � NHðX 0Þ and each state
generates �log2maxx0;z0 jhx0jz0ij2 � HðX 0Þ randomness on average.
In practice, the dephasing and distillation process can be
equivalently achieved with the recently proposed coherence
distillation protocols, which can be further reduced to a
randomness extraction procedure. Therefore, the final random-
ness output for two general imperfect bases is

R1 ¼ �2nZ log2max
x0;z0

jhx0jz0ij � nZHðebX þ θÞ � te: (4)

Note that the randomness output only depends on the term
maxx0;z0 jhx0jz0ij instead of a full description of the X

0
and Z

0
bases.

In addition, we also consider the case that the measurement
efficiencies in the two eigenstates are different. Suppose the
efficiencies of projecting onto 0j i and 1j i are given by η0 and η1,
respectively. Then according to the standard analysis in QKD,28 the
randomness output will be further modified to

Rfinal ¼ 2minðη0; η1Þ
η0 þ η1

�2nZ log2 max
x0;z0

jhx0jz0ij � nZHðebX þ θÞ � te

� �
;

(5)

That is, the total randomness is rescaled with a factor
2minðη0;η1Þ

η0 þ η1
� 1. The maximum value of 1 can be achieved when

η0 ¼ η1. Here, we assume that the adversary has no information of
the detection efficiency mismatch, otherwise there may exist
attacks in analogy to the time-shift attack from QKD.29 With such
an assumption, the factor can be understood as a simple strategy
that we randomly discard the measurement outcome of the
higher efficiency detector such that the effective efficiencies of the
two detectors are the same.
In experiment, the term maxx0;z0 jhx0jz0ij and the efficiency η0; η1

can be first measured during a calibration procedure on the

Fig. 1 Source-independent randomness generation with unchar-
acterized light source and state preparation
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measurement device. Then, the SI-QRNG scheme can be applied
to produce randomness according to the randomness rate
formulae in Eq. (5).

Experimental realization
As shown in Fig. 2, the experiment setup can be accordingly
divided into two parts, the randomness source part and the
detection part. While the detection part should be elaborately
designed and carefully calibrated, the randomness source part can
be uncharacterized or even untrusted.
In the detection part, filters in several dimensions are employed

to rule out unexpected optical modes. Spectral filters, including
two 100 GHz DWDMs and several interference filters, are used to
guarantee that only photons with expected wavelength can enter,
and the isolation on unwanted wavelength is over 60 dB. The
coupling of single mode fiber excluded unwanted spatial modes.
Finally, photons arrived at wrong time will be inspected and
eliminated by a time-digital converter (TDC). The selection of
measurement basis is realized by a Sagnac type interferometer
and a phase modulator (PM) to obtain high visibility and stability,
as shown in Fig. 2. For an input pulse with arbitrary polarization
state of α Hj i þ β Vj i, where α2 þ β2 ¼ 1, it is split by a fiber
polarized beam splitter (FPBS2) when entering the Sagnac
interferometer. The length of fiber from PM to one port of FPBS2
is 25.2 m shorter than to the other port. Thus, the time for the
clockwise ( Hj i) and anti-clockwise ( Vj i) parts of the split pulses
reach the PM are separated by around 126 ns, and finally back to
FPBS2 at the same time. By carefully control the PM, the two parts
of pulse can be applied by different phase, named φc and φa. After
combined again in FPBS2, the state of output pulse is
αeiφc Hj i þ βeiφa Vj i, correspond to a unitary operation of UF . A
fiber polarization controller is employed to perform an additional
unitary operation of UC . Here,

UF ¼
eiφc 0

0 eiφa

� �
; UC ¼ 1

2

1þ i 1� i

1� i 1þ i

� �
: (6)

Finally, after appropriate attenuation, the pulse is separated by
FPBS3 and detected by two up-conversion single photon
detectors with efficiency of 10%, dark count of 200 cps and dead
time of 5 ns.30 In this way, we can choose to perform Z (X) basis
measurement by setting φc to be 0 (�π=4) and φa to be 0 (π=4).
The probability of measuring in the Z (X) basis is selected as 99:6%
(0:4%) in our experiment and the average photon number per

pulse is selected around 13:9 before detection to maximize the
generation rate of random number. Generally, higher photon
number per pulse brings higher error rate in the X basis and
higher double clicks probability in the Z basis that need to be
discarded, while lower photon number per pulse leads to lower nz .
Thus, there is a tradeoff for choosing a proper average photon
number. The details of optimizing the probability of measuring in
the Z (X) basis and the average photon number per pulse is
discussed in Methods.
As aforementioned, the detection may have imperfections.

Therefore, the detection part is first calibrated by an auxiliary cw
laser diode with expected wavelength of 1550.12 nm. Considering
the imperfect measurement basis of X 0 and Z0, an additional
process is performed to estimate maxx0 ;z0 jhx0jz0ij in (5). Firstly, the
input state is prepared as the eigenstate of Z

0
basis, that is, the

ratio of photon counting between detector 1 and detector 2 is
above 30 dB under Z

0
basis measurement. Then, in the X

0
basis

measurement, the ratio of photon counting between detector 1
and detector 2 is measured and the bound of
�2 logmaxx0;z0 jhx0jz0ij is calculated to be 0.952.
Although the randomness source part can be untrusted, to

demonstrate the high generation rate of the setup, a carefully
calibrated randomness source is realized. An amplitude modulator
(AM) is used to modulate the input photons to pulses with
frequency of 4 MHz and the full width at half maximum (FWHM) of
100 ns. Another fiber polarized beam splitter (FPBS1), a half-wave
plate (HWP) and a quarter-wave plate (QWP), is used to prepare
the desired polarization state for the detection part.
As the photon source can be any light that does not need to be

trustable, the choice of photon source is flexible. Here, we also
demonstrate the use of the most common light in the nature—the
sunlight, as the photon source to generate random numbers. A
collimator mounted on an equatorial mount is placed on the
rooftop to collect sunlight into a single mode fiber. The sun can be
approximately considered as an area light source with divergence
angle around 0.5°.31 Thus, a common collimator with focus length
of 11mm is enough to collect sufficient photon intensities. About
49 nW of light can be collected into single mode fiber under a
good weather after filtered by a 1550 ± 1.5 nm bandpass filter.
The optimal input state for the detection part is the eigenstate

of X basis. However, input state with other polarization state does
not affect the reliability of randomness. Although the error rate in
the X basis will increase and the random number generation rate
will reduce. By rotating the HWP in randomness source part to
different angles, the relationship between the input state and the
error rate of X basis measurement is shown in Fig. 3. Under the

Fig. 2 The setup of the experiment can be divided into the photon
source and detection parts. In the detection part, a Sagnac type
interferometer with a phase modulator (PM) is used to select the
measurement basis by applying a controllable unitary operator.
After proper attenuation, the photons are detected by two up-
conversion single photon detectors. In the randomness source part,
a photon source is modulated by an amplitude modulator (AM) and
transmit through a polarized beam splitter (PBS), a half-wave plate
(HWP) and a quarter-wave plate (QWP) to prepare the desired state.
The photon source used here is a cw laser and the sunlight, and can
be replaced by any other light if necessary. ISO optical isolator, CIR
optical circulator, FPBS fiber polarized beam splitter, ATT attenuator,
PC polarization controller

Fig. 3 For our experiment, when the input state is þj i, the bit error
rate close to zero. Rotating the HWP change the input state while
the bit error rate. This figure shows the relationship between the
angle of HWP and the error rate
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near optimal condition with the input state of þj i, we performed
the experiment for both laser and sunlight. The error rate in the X
basis measurement is 0:33% for laser and 0:21% for sunlight. The
quantum random number generation rate is 1.81 Mbps for laser
and 1.72 Mbps for sunlight. The detailed results is shown as Table
1. The extracted random bits can pass NIST randomness test as
shown in Fig. 4.

DISCUSSION
In this work, we theoretically modified the SI-QRNG scheme by
considering practical issues of measurement devices and experi-
mentally demonstrated the applicability of the scheme in
generating reliable and fast random numbers. Compared to the
proof-of-principle demonstration in the theoretical work15 whose
randomness generation rate is about 10�3 Mbps, our implementa-
tion improved the generation speed over three orders. Therefore,

our SI-QRNG scheme can be applied in many scenarios where
both the randomness generation speed and reliability are
required. The randomness generation rate here is mainly limited
by the detection rate of the single photon detector. Improving the
detection rate of the single photon detector can thus further
increase the randomness generation rate.
Our result highlighted the power of the state-of-the-art

quantum technology. In previous works, it was shown that
randomness can be obtained by measuring the intensity of an
LED light with a mobile phone32 or by measuring the arrival time
of photons from cosmic sources.33,34 However, such QRNG
schemes are based on physical models of the LED light or the
cosmic source. In our work, we showed that such assumptions
are not necessary. Even with a common light in the nature—
sunlight, we can still generate randomness both reliably and fast.
Since no assumption is made on the photon source, the
coherence or photon number statistics of the photon source
does not affect the randomness of the extracted bits. In future
works, by exploiting the SI-QRNG scheme, it is also interesting to
modify (in theory) and realize (in experiment) those QRNG
schemes such that the assumption of the source is removed.

METHODS
Optimizing the generation rate
To optimize the final quantum random number generation rate, some
proper parameters should be chosen or measured in Eq. (5). The first term
2 minðη0 ;η1Þ

η0 þ η1
depends on the efficiencies of the two detectors, and has a

maximal value of 1 when the two efficiencies are equal. Thus, η0 and η1 are
configured to be approximatively uniform (η ¼ 10%) in our experiment.
The second term �2log2maxx0 ;z0 jhx0jz0ij depends on the accuracy of
controlling the PC and the PM. Due to the imperfection of the actual
measurement basis, this term is calculated to be 0.952. te is chosen as
100.35 Other terms are related to the average photon number λ per pulse
before detection. A low average photon number lowers nz , while a high
average photon number brings higher epz and higher double click
probability in the Z basis. We can rewrite the final random number
generation rate as follows:

rfinal ¼ G � pzðsingle�clickÞð0:952� HðebX þ θÞÞ � 100: (7)

Here, G stands for the repetition rate of squash speed and equal to 4 MHz
in our experiment. pzðsingle�clickÞ is the probability that one and only one
detector clicks for a pulse. As Poisson distribution for laser and multi-mode
sunlight,

pzðsingle�clickÞ ¼ 2e�
λ0
2 ð1� e�

λ0
2 Þ; (8)

where λ
0 ¼ λ � η. For large nX , epZ and ebX can be regarded as the same. The

relationship between λ and the final raw rate is shown in Fig. 5. The
optimal λ is about 14.4. For sunlight, the actual λ of 11.6 is slightly deviated
from the optimal value, due to the intensity fluctuate of sunlight. However,
for a wide range of λ the random number generation rate is not obviously
dropped.
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