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Abstract

We consider optimal mechanism design for the case with one buyer and two items. The buyer’s
valuations towards the two items are independent and additive. In this setting, optimal mechanism is
unknown for general valuation distributions. We obtain two categories of structural results that shed
light on the optimal mechanisms. These results can be summarized into one conclusion: under certain
conditions, the optimal mechanisms have simple menus.

The first category of results state that, under certain mild condition, the optimal mechanism has
a monotone menu. In other words, in the menu that represents the optimal mechanism, as payment
increases, the allocation probabilities for both items increase simultaneously. This theorem complements
Hart and Reny’s recent result regarding the nonmonotonicity of menu and revenue in multi-item settings.
Applying this theorem, we derive a version of revenue monotonicity theorem that states stochastically
superior distributions yield more revenue. Moreover, our theorem subsumes a previous result regarding
sufficient conditions under which bundling is optimal [Hart and Nisan 2012]. The second category of
results state that, under certain conditions, the optimal mechanisms have few menu items. Our first
result in this category says, for certain distributions, the optimal menu contains at most 4 items. The
condition admits power (including uniform) density functions. Our second result in this category works
for a weaker condition, under which the optimal menu contains at most 6 items. This condition includes
exponential density functions. Our last result in this category works for unit-demand setting. It states
that, for uniform distributions, the optimal menu contains at most 5 items. All these results are in sharp
contrast to Hart and Nisan’s recent result that finite-sized menu cannot guarantee any positive fraction of
optimal revenue for correlated valuation distributions.

1 Introduction

Optimal mechanism design has been a topic of intensive research over the past thirty years. The general
problem is, for a seller, to design a revenue-maximizing mechanism for selling k items to n buyers, given
the buyers’ valuations distributions but not the actual values. A special case of the problem, where there
is only one item (k = 1) and buyers have independent valuation distributions towards the item, has been
resolved by Myerson’s seminal work [Myerson 1981]. Myerson’s approach has turned out to be quite
general and has been successfully applied to a number of similar settings, such as [Maskin and Riley 1989,
Jehiel et al. 1996, Levin 1997, Ledyard 2007, Deng and Pekeč 2011], just to name a few.

While this line of work has flourished, it does not deepen our understanding of the cases with more than
one items (k > 1). In fact, even for the simplest multi-item case, where there are two independent items
(k=2) and one buyer (n=1) with additive valuations, a direct characterization of the optimal mechanism is
still open for general, especially continuous, valuation distributions.

When the distributions are discrete, Daskalakis and Weinberg [2011], Cai et al. [2012a,b] show that
the general optimal mechanism (k > 1) is the solution of a linear program. They provide different meth-
ods to solve the linear program efficiently. For continuous distributions, Chawla et al. [2010], Cai and
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Huang [2013] study the possibility of using simple auctions to approximate optimal auctions. In addition,
Daskalakis and Weinberg [2012], Cai and Huang [2013] provide PTAS of the optimal auction under various
assumptions on distributions.

Zoom in and look at the case with two independent items and a single buyer, much progress has been
made in this particular setting. Hart and Nisan [2012] investigate two simplest forms of auctions: selling
the two items separately and selling them as a bundle. They prove that selling separately obtains at least
one half of the optimal revenue while bundling always returns at least one half of separate sale revenue.
They further extend these results to the general case with k independent items: separate sale guarantees
at least a c

log2k
fraction of the optimal revenue; for identically distributed items, bundling guarantees at

least a c
log k fraction of the optimal revenue. Li and Yao [2013] tighten these lower bounds to c

log k and
c respectively. Under some technical assumptions, Daskalakis et al. [2013] show close relation between
mechanism design and transport problem and use techniques there to solve for optimal mechanisms in a
few special distributions. Hart and Nisan [2013] investigate how the “menu size” of an auction can effect
the revenue and show that revenue of any finite menu-sized auction can be arbitrarily far from optimal (thus
confirm an earlier consensus that restricting attention to deterministic auctions, which has an exponentially-
sized (at most) menu, indeed loses generality). On the economic front, Manelli and Vincent [2006, 2007],
Pavlov [2011a,b] obtain the optimal mechanisms in several specific distributions (such as both items are
distributed according to uniform [0,1]). We will discuss these results in much more detail as we proceed to
relevant sections.

In this paper, we study the case with one buyer and two independent items, in hopes of a direct character-
ization of exact optimal mechanisms. We obtain several exciting structural results. Our overall conclusion
is that, under fairly reasonable conditions, optimal mechanisms has “simple” menus. We summarize our
results below into two parts, based on the conditions under which the results hold, as well as different
interpretations of simplicity.

For ease of presentation, we need the following definition: for a density function h, the power rate of h
is PR(h(x)) = xh′(x)

h(x) .

• Part I (Section 4). If density functions f1 and f2 satisfy PR(f1(x)) + PR(f2(y)) ≤ −3, ∀x, y. The
optimal mechanism has a monotone menu – sort the menu items in ascending order of payments, the
allocation probabilities of both items increase simultaneously – a desirable property that fails to hold
in general (cf [Hart and Reny 2012]). Our result complements this observation in general and has two
important implications in particular.

1. [Hart and Nisan 2012, Theorem 28]. Hart and Nisan show that, if two item distribution are
further identical (i.e., f1 = f2), bundling sale is optimal. Our result subsumes this theorem as a
corollary.

2. A revenue monotonicity theorem. Based on menu monotonicity theorem, we are able to prove
that, stochastically superior distributions yield higher revenue, another desirable property that
fails to hold in general.

Our proof is semi-constructive in the sense that we fix part of the buyer utility function (for this part,
relation between revenue and buyer utility is unknown/undesirable) and construct the remainder of
the utility function (for this part, relation between revenue and buyer utility is known/desirable). This
technique might be of independent interest.

• Part II. (Section 5). If the density functions f1 and f2 satisfy PR(f1(x)) + PR(f2(y)) ≥ −3, ∀x, y.
The optimal mechanisms often contain few menu items. In particular,

1. If both PR(f1(x)) and PR(f2(y)) are constants, the optimal mechanism contains at most 4
menu items. The result is tight. Constant power rate is satisfied by a few interesting classes
of density functions, including power functions h(x) = axb and uniform density as a special
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case. This is consistent with earlier results for uniform distributions [Manelli and Vincent 2006,
Pavlov 2011a]: the optimal mechanisms indeed contain four menu items.

2. If PR(f1(x)) ≤ yAf2(yA) − 2 and PR(f2(y)) ≤ xAf1(xA) − 2, where xA and yA are the
lowest possible valuations for item one and two respectively, the optimal mechanism contains 2
menu items.

3. If we relax the condition to be that both PR(f1(x)) and PR(f2(y)) are monotone, then the
optimal mechanism contains at most 6 menu items. This condition is general and admits density
functions such as exponential density and polynomial density.

4. Our last result requires the buyer demands at most one item. Under this condition, for uniform
densities, the optimal mechanism contains at most 5 menu items. The result is tight.

These results are in sharp contrast to Hart and Nisan’s recent result that there is some distribution
where finite number of menu items cannot guarantee any fraction of revenue [Hart and Nisan 2013].
Here we show that, for several wide classes of distributions, the optimal mechanisms have a finite and
even extremely simple menus.

Our proofs for this part are based on Pavlov’s characterization and careful analyses of how the revenue
changes as a function of the buyer’s utility. A rough line of reasoning is as follows, the “extreme
points” in the set of convex utility functions on the boundary values are piecewise linear functions.
Since the utility on the boundaries contains only few linear pieces and the utility on inner values are
linearly related to that on the boundary, it must be the case that the utility function on the inner points
contains only few linear pieces as well. In other words, the mechanism only contains few menu items.

Our results not only offer original insights of “what do optimal mechanisms look like”, but are also in
line with the “simple versus optimal” literature (cf [Hartline and Roughgarden 2009, Hart and Nisan 2012]):
in our case, simple mechanisms are exactly optimal.

2 The setting

We consider a setting with one seller who has two distinct items for sale, and one buyer who has private
valuation x for item 1, y for the item 2, and x+y for both items. The seller has zero valuation for any subset
of items.

As usual, x and y are unknown to the seller and are treated as independent random variables according to
density functions f1 on [xA, xB] ⊂ R and f2 on [yA, yC ] ⊂ R respectively. The valuation (aka. type) space
of the buyer is then V = [xA, xB] × [yA, yC ]. To visualize, we sometimes refer to V as rectangle ABDC,
where A represents the lowest possible type (xA, yA) and D represents the highest possible type (xB, yC).
Let f(x, y) = f1(x)f2(y) be the joint density on V . We assume the f1 and f2 are positive, bounded, and
differentiable densities.

The seller sells the items through a mechanism that consists of an allocation rule q and a payment rule
t. In our two-item setting, an allocation rule is conveniently represented by q = (q1, q2), where qi is the
probability that buyer gets item i ∈ {1, 2}. Given valuation (x, y), buyer’s utility is

u(x, y) = xq1(x, y) + yq2(x, y)− t(x, y)

In other words, buyer has a quasi-linear, additive utility function. It is sometimes convenient to view
a mechanism as a (possibly infinite) set of menu items {(q1(x, y), q2(x, y), t(x, y))|(x, y) ∈ [xA, xB] ×
[yA, yC ]}. Given a mechanism, the expected revenue of the seller is R = E(x,y)[t(x, y)].

A mechanism must be Individually Rational (IR):

∀(x, y), u(x, y) ≥ 0.

In other words, a buyer cannot get negative utility by participation.
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By revelation principle, it is without loss of generality to focus on the set of mechanisms that are Incen-
tive Compatible (IC):

∀(x, y), (x′, y′), u(x, y) ≥ xq1(x′, y′) + yq2(x′, y′)− t(x′, y′).

This means, it is the buyer’s (weak) dominant strategy to report truthfully. Equivalently, an IC mechanism
presents a set of menu items and let the buyer do the selection (aka. the taxation principle). As a result,

u(x, y) = sup(x′,y′){xq1(x′, y′) + yq2(x′, y′)− t(x′, y′)},

which is the supremum of a set of linear functions of (x, y). Thus, u must be convex.
Fixing y, by IC, we have

u(x′, y)− u(x, y)− q1(x, y)(x′ − x)

= x′q1(x′, y) + yq2(x′, y)− t(x′, y)− xq1(x, y)− yq2(x, y) + t(x, y)− x′q1(x, y) + xq1(x, y)

= x′q1(x′, y) + yq2(x′, y)− t(x′, y)− (x′q1(x, y) + yq2(x, y)− t(x, y)) ≥ 0

Substitute x′ twice by x− = x− ε and x+ = x+ ε respectively, for any arbitrarily small positive ε, we have

pux(x−, y) ≤ q1(x, y) ≤ ux(x+, y),

where ux denotes the partial derivative of u on the x dimension. The inequality above implies u is differ-
entiable almost everywhere on x and ux = q1(x, y). Similarly, u is differentiable almost everywhere on y
and uy = q2(x, y). As a result ux and uy must be within interval [0, 1]. This means, the seller can never
allocate more than one pieces of either item. Now, payment function t can be represented by utility function
u, t(x, y) = xux(x, y) + yuy(x, y)− u(x, y).

The seller’s problem is to design a non-negative, convex utility function, whose partial derivatives on
both x and y are within [0, 1], that maximizes expected revenue R (cf. [Hart and Nisan 2012, Lemma 5]).

3 Representing revenue as a function of utility

Let Ω denote any area in V and RΩ be the revenue obtained within Ω. Let z = (x, y)T and T(z) =
zu(z)f(z).

By Green’s Theorem, we have
∫

Ω∇ ·Tdz =
∮
∂Ω T · n̂ds.

∇ ·T = 2u(z)f(z) + (∇u(z))T zf(z) + u(z)zT∇f(z)

= [(∇u(z))T z − u(z)]f(z) + [3f(z) + zT∇f(z)]u(z)

= t(z)f(z) +4(z)u(z)

where4(x, y) = 3f1(x)f2(y) + xf ′1(x)f2(y) + yf ′2(y)f1(x).
Seller’s revenue formula within Ω is as follows:

RΩ =

∫
Ω
t(z)f(z)dz =

∫
Ω

(∇ ·T−4(z)u(z))dz

=

∮
∂Ω

T · n̂ds−
∫

Ω
4(z)u(z)dz

Set Ω to be the rectangle ABDC, the seller’s total revenue RABDC is∫ yC

yA

xBu(xB, y)f1(xB)f2(y)dy +

∫ xB

xA

yCu(x, yC)f1(x)f2(yC)dx

−
∫ yC

yA

xAu(xA, y)f1(xA)f2(y)dy −
∫ xB

xA

yAu(x, yA)f1(x)f2(yA)dx

−
∫ xB

xA

∫ yC

yA

u(x, y)4(x, y)dydx (1)
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Formula (1) consists of 5 terms. The first term represents the part of seller’s revenue that depends on
utilities on edge BD only. Moreover, this part is increasing as utilities on edge BD increase. Similarly,
the second term represents the part of seller’s revenue that depends positively on utilities on edge CD. The
third and fourth terms represent respectively the parts of seller’s revenue that depend negatively on utilities
on edges AC and AB. The fifth term represents the part of revenue that depends on the utilities on the
inner points of the rectangle. Under different conditions, 4(x, y) can be either positive or negative, which
suggests this part can either increase or decrease as the utilities on inner points increases. We now define
these conditions.
Definition 3.1 For any density h(x), let PR(h(x)) = xh′(x)

h(x) be the power rate of h.

Consider the following two conditions regarding power rate.

Condition 1: PR(f1(x)) + PR(f2(y)) ≤ −3,∀(x, y) ∈ V.

Condition 2: PR(f1(x)) + PR(f2(y)) ≥ −3,∀(x, y) ∈ V.

Clearly, under Condition 1, we have 4(x, y) ≤ 0. This means seller’s revenue depends positively on
utilities of the inner points. Similarly, under Condition 2, seller’s revenue depends negatively on utilities of
the inner points.

Based on the two conditions above, we obtain two parts of results: under Condition 1, the optimal
mechanisms have simple menus in the sense that their menus are monotone – allocation probabilities and
payment are increasing in the same order; under Condition 2, the optimal mechanisms also have simple
menus, but in a different sense, that their menus only contain a few items.

Daskalakis et al. [2013] consider the same problem but restrict to the case where

yAf2(yA) = 0, xAf1(xA) = 0;

lim
x→xB

x2f1(x) = 0, lim
y→yC

y2f2(y) = 0.

These assumptions ignore the effect of utilities on the edges of the rectangle. While we do not have any
of these constraints. As a result, their techniques (such as reduction to optimal transport) do not apply to
our more general case. In fact, one of our main techniques is to show how the optimal revenue changes as a
function of the utilities on the edges.

4 Part I: menu monotonicity and revenue monotonicity

In this section, we consider the case where power rates of both density functions satisfy Condition 1. When
this condition is not met, Hart and Reny [2012] give several interesting counter-examples of revenue mono-
tonicity: the optimal revenue for stochastically inferior valuation distributions may be greater than that of
stochastically superior distributions. When this condition is met, for identical item distributions, Hart and
Nisan [2012] prove that, bundling sale is the optimal mechanism. In this section, we show that, under Con-
dition 1, the optimal menu can be sorted so that both allocations as well as payment monotonically increase.
We coin this result menu monotonicity theorem. The theorem has two immediate consequences. First, it
yields a version of revenue monotonicity theorem, thus complements the Hart-Reny result above. Second,
it subsumes the above Hart-Nisan result as a corollary.

Our analysis starts from a simple observation: any optimal mechanism must extract all of the buyer’s
valuation when he is in the lowest type.

Lemma 4.1 In the optimal mechanism, u(xA, yA) = 0.
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Proof. Suppose otherwise that u(xA, yA) > 0, one can revise every menu item from (q1(x, y), q2(x, y), t(x, y))
to (q1(x, y), q2(x, y), t(x, y) + u(xA, yA)) and obtain a mechanism with strictly higher revenue, contradic-
tion. ut

Theorem 4.2 Menu Monotonicity
Under Condition 1, each menu item of the optimal mechanism can be labeled by a real number s: (q1(s), q2(s),
t(s)), such that q1(s), q2(s) is weakly increasing and t(s) are strictly increasing in s.

Roughly speaking, Theorem 4.2 suggests that, among the menu items of the optimal mechanism, higher
t corresponds to higher q1 and q2. Note that allocation and payment monotonicity are well understood in
single-item optimal auction (i.e., Myerson auction) but in general fail to hold in two item settings [Hart and
Reny 2012].

In the following, we give a semi-constructive proof. By Formula (1), under Condition 1, we know that
seller’s revenue is increasing as the utilities of the buyer increases on V , only except on edges AB and
AC. Our idea is then, to fix the optimal utility function on AB and AC and construct the (largest possible)
remainder of the utility function subject to convexity.
Proof. By Lemma 4.1, u(xA, yA) = 0. In the following, we start from the optimal utility function u. Let
u(AB) denote the part of u on edge AB. Similar for u(AC).

Let u(x0,y0),0(x, y) = xq1(x0, y0)+yq2(x0, y0)−t(x0, y0) for any (x0, y0). In other words, u(x0,y0),0(x, y)
is the buyer’s utility at type (x, y) but chooses menu item (q1(x0, y0), q2(x0, y0), t(x0, y0)). By IC,
u(x0,y0),0(x, y) ≤ u(x, y). To visualize, think of u(x0,y0),0(x, y) as a plane that is always weakly below
u(x, y) but touches u at the point of (x0, y0).

Apply the following two-step operation:

Figure 1: A menu item in the optimal mechanism

• Step 1. Translation. Rise up the plane of u(x0,y0),0 uniformly for every (x, y) until it touches one
of u(AB) and u(AC), say u(AB). Denote the plane after Step 1 as u(x0,y0),1 and notice the part of
u(x0,y0),1 on AB, which is a straight line.

• Step 2. Rotation. Fix u(x0,y0),1(AB), rotate the plane u(x0,y0),1 until it touches u(AC).(We must also
consider the case where the slope of u(x0,y0),1(AC) reaches 1 but still does not touches u(AC). If this
occurs, simply return the current plane.) Denote the plane after Step 2 as u(x0,y0),2. In Fig. 1, the red
dashed plane represents plane u(x0,y0),2, it touches both u(AB) and u(AC).

We have u(x0,y0),2(x0, y0) ≥ u(x0,y0),1(x0, y0) ≥ u(x0,y0),0(x0, y0) = u(x0, y0). Repeat the same
procedure for all (x0, y0) and define another function u∗ = sup(x0,y0){u(x0,y0),2}. In other words, u∗ is the
supremum of all the planes after the two-step operation.
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We claim that, when the u is optimal, u∗ must be optimal as well. In fact, by the construction of u∗,
we know that u∗(x, y) ≥ u(x,y),2(x, y) ≥ u(x, y) for any (x, y). Also, by the construction of u(x,y),2, for
any (x0, y0) on AB or AC, u(x0,y0),2(x0, y0) = u(x0, y0) and for any (x, y), u(x,y),2(x0, y0) ≤ u(x0, y0)
since any plane u(x,y),2 resulted from the two-step operation must weakly remain below u(AB) and u(AC).
Thus, by the definition of u∗, u∗ and u are identical on AB and AC. So u∗ will lead to a weakly greater
revenue than u according to Formula(1). Thus, u∗ must be optimal as well. This is sufficient to establish
that u∗ must consist of a set of planes.

Pick one arbitrary plane û among u∗, it intersects with the u-axis at some point k = (0, 0, k), we assume
at the same time it intersects with vertical line (x = xA, y = yA) at some point (x = xA, y = yA, u =
uk)(uk is zero or negative).

We now show that û is the unique plane among u∗ that goes through point (xA, yA, uk). Consider
û ∩ (y = yA)(intersection line of two plane û and plane y = yA), this line is unique. Moreover, it either
has gradient 1 or touches u(AB). So the gradient, say q1, of this line is unique. Recall that q1 is also the
gradient of plane û in the x-dimension. So the gradient of plane û in the x-direction is unique. For same
reason, q2, the gradient of plane û in y direction is also unique. Because there is only one plane that goes
through point (xA, yA, uk) can satisfy the two gradient conditions, plane û can be uniquely determined by
uk.

Finally, lower uk results in weakly larger q1 and q2 (by convexity of u(AC) and u(AB)), strictly lower
k = zk−q1xA−q2yA, and hence strictly larger payment t = |k|. In other words, larger t indeed corresponds
to steeper û(AB) and û(AC), hence larger q1 and q2. This completes the proof of menu monotonicity. ut

Theorem 4.2 implies the aforementioned Hart-Nisan result as a corollary.
Corollary 4.3 [Hart and Nisan 2012, Theorem 28] For two i.i.d. items, PR(f1) = PR(f2) ≤ −3

2 ,
bundling sale is optimal.
Proof. It is without loss to restrict attention to symmetric mechanisms [Maskin and Riley 1984]. Thus,
u(AB) is identical to u(AC). u1(AB) and u2(AC) have the same slope (in fact, plane u′ touches both
u(AB) and u(AC) simultaneously). So, q1(v) = q2(v) ∀v ∈ V . In other words, the two items are always
sold with the same probability. The seller’s revenue of this optimal mechanism is equivalent to a mechanism
that sells two items as a bundle with the same probability. So bundling is optimal as well. ut
As another application of Theorem 4.2, we obtain a revenue monotonicity theorem in this setting.

Theorem 4.4 (Revenue Monotonicity)
Under Condition 1, optimal revenue is monotone: let Fi, Gi be the cumulative distribution function of
density functions fi, gi, i = 1, 2, respectively. If G1 and G2 first-order stochastically dominate F1 and F2

1

respectively, optimal revenue obtained for (G1, G2) is no less than that of (F1, F2).

Proof. Consider any two points (x2, y2) and (x3, y2), where x3 > x2. If q1(x2, y2) < q1(x3, y2), by Theo-
rem 4.2, we must have t(x2, y2) < t(x3, y2). If q1(x2, y2) = q1(x3, y2), then q1(x, y2) = q1(x2, y2), ∀x ∈
[x2, x3]. u(x3, y2) = u(x2, y2) + q1(x2, y2)(x3 − x2), which can be achieved by choosing the same menu
as (x2, y2) chooses. While buyer at type (x3, y2) has several menu items that all achieve the highest utility,
we can assume the buyer chooses the menu with the highest payment ([Hart and Reny 2012]).

Thus there is an optimal choice guarantees t(x2, y2) ≤ t(x3, y2).
To sum up, t(x2, y2) ≤ t(x3, y2) when x2 ≤ x3. For same reason, t(x3, y2) ≤ t(x3, y3) when y2 ≤ y3.

Hence t(x, y) is a weakly monotone function in both directions. Suppose G1 and G2 first-order stochas-
tically dominates F1 and F2 respectively. Let R(F1 × F2) denote the optimal revenue when item 1 and 2
distributes independently according to F1 and F2. When distribution G1×G2 chooses the same mechanism
as F1×F2 does, let the revenue be R∗(G1×G2). We have R∗(G1×G2) ≥ R(F1×F2), since t is weakly
monotone. By transitivity, R(G1 ×G2) ≥ R∗(G1 ×G2) ≥ R(F1 × F2). ut

1Gi first-order stochastically dominates Fi if Gi(x) ≤ Fi(x) for all x and Gi(x) > Fi(x) for some x.
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Figure 2: The optimal allocation that there is a point
on curve SME chooses allocation menu (1,1).

Figure 3: The optimal allocation that there is no point
on curve SME chooses allocation menu (1,1).

5 Part II: Optimal mechanism with small menus
In this section, we investigate optimal mechanisms under Condition 2. We obtain several results saying that
the optimal mechanism contains only few menu items. All these results are built upon Pavlov’s characteri-
zation [Pavlov 2011a] and an important lemma introduced in the next subsection.

5.1 Pavlov’s characterization and graph representation lemma

If both f1 and f2 satisfy Condition 2, Pavlov [2011a, Proposition 2] states that, in the optimal mechanism,
the seller either keeps both items (i.e., q = (0, 0)), or sells one of the items at probability 1 (i.e., q1 = 1 or
q2 = 1).

For graphic representation, let the buyer’s valuation be within rectangle ABDC, we have the following
lemma.
Lemma 5.1 Graph Representation Lemma
Under Condition 2, the optimal mechanism can be represented by one of the rectangles shown in Fig. 2 or

Fig. 3. More precisely, the optimal mechanism divides the valuation space into four regions, where

1. in the bottom left region (region ASME in both figures), it assigns q = (0, 0) and u(x, y) = 0 to any
point (x, y) in the region. Furthermore, region ASME is convex.

2. in the top right region, it assigns q = (1, 1) to any point in the region.
3. in the top left region, it assigns q = (∗, 1) to any point in the region, where ∗ is a variable. Thus this

region represents a set of menu items, each of which is a vertical slice.
4. Symmetrically, in the bottom right region, it assigns q = (1, ∗) to any point in the region. This region

represents a set menu items, each of which is a horizontal slice.
5. The boundary between the top left and right regions is vertical (QL in both figures); the boundary of

the top right and bottom right regions is horizontal (MN in Fig. 2 or LI in Fig. 3). The boundary
between (1, ∗) region and (∗, 1) region is in the upper right direction.

5.2 Optimal mechanisms for constant power rate

To describe our first theorem under Condition 2, we need the following condition on density functions.

Condition 3: PR(fi(x)), i = 1, 2, is constant.

Theorem 5.2 Under Conditions 2 and 3, optimal mechanism has at most 4 menu items.
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Figure 4: The optimal allocation that there is no point on curve SME chooses allocation menu (1,1).

The result is tight because one can find instances where optimal mechanism contains exactly 4 menu
items [Pavlov 2011a, Example 3].

We prove the theorem for the case shown in Fig. 4. The other case related to Fig. 2 follows from an
almost identical proof. First, draw a horizontal line through M and it intersects BD at N . Then draw a
vertical line through M crossing CD at G. We have the following two lemmas.
Lemma 5.3 Optimal utility function on BN is piecewise linear with at most two pieces.

Lemma 5.4 The optimal utility function on ND is piecewise linear with at most 2 pieces.

With these two lemmas, we are able to prove Theorem 5.2 (in the appendix). Hart and Nisan [2012,
Theorem 1 and Lemma 14] state that bundling 4-approximates optimal revenue for general two-item setting.
As an application of Theorem 5.2, we obtain a better lower bound for bundling sale.

Corollary 5.5 Under Conditions 2 and 3, bundling 3-approximates optimal revenue.

Proof. Revenue of an optimal mechanism with 3 non-zero menu items is less than or equal to the sum of
revenues of 3 mechanisms, each of which has only 1 non-zero menu items. Since bundling is optimal among
all mechanisms that contains only 1 non-zero menu item, thus no worse than any of these three mechanisms.
Consequently bundling gives a 3-approximation of the optimal revenue. ut

Following a similar proof of Theorem 5.2, we obtain another condition under which 3 menu items are
enough. Note that, this condition does not impose constant power rate, thus is not a special case of Condition
3.

Condition 4: − 2 ≤ PR(f1(x)) ≤ yAf2(yA)− 2, ∀x and − 2 ≤ PR(f2(y)) ≤ xAf1(xA)− 2,∀y.

Theorem 5.6 Under Conditions 2 and 4, there is an optimal mechanism such that it contains at most 3
menu items, thus bundling gives a 2-approximation of the optimal revenue.

5.3 Optimal mechanisms for monotone power rate

The requirement of power rate to be constant might be restrictive. If one relaxes this requirement to be
monotone power rate, one only needs to add two more menu items.

Condition 5: PR(fi(x)), i = 1, 2, is weakly monotone.

Theorem 5.7 Under Conditions 2 and 5, if f1 = f2, optimal mechanism consists of at most 6 menu items.
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Figure 5: Optimal allocation under symmetric value
distribution that satisfies Condition 5.

Figure 6: Optimal unit demand allocation.

The general form of optimal mechanism is shown in Fig 5. It is without loss to restrict attention on symmetric
mechanisms [Maskin and Riley 1984, section 1]. LetAD intersects SE at pointM . In regionASME, seller
keeps both items. Item 2 is sold deterministically in CSMD and item 1 is sold determinately in MEBD.
Let the allocation rule on point (x, y) in CSMD be (q1(x), 1). Similar to the proof of Theorem 5.2, we
start with the following lemma.
Lemma 5.8 Optimal utility function on ND is piecewise linear with at most 2 pieces.

Similarly, we show that u(CN) is piecewise linear as well.
Lemma 5.9 Optimal utility function on CN is piecewise linear with at most 2 pieces.
With the two lemmas above, we are able to prove Theorem 5.7.

We say h(x) are nonnegative-coefficient polynomial if h(x) = anx
n+an−1x

n−1 + ...+a1x+a0, ai ≥
0, i = 0, ..., n. Let h1 and h2 are nonnegative-coefficient polynomials, it is easy to show that h1(x)eh2(x)

satisfies Condition 5. In particular, this expression includes nonnegative-coefficient polynomial density and
exponential density as special cases.

5.4 Optimal mechanism for uniform distributions under unit-demand constraint

A buyer has unit-demand if q1(x, y) + q2(x, y) ≤ 1. Under unit-demand model, Pavlov [2011b, Propo-
sition 2] states that, if distribution functions satisfy Condition 2, it is without loss to restrict attention on
mechanisms such that

q1(x, y) + q2(x, y) ∈ {0, 1} ∀(x, y)

Pavlov solves the optimal mechanism for two items with identical uniform distributions. The resulting
mechanism contains 5 menu items for uniform distribution on [c, c + 1] ∗ [c, c + 1], c ∈ (1, c̄) (where
c̄ ≈ 1.372). We show that in nonidentical settings, the optimal mechanism also contains at most 5 menu
items. It follows trivially that our result is tight.
Theorem 5.10 In unit-demand model, if both f1 and f2 are uniform distributions, the optimal mechanism
consists of at most 5 menu items.
Let ASE denote the zero utility region and CSEBD the non-zero utility region. For the same reason in
Lemma 5.1, ASE is convex. For points in ASE, allocation (0, 0) is the best. For (x, y) ∈ CSEBD,
(q1(x, y), q2(x, y)) 6= (0, 0), so q1(x, y) + q2(x, y) = 1. The mechanism is shown in Fig. 6. Draw a 45
degree line across E, intersecting BD or CD at W . Draw a 45 degree line across S, intersecting BD or
CD at G. We consider here the case that W is on BD and G is on CD. Other cases follow from similar
arguments.

The theorem can be similarly proved via the following two lemmas.
Lemma 5.11 Optimal utility function on BW is piecewise linear with at most 2 pieces.

Lemma 5.12 Optimal utility function on WD is piecewise linear with at most 2 pieces.

10
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A Appendix: Proofs of Section 5

Proof. of Lemma 5.1We first determine the relative positions of the four possible regions.
If the seller keeps both items, the buyer’s utility is zero. Since u(x, y) is an increasing function, it assigns

q = (0, 0) in the bottom left region, i.e. ASME. Since u(x, y) is convex, the convex combination of any
two zero-utility points must also be zero. Therefore, ASME is a convex region.

If for a type (x0, y0) with q1(x0, y0) = q2(x0, y0) = 1, for any point (x1, y1), IC requires that

x0 + y0 − t(x0, y0) ≥ x0q1(x1, y1) + y0q2(x1, y1)− t(x1, y1),

x1q1(x1, y1) + y1q2(x1, y1)− t(x1, y1) ≥ x1 + y1 − t(x0, y0).

Summing the two inequalities, we get (q1(x1, y1) − 1)(x1 − x0) + (q2(x1, y1) − 1)(y1 − y0) ≥ 0. If
x1 > x0, y1 > y0, we must have q1(x1, y1) = q2(x1, y1) = 1.

Let (x2, y2) be a point where some positive proportions of the items are sold, then according to Pavlov’s
characterization [Pavlov 2011a], one of the items must be sold deterministically. Consider two types (x2, y2)
and (x3, y3) where q1(x2, y2) = 1, q2(x2, y2) < 1 and q1(x3, y3) < 1, q2(x3, y3) = 1. By IC, we must
have

x2 + y2q2(x2, y2)− t(x2, y2) ≥ x2q1(x3, y3) + y2 − t(x3, y3),

x3q1(x3, y3) + y3 − t(x3, y3) ≥ x3 + y3q2(x2, y2)− t(x2, y2).

Summing up the two inequalities, we get (1 − q1(x3, y3))(x2 − x3) + (1 − q2(x2, y2))(y3 − y2) ≥ 0. So,
one of x2 < x3 and y2 > y3 does not hold. This implies the second part of (5).

To sum up, (1, 1) must be assigned to the upper right corner, (1, q2(x, y)) is assigned to the bottom right
corner, (q1(x, y), 1) is assigned to the upper left corner, and (0, 0) is assigned to the bottom left corner,
(some regions may be empty).

Let the allocation vector at (x4, y4) be (1, q2(x4, y4)). For any x ∈ [x4, xB], by IC, we must have
q1(x, y4) = 1, so u(x, y4) = u(x4, y4) + x− x4. It is still in the buyer’s best interest to choose menu item
(1, q2(x4, y4)) at (x, y4). This immediately implies the first part of (5): the boundary between for different
q2 in (1, q2(x, y)) is horizontal. In particular, in Fig. 2, MN is horizontal. Similarly, LQ is vertical.

If there is a point on curve SE that chooses menu item (1, 1), the mechanism is of the form shown in
Fig. 2, otherwise it is of the form shown in Fig. 3. ut

Proof. of Lemma 5.3 For any point K on BN (see Fig.7), draw a horizontal line that intersects curve SE at
W . Because ux = 1 for all the types in region EBNM , we can represent the utility of any point (x, yK)
on line KW using u(K). Formally, u(x, yK) = u(K) + x− xK , ∀x ∈ [xW , xK ].
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Figure 7: The optimal allocation that there is no point on curve SME chooses allocation menu (1,1).

The revenue obtained in EBNM is

REBNM =

∮
EBNM

T · n̂ds−
∫
EBNM

4(z)u(z)dz

=

∫
BN

T · n̂ds−
∫ yM

yA

∫ xB

xB−u(xB ,y)
4(x, y)u(x, y)dxdy +

∫
NMEB

T · n̂ds

=

∫ yM

yA

[xBu(xB, y)f1(xB)f2(y)−
∫ xB

xB−u(xB ,y)
4(xB, y)(u(xB, y) + x− xB)dx]dy + c

=

∫ yM

yA

R(u(xB, y), y)dy + c

c =
∫
NMEB T · n̂ds depends on u(NM), u(ME),and u(EB). We fix these utility and study u(BN). Let

R(u(xB, y), y) = xBu(xB, y)f1(xB)f2(y)−
∫ xB
xB−u(xB ,y)4(xB, y)(u(xB, y)+x−xB)dx andRu(u(xB, y), y)

denote the partial derivative on u(xB, y) dimension.

Ru(u(xB, y), y) = f2(y)[xBf1(xB)−
∫ xB

xB−u(xB ,y)
f1(x)(3 + PR(f1(x)) + PR(f2(y)))dx]

Let v(l) =
∫ xB
xB−l f1(x)(3 + PR(f1(x)) + PR(f2(y)))dx. Because 3 + PR(f1(x)) + PR(f2(y)) ≥ 0

is a constant, v is an increasing function of l. When xBf1(xB) − v(u(xB, y)) > 0, REBNM is increasing
as u(xB, y) increases. From the Fig.7 we can see, when (xB, y) moves from B to N , u(xB, y) weakly
increases, v(u(xB, y)) weakly increases and xBf(xB)− v(u(xB, y)) weakly decreases.

There are 3 possibilities: 1.xBf(xB) − v(u(xB, y)) > 0, y ∈ [yB, yN ], 2.xBf(xB) − v(u(xB, y)) <
0, y ∈ [yB, yN ], 3.∃y′ ∈ [yB, yN ], xBf(xB) − v(u(xB, y)) = 0 and xBf(xB) − v(u(xB, y)) ≤ 0, y ∈
[yB, y

′], xBf(xB) − v(u(xB, y)) ≥ 0, y ∈ [y′, yN ]. 1 can be regarded as a special case of 3 by setting
y′ = yB , because u(b, y), y ∈ [yB, yN ] must be also as large as possible. 2 can be regarded as an special
case of 3 by setting y′ = yN , because u(xB, y), y ∈ [yB, yN ] must be as small as possible.

So it is without loss to restrict attention on case 3. SinceK is randomly chosen, set y′ = yK . Revenue is
increasing as u(KN) decrease and revenue is increasing as u(KB) increase. By convexity of u, with fixed
u(B), u(K), and u(N), optimal u(BN) comprises of two lines: the straight line(with extended line) across
points (yB, u(B))(yK , u(K)), and straight line across point (yN , u(N)) with slope q2(N). ut
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Proof. of Lemma 5.4 The revenue obtained in region MNDG is

RMNDG =

∮
MNDG

T · n̂ds−
∫
MNDG

4(z)u(z)dz

=

∫
DGMN

T · n̂ds+

∫
ND

T · n̂ds−
∫ yD

yN

∫ xN

xM

4(x, y)u(x, y)dxdy

= c+

∫ yD

yN

[xBu(xB, y)f1(xB)f2(y)−
∫ xN

xM

4(x, y)u(x, y)dx]dy

c =
∫
DGMN T · n̂ds depends on u(DG), u(GM), and u(MN). We fix these utilities and study u(DN).

Let R(u(xB, y), y) = xBu(xB, y)f1(xB)f2(y) −
∫ xN
xM
4(x, y)u(x, y)dx. Pick a random point P on ND,

draw a horizontal line across P that intersects curve MLQ at J , intersects segment MG at R. In region
CSMLID point (x, y) gets item 2 deterministically and we assume it gets item 1 with probability q1(x).

R(u(xB, yJ), yJ)

= u(xB, yJ)xBf1(xB)f2(yJ)−
∫ xJ

xM

u(x, yJ)4(x, yJ)dx−
∫ xB

xJ

u(x, yJ)4(x, yJ)dx

= [u(R) +

∫ xJ

xM

q1(x)dx+ xB − xJ ]xBf1(xB)f2(yJ)−
∫ xJ

xM

[u(R) +

∫ x

xR

q1(l)dl]4(x, yJ)dx

−
∫ xB

xJ

[u(R) +

∫ xJ

xM

q1(l)dl + x− xJ ]4(x, yJ)dx

Because u(xB, yJ) = u(R) +
∫ xJ
xM

q1(x)dx + xB − xJ = u(R) + xB −
∫ xJ
xM

(1 − q1(x))dx, we have
∂u
∂xJ

(xB, yJ) ≤ 0

∂R

∂xJ
(u(xB, yJ), yJ)

= (q1(xJ)− 1)xBf1(xB)f2(yJ)−
∫ xB

xJ

(q1(xJ)− 1)4(x, yJ)dx

= (q1(xJ)− 1)f2(yJ)[xBf1(xB)−
∫ xB

xJ

f1(x)(3 + PR(f1(x)) + PR(f2(yJ)))dx]

= (q1(xJ)− 1)f2(yJ)v(xJ)

In the last equality, we reset v(xJ) = xBf1(xB) −
∫ xB
xJ

f1(x)(3 + PR(f1(x)) + PR(f2(yJ)))dx. Since
q1(xJ)− 1 ≤ 0, sgn(v(xJ)) = −sgn( ∂R∂xJ ). Thus

sgn(v(xJ)) = −sgn(
∂R

∂u

∂u

∂xJ
) = sgn(

∂R

∂u
)

Since 3+PR(f1(x))+PR(f2(y)) ≥ 0, v(xJ) is weakly monotone in xJ . By (3) and (4) of Lemma 5.1,
while P moves up, the intersection J moves towards right, i.e., xJ weakly increases. Then v(xJ) weakly
increases. So if v(xJ) switches sign, it must switch sign from negative to positive. So Ru(u(xB, yJ), yJ)
can only switch sign from negative to positive.

There are three cases for the sign of Ru(u(xB, yJ), yJ). It’s similar to the proof in Lemma 5.3. WLOG,
we can assume that v(xJ) = 0. Thus v(x) ≥ 0, x ∈ [xJ , xD] and v(x) ≤ 0, x ∈ [xA, xJ ]. There-
fore Ru(u(xB, yJ), yJ) ≥ 0, y ∈ [yP , yD], Ru(u(xB, yJ), yJ) ≤ 0, y ∈ [yN , yP ]. So RMNDG is in-
creasing as u(NP ) decrease and is increasing as u(PD) increase. With fixed u(N), u(P ), and u(D),
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Figure 8: Utility function on BD.

by convexity, optimal u(ND) comprises of two lines: the straight line (with extended line) across points
(yP , u(P ))(yD, u(D)), and straight line across point (yN , u(N)) with slope q2(N). ut

Proof. of Theorem 5.2
We sum up the conclusions drawn on different segments ofBD and settle final shape of u(BD), subject

to the convexity constraints and fixed u(B), u(K), u(P ), and u(D). In Fig. 8, the black solid line is an
arbitrary convex utility function. By Lemma 5.3 and 5.4, the optimal u(BD) consists of at most 3 pieces:
the straight line (with extended line) across points (yB, u(B))(yK , u(K)), the straight line (with extended
line) across points (yP , u(P ))(yD, u(D)), and the straight line across point (yN , u(N)) with slope q2(N).
In fact, we can prove an even stronger result: it turns out that the line across point (yN , u(N)) is unnecessary.
The remainder of the proof is to confirm this claim.

In Fig. 8, the red dashed utility consists of two parts: straight line across points (yB, u(B)) and (yK , u(K)),
and straight line across points (yP , u(P )) and (yD, u(D)). We denote ”original” utility function to be the
black arbitrary convex utility function. We denote ”new” utility function to be the red dashed utility function.
We prove that the revenue based on new utility function is greater than or equal to the revenue based on the
black original utility. Therefore when u(B), u(K), u(P ), u(D) and their coordinates on the y-dimension
yB, yK , yP , yD are fixed, the optimal utility function must be of the shape portrayed as the red dashed line.

First, we study what the graph representation looks like. Since u(Q), u(J), u(M), u(W ) remain the
same, they are still on the boundaries (see Fig. 7):

• M is on the boundary between (∗, 1) region and (0, 0) region.

• W is on the boundary between (1, ∗) region and (0, 0) region.

• J is on the boundary between (1, ∗) region and (∗, 1) region.

• Q is on the boundary between (∗, 1) region and (1, ∗) region.

Let M ′ denote the new intersection of the three parts: (0, 0), (∗, 1), and (1, ∗). The new boundary between
(1, ∗) and (∗, 1) is the dashed line QJM ′. The new boundary between (∗, 1) and (0, 0) is the dashed line
SMM ′. The new boundary between (1, ∗) and (0, 0) is the dashed line M ′WE. Since u(PD) and u(KB)
weakly increase, and u(KP ) weakly decreases,M ′ must lie inMWKN region, dashedQJ lies inGMLQ
region, dashed WE lies in SMWE region. Draw horizontal line through M ′ and it intersects BD at N ′,
intersects the extended line of GM at O.

With fixed u(CD), given the boundary of (1, ∗), we can calculate u(BD) as follows: say (x, y) is on
the boundary between (1, ∗) amd (∗, 1), then u(xB, y) = u(x, y) +xB −x = u(x, yC) + y− yC +xB −x.
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So we can define u(BD) according to their boundary. Let the original utility and revenue function based
on the boundary QLJMWE is u1 and R1. Let the new utility and revenue function based on the boundary
QJM ′W and dashed WE is u3 and R3. Our goal is to prove R1 ≤ R3.

R1
DGMWEB ≤ R3

DGM ′WEB

SinceR1
DGMWEB = R1

DGMWK+R1
WEBK(hereWE is the solid line) andR3

DGM ′WEB = R3
DGMM ′WK+

R3
WEBK(here, WE is the dashed line). It suffices to prove R1

DGMWK ≤ R3
DGMM ′WK and R1

WEBK ≤
R3
WEBK separately.

R1
WEBK

=

∫
WK

T1 · n̂ds+

∫
EB

T1 · n̂ds+

∫ yK

yB

u1(xB, y)xBf1(xB)f2(y)dy

−
∫ yK

yB

∫ xB

xB−u(xB ,y)
u1(x, y)4(x, y)dxdy

=

∫
WK

T3 · n̂ds+

∫
EB

T3 · n̂ds+

∫ yK

yB

R(u1(xB, y), y)dy

≤
∫
WK

T3 · n̂ds+

∫
EB

T3 · n̂ds+

∫ yK

yB

R(u3(xB, y), y)dy

= R3
WEBK

Here Ti = zuif(z) and we use the same R(u(xB, y), y) as that in Lemma 5.3. What still remains to show
is R1

DGMWK ≤ R3
DGMM ′WK .

In order to prove this claim, we introduce an intermediate utility and revenue as follows. Let the in-
termediate utility and revenue function based on the boundary QLJMM ′W and dashed WE is u2 and
R2. Consider the intermediate case, MM ′ is the boundary shared by all three regions (1, ∗), (∗, 1) and
(0, 0). For any point (x, y) on MM ′, we can calculate the utility of corresponding point (xB, y) as
u(xB, y) = u(x, y) + xB − x = u(x, yC) + y − yC + xB − x. In fact, according to Lemma 5.1, this
case cannot happen and u2(BD) does not retain convexity any more. It is important to note that, here,
we are only concerned with R2, not the feasibility of u2. That is, we use R2 as a number to facilitate the
comparison between R1 and R3.

Now we show R1
DGMWK ≤ R3

DGMM ′WK .

R1
DGMWK

= R1
DGMN +R1

MWKN

≤ R1
DGMN +R2

MM ′WKN

= R2
DGMN +R2

MM ′N ′N +R2
M ′WKN ′

= R2
DGMM ′N ′ +R2

M ′WKN ′

= R2
DGMM ′N ′ +R3

M ′WKN ′

≤ R3
DGMM ′N ′ +R3

M ′WKN ′

= R3
DGMM ′WK

The first inequality follows from a similar proof of that in R1
WEBK ≤ R3

WEBK .
In order to show the second inequality, introduce u22 and u33 as follows:

u22(x, y) =

{
u2(x, y) (x, y) ∈ DGMM ′N ′

u2(x, yC) + y − yC (x, y) ∈MM ′O
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u33(x, y) =

{
u3(x, y) (x, y) ∈ DGMM ′N ′

u3(x, yC) + y − yC (x, y) ∈MM ′O

R2
DGMM ′N ′ −R3

DGMM ′N ′

=

∫
DGMM ′N ′

T2 · n̂ds+

∫
N ′D

T2 · n̂ds−
∫ yD

yN′

∫ xN′

xM

4(x, y)u22(x, y)dxdy

+

∫
MM ′O

4(z)u22(z)dz −R3
DGMM ′N ′

=

∫ yD

yN′

[xBu
22(xB, y)f1(xB)f2(y)−

∫ xN

xM

4(x, y)u22(x, y)dx]dy

−
∫ yD

yN′

[xBu
33(xB, y)f1(xB)f2(y)−

∫ xN

xM

4(x, y)u33(x, y)dx]dy

=

∫ yD

yN′

[R(u22(xB, y), y)−R(u33(xB, y), y)]dy (2)

In the last equality, we use the same R(u(xB, y), y) as in Lemma 5.4.
In the following, we show Equation (2) is non-positive. According to Lemma 5.4,

Ru(u(xB, y), y) ≥ 0 y ∈ [yJ , yQ], u(xB, y) ≥ u(J)

Ru(u(xB, y), y) ≥ 0 y ∈ [yM ′ , yJ ], u(xB, y) ≤ u(J)

Because u22(xB, y) ≤ u33(xB, y) y ∈ [yP , yD] and u22(xB, y) ≥ u33(xB, y) y ∈ [yN ′ , yP ], we
have R(u22(xB, y), y) ≤ R(u33(xB, y), y), y ∈ [yN ′ , yP ]. So Equation (2) ≤ 0, then R2

DGMM ′N ′ ≤
R3
DGMM ′N ′ .

Up to now, we have proved that red dashed utility function on BD segment indeed yield the highest
revenue subject to fixed u(B), u(K), u(P ), and u(D) (Fig. 8). In other words, u(BD) is piecewise linear
with two pieces. Same for u(CD).

We have showed region CSEBD consists of 4 menu items. In other words, the whole mechanism
consists of 5 menu items. Say, points on BD segments choose menus (1, α, tα), (1, γ, tγ), α ≤ γ. Points
on CD choose menus (β, 1, tβ), (θ, 1, tθ), β ≤ θ. What remains to show is that the top right two regions
both allocate with probabilities (1,1) thus are in fact a unique region.

Manelli and Vincent [2007, Theorem 16] state that in the optimal mechanism, there must exist a segment
chooses allocation (1, 1). By Lemma 5.1, the (1, 1) region is on the top right corner of the rectangle. So in
the optimal mechanism there are slopes of utility lines equal to 1 in both BD and CD. Hence, γ = θ = 1.
BD and CD share the same menu item (1, 1).

To sum up, the optimal mechanism menu consists of at most 4 menu-items:

q1 q2 t

0 0 0
1 α tα
β 1 tβ
1 1 t1

ut

Proof. of Theorem 5.6

17



Figure 9: Optimal mechanism with 3 menu items.

We consider two cases:
Case 1: When there is a region that chooses first item randomly and choose second item with probability

1, i.e., there is region with allocation Look at Fig. 9, SMJDC represents the (∗, 1) region. When y ∈
[yB, yN ], we have u(xB, y) ≤ xB − xA, Lemma 5.3 implies

Ru(u(xB, y), y) ≥ f2(y)[xBf1(xB)−
∫ xB

xA

f1(x)[3 + PR(f1(x)) + PR(f2(y))]dx].

When y ∈ [yN , yD], we have xJ ≥ xA, Lemma 5.4 implies

v(xJ) ≥ xBf1(xB)−
∫ xB

xA

f1(x)[3 + PR(f1(x)) + PR(f2(y))]dx.

We have

xBf1(xB)−
∫ xB

xA

f1(x)[3 + PR(f1(x)) + PR(f2(y))]dx

= xAf1(xA) +

∫ xB

xA

[xf ′1(x) + f1(x)]dx−
∫ xB

xA

f1(x)[3 + PR(f1(x)) + PR(f2(y))]dx

= xAf1(xA)

∫ xB

xA

f1(x)dx−
∫ xB

xA

f1(x)[2 + PR(f2(y))]dx

=

∫ xB

xA

f1(x)[xAf1(xA)− 2− PR(f2(y))]dx ≥ 0

Thus Ru(u(xB, y), y) ≥ 0, y ∈ [yB, yN ] and v(xJ) ≥ 0, py ∈ [yN , yD]. Because sgn(Ru(u(xB, y), y)) =
sgn(vJ) ≥ 0, y ∈ [yN , yD], Ru(u(xB, y), y) ≥ 0, y ∈ [yN , yD]. By Lemma 5.3 and 5.4, with fixed
u(B), u(N), and u(D), optimal u(ND) and u(BN) are straight lines. Using similar method as shown in
the Theorem 5.2, we can prove that with fixed u(B) and u(D), the optimal utility function is u(xB, y) =

u(B) + q23(y − yB) y ∈ [yB, yD], where q23 = u(D)−u(B)
yD−yB . But we should notice that, this operation may

change u(AC). This leads to two further cases: (1) the operation changes u(AC); (2) otherwise. It can be
seen case (1) is strictly more general, so we only need to consider case (1).

Draw a vertical line through S across BD at P , we fix u(B) and u(D). Instead of letting u(BD) be a
straight line, we let u(BD) be piece linear with one break point u(P ) in order not to change u(AC). Let
u(P ) = xB − xA,

u(xB, y) = u(P ) +
y − yP
yD − yP

· (u(D)− u(P )) y ∈ [yP , yD]

u(xB, y) = u(B) +
y − yB
yP − yB

· (u(P )− u(B)) y ∈ [yB, yP ]
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After this operation, points u(S), u(P ), u(D) are in a new plane. So the boundary of (∗, 1) region, curve
MJD, moves into CSD region. Using similar method as is shown in the Theorem 5.2, total revenue will
weakly increase.

Then we set

u(x, yC) = u(C) +
x− xC
xD − xC

· (u(D)− u(C)) x ∈ [xC , xD]

After this operation, points u(C), u(S), u(D) are in a new plane. The boundary of (∗, 1) region, originally
curve MJD, becomes the straight line SD. So this operation will not affect the utilities on segment AB.
Using same argument above, total revenue will weakly increase. Now there are 2 non-zero menu items
chosen in region CSPD and 1 non-zero menu item chosen in region SMEBP . Manelli and Vincent
[2007, Theorem 16] says in the optimal mechanism, there must exist a segment chooses (1, 1) allocation.
So these 2 non-zero menus chosen by region CSPD must be the same menu (1, 1, t). So there are two
non-zero menus in total:(1, 1, t) and (1, α, t1).

Case 2: When there is no (∗, 1) region.
Now Condition ”PR(f1(x)) ≤ yAf2(yA) − 2,∀x” is not enough, because when we do the same ma-

nipulation for u(BD), u(CS) will change at the same time. If a point have chosen non-zero menu item, it
must choose first item with probability 1. According to this, we have the following equation:

RSPDC =

∫
SP

T · n̂ds+

∫
CD

T · n̂ds+

∫
PD

T · n̂ds+

∫
SC

T · n̂ds−
∫
SPDC

4(z)u(z)dz

= c+

∫ yC

yS

u(xB, y)xBf1(xB)f2(y)dy

−
∫ yC

yS

(u(xB, y) + xA − xB)xAf1(xA)f2(y)dy

−
∫ yC

yS

∫ xB

xA

4(x, y)(u(xB, y) + x− xB)dxdy

= c+

∫ yC

yS

R(u(xB, y), y)dy

Here, c =
∫
SP T · n̂ds +

∫
CDT · n̂ds. When we fix u(D) and u(P ), c is constant. Let R =

u(xB, y)xBf1(xB)f2(y) − (u(xB, y) + xA − xB)xAf1(xA)f2(y) −
∫ xB
xA
4(x, y)(u(xB, y) + x − xB)dx

and Ru(u(xB, y), y) denote the partial derivative wrt. u(xB, y).

Ru(u(xB, y), y)

= [xBf1(xB)− xAf1(xA)−
∫ xB

xA

f1(x)[3 + PR(f1(x)) + PR(f2(y))]dx] · f2(y)

= [−2− PR(f2(y))] · f2(y) ≤ 0

This means RSPDC is increasing as utilities on segment PD decreases and is decreasing as utilities on
segment PD increases. Using same argument as in Case 1, we know total revenue is increasing as utilities
on segment PB increases and is decreasing as utilities on segment PD decreases.
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Figure 10: Utility function on BD, the red dashed line including point u(D) has derivative 1.

As shown in Fig. 10, the new mechanism with red dashed line u(BD) yields higher revenue than the
original mechanism with black solid line u(BD). So there are two non-zero menu items in total:(1, 1, t)
and (1, α, t1). 2 ut

Proof. of Lemma 5.8 Since point M is on (0, 0) part, so u(M) = 0. For point (x, y) in region NMD,
u(x, y) = u(M) + y − yM +

∫ x
xM

q1(l)dl = y − yM +
∫ x
xM

q1(l)dl.
Rewrite the revenue formula for region NMGD as follows,

RNMGD =

∮
NMGD

T · n̂ds−
∫
NMGD

4(z)u(z)dz

= 2

∫ xD

xN

yCu(x, yC)f1(yC)f1(x)dx− 2

∫
NM

T · n̂ds

−2

∫ xD

xN

∫ yC

x
u(x, y)4(x, y)dydx

= 2

∫ xD

xN

xB[yC − yM +

∫ x

xN

q1(l)dl]f1(xB)f1(x)dx

−2

∫ xD

xN

∫ yC

x
[y − yM +

∫ x

xN

q1(l)dl]4(x, y)dydx− 2

∫
NM

T · n̂ds

= 2

∫ xD

xN

q1(x)(

∫ xD

x
[xBf1(xB)f1(l)−

∫ xD

l
4(l, y)dy]dl)dx+ C1

= 2

∫ xD

xN

q1(x)v(x)dx+ C1

The rest terms are denoted by C1 which only depends on yM . When yM is fixed, C1 is a constant. In
the last equality, let v(x) =

∫ xD
x [xBf1(xB)f1(l)−

∫ xD
l 4(l, y)dy]dl, thus it is independent from q1.

To find out the optimal q1, divide [xN , xD] into several intervals according to v(x). Since v(x) is a
continuous function, we can assume in intervals v(x) ≤ 0, x ∈ [ni, di], ∀1 ≤ i ≤ l, and v(x) ≥ 0, x ∈
[di, ni+1],∀1 ≤ i ≤ l − 1, and m1 = xN , bn = xD. There is always a rational number in any interval, so
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the number of intervals is countable. It is possible that d1 = xN , nl = xD and l may be infinite.∫ xD

xN

q1(x)v(x)dx

=

l∑
i=1

∫ di

ni

q1(x)v(x)dx+

l−1∑
i=1

∫ ni+1

di

q1(x)v(x)dx

≤
l∑

i=1

q1(ni)

∫ di

ni

v(x)dx+
l−1∑
i=1

q1(ni+1)

∫ ni+1

di

v(x)dx (3)

= q1(n1)

∫ xD

xN

v(x)dx+
l∑

i=2

(q1(ni)− q1(ni−1))

∫ dl

di−1

v(x)dx

≤ q1(n1)

∫ xD

xN

v(x)dx+
l∑

i=2

(q1(ni)− q1(ni−1))

∫ xD

x′
v(x)dx (4)

≤ q1(xN )

∫ x′

xN

v(x)dx+ 1×
∫ xD

x′
v(x)dx

Let x′ denote the point in [xN , xD] where g(s) =
∫ xD
s v(x)dx achieves the maximum value in (4).

The inequality (3) are only based on the facts that q1(x) is a weakly monotone function and they become
equalities by setting q1(x) = q1(xN ), x ∈ [xN , x

′), q1(x) = 1, x ∈ [x′, xD]. So there are at most two pieces
in u(BD). ut

Proof. of Lemma 5.9 The proof is similar to Lemma 5.3. Rewrite the revenue formula of region CSMN
as follows,

RCSMN =

∮
CSMN

T · n̂ds−
∫
CSMN

4(z)u(z)dz

=

∫
CSMN

T · n̂ds+

∫ xN

xC

yCu(x, yC)f1(yC)f1(x)dx

−
∫ xN

xC

∫ yC

yC−u(x,yC)
4(x, y)u(x, y)dydx

=

∫ xN

xC

[yCu(x, yC)f1(yC)f1(x)−
∫ yC

yC−u(x,yC)
(u(x, yC)− yC + y)4(x, y)dy]dx+ C2

=

∫ xN

xC

R(u(x, yC), x)dx+ C2

We letC2 =
∫
CSMN T·n̂ds, it only depends on u(C) and u(N). LetR(u(x, yC), x) = yCu(x, yC)f1(yC)f1(x)−∫ yC

yC−u(x,yC)(u(x, yC)− yC + y)4(x, y)dx. Pick point K in CN , we have,

∂R

∂u
(u(xK , yC), xK) = f1(xK)[yCf1(yC)−

∫ yC

yC−u(xK ,yC)
f1(y)[3 + PR(f1(xK)) + PR(f1(y))]dy]

While xK increases, u(xK , yC) andPR(f(xK)) increase, yCf1(yC)−
∫ yC
yC−u(xK ,yC) f1(y)[3+PR(f1(xK))+

PR(f1(y))]dy decreases. WLOG, we can assume ∂R
∂u (u(x, yC), x) ≥ 0, x ∈ [xC , xK ] and ∂R

∂u (u(x, yC), x) ≤
0, x ∈ [xK , xN ]. Revenue is increasing as u(KN) decrease. Revenue is increasing as u(CK) increase. Let
u1(x, yC) = u(C) + u(K)−u(C)

xK−xC (x − xC), u2(x, yC) = u(N) + q1(xN , yN )(x − xN ), then u(x, yC) =
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Figure 11: Symmetric value distribution.

max(u1(x, yC), u2(x, yC)), x ∈ [xC , xN ] gives the optimal revenue with fixed u(C), u(K), u(N) and
q1(xN , yC). So optimal u(CN) comprises at most two pieces. ut

Proof. of Theorem 5.7
When q1(xN ) are fixed, q1(x)(x ∈ (xN , xD]) is irrelevant to RCSMN . When u(C) and u(N) are fixed,

u(x, yB)(x ∈ (xC , xM )) is irrelevant to RNMGD.
Let’s look at Fig. 11. When u(C), u(K), u(N), q1(xN ) are fixed, the buyer utility on the red dashed

line is greater than that on the black solid line between CK. The buyer utility on the red dashed line is less
than that on the black solid line betweenKN . According to Lemma 5.8 and 5.9, RCSMN andRNMGD are
larger, so the total revenue is larger. Furthermore, optimal utility function on ND is piecewise linear with
two slopes: q1(xN ) and 1. To sum up, the optimal utilities on CD is piecewise linear with at most three
pieces. Therefore, the optimal mechanism is of the following form:

q1 q2 t

0 0 0
1 α1 t1
1 α2 t2
α1 1 t1
α2 1 t2
1 1 t3

ut

Proof. of Lemma 5.11 For (x, y) in CSEBD, the utility of choosing (q, 1− q) is xq + y(1− q)− t(q) =
(x − y)q + y − t(q). The buyer will choose the menu item that achieves maxq{(x − y)q + y − t(q)} =
y+maxq{(x−y)q− t(q)}. This means that which menu item will be chosen depends entirely on the value
of x− y. For two points (y1 + l, y1) and (y2 + l, y2) in CSEBD, they must share the same allocation. Use
q2(y) as a shortcut of q2(xB, y).

Fixing u(W ) and q2(yW ), for any point (x, y) in region EBW , the buyer’s utility is

u(x, y) = u(W )− (u(W )− u(xB, y + xB − x))− (u(xB, y + xB − x)− u(x, y))

= u(W )− ((xB − x)(1− q2(y + xB − x)) + (xB − x)q2(y + xB − x))−
∫ yW

xB+y−x
q2(l)dl

= u(W )− (xB − x)−
∫ yW

xB+y−x
q2(l)dl
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Revenue formula in this region is,

REBW =

∮
EBW

T · n̂ds−
∫
EBW

4(z)u(z)dz

=

∫
WE

T · n̂ds+

∫
BW

T · n̂ds+

∫
EB

T · n̂ds−
∫
EBW

4(z)u(z)dz

The forms of the second and third terms in the expression above are as follows. Here, ai, bi, i = 1, ..., 7
and Cj , vj , j = 1, ..., 4 are expressions independent of q2(y), y ∈ [yB, yW ].

∫
BW

T · n̂ds =

∫ yW

xB

yBu(xB, y)dy =

∫ b1

a1

h1(y)[

∫ b2(y)

a2(y)
q2(y)dx+ g1(y)]dy

=

∫ yW

yB

q2(y)v1(y) + C1

∫
EB

T · n̂ds =

∫ xB

xE

−yAu(x, yA)dx =

∫ b3

a3

h2(x)[

∫ b4(x)

a4(x)
q2(y)dy + g2(x)]dx

=

∫ yW

yC

q2(y)v2(y) + C2

Since f1 and f2 are uniform distributions,4(x, y) = 3f1(x)f2(y)+xf ′1(x)+yf ′2(y) = 3f is a constant.∫
EBW

4(z)u(z)dz =

∫ yW

yC

∫ xB

xB−y+yC

3fu(x, y)dxdy

=

∫ b5

a5

∫ b6(y)

a6(y)
[

∫ b7(x,y)

a7(x,y)
q2(l)dl + g3(x, y)]dxdy =

∫ yW

yC

q2(y)v3(y) + C3

Thus, REBW =

∫
WE

T · n̂ds+

∫ yW

yC

q2(y)(v1(y) + v2(y) + v3(y))dy + C1 + C2 + C3

=

∫ yW

yC

q2(y)v4(y)dy + C4

The following proof is similar to Lemma 5.8, optimal q2(y) y ∈ [yC , yW ] comprises two parts. There
is y′ ∈ [yC , yW ] such that

q2(y) =

{
0 y ∈ [yC , y

′)
q2(yW ) y ∈ [y′, yW ]

The utility function is

u(xB, y) =

{
u(W ) + (y − yW )q2(yW ) y ∈ [y′, yW ]
u(W ) + (y′ − yW )q2(yW ) y ∈ [yB, y

′]

Hence u(xB, y) ≥ u(W ) + (y′ − yW )q2(yW ) ≥ u(W ) + (yB − yW ). Because WE is a 45 degree line,
xB − xE = yW − yB . Then u(W ) = (yW − yB)q2(yW ) + (xB − xE)(1− q2(yW )) = yW − yB . We get
u(xB, y) ≥ 0. This new utility function satisfies the convexity and nonnegative property, so it’s feasible.
Therefore, u(BW ) comprises at most two pieces. ut
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Figure 12: optimal utility function.

Proof. of Lemma 5.12

RGSMEWD

=

∫
GSMEW

T · n̂ds+

∫
GD

T · n̂ds+

∫
WD

T · n̂ds−
∫
GSMD

3fu(z)dz −
∫
DMEW

3fu(z)dz

= C +

∫ xD

xG

yCu(x, yC)fdx− 3f

∫ xD

xG

∫ yC

yC−u(x,yC)
(y − yC + u(x, yC))dydx

+

∫ yD

yW

xBu(xB, y)fdy − 3f

∫ yD

yW

∫ xW

xW−u(xW ,y)
(x− xW + u(xW , y))dxdy

= C +

∫ xD

xG

fu(x, yC)(yC −
3

2
u(x, yC))dx+

∫ yD

yW

fu(xB, y)(xB −
3

2
u(xB, y))dy

So, for fixed u(D) and u(W ), when u(xB, y) > 1
3xB, x ∈ (yW , yD), revenue is decreasing in u(xB, y);

when u(xB, y) < 1
3xB, y ∈ (yW , yD), revenue is increasing in u(xB, y). Similar to the proof in Lemma 5.3,

WLOG, we can assume there is a point P on WD segment, such that u(xB, yP ) = 1
3xB . Since u(PD) ≥

u(P ), revenue is increasing as u(PD) decrease. Since u(WP ) ≤ u(P ), revenue is increasing as u(WP )

increase. Let u1(xB, y) = u(W ) + u(P )−u(W )
yP−yW (y − yW ), u2(xB, y) = u(D) + q2(yD)(y − yD). Then

u(xB, y) = max(u1(xB, y), u2(xB, y)) y ∈ [yW , yD] gives the optimal revenue with fixed u(W ), u(P ), u(D),
and q2(yD). So optimal u(WD) comprises at most two pieces. ut

Proof. of Theorem 5.10
We can now settle the optimal utilities on BD, subject to fixed values of u(W ) and u(P ) as well as

the convexity of u. Let α = u(P )−u(W )
yP−yW and tα = (1 − α)xP + αyP − u(P ). Adding a new menu item

(1− α, α, tα), the utility of choosing this new item is uα, which is denoted by the red dashed line shown in
Fig. 12. Let uD be the utility obtained by choosing the same menu item as pointD: (1−q2(yC), q2(yC), tD).
Thus, for any point (x, yC) on CD, we have

u(x, yC) ≥ uD(x, yC) = (1− q2(yC))x+ q2(yC)yC − tD

≥ (1− q2(yC))xD + (1− q2(yC))(x− xD) + q2(yC)− tD

= u(D) + (1− q2(yC))(x− xD) ≥ uα(D) + (1− α)(x− xD)

= (1− α)xD + αyC − tα + (1− α)(x− xD) = uα(x, yC)

Thus, after adding this new menu item, u(CD) does not change and u(PW ) will weakly increase.
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In the optimal mechanism with fixed q2(yW ), according to Lemma 5.11, types on BW choose only 2
menu items: (1 − α, α, tα) and (1, 0, t1) for some t1. Using same arguments as CD, for BD, we have
another two menu items: (1− β, β, tβ) and (0, 1, t2) for some t2.

We now consider a brand new menu with only the above four menu items and (0, 0, 0). Compared
to the old menu, u(PD) weakly decreases while u(PW ) weakly increase. According to Lemma 5.12,
RGSMEWD weakly increases. For fixed q2(yW ) and u(W ), REBW is maximized. For fixed q1(xG, yG)
and u(G), RCSG is maximized. The total revenue weakly increase. The optimal menu consists of at most 5
menu items:

q1 q2 t

0 0 0
1 0 t1

1− α α tα
0 1 t2
β 1− β tβ

ut

25


	1 Introduction
	2 The setting
	3 Representing revenue as a function of utility
	4 Part I: menu monotonicity and revenue monotonicity
	5 Part II: Optimal mechanism with small menus
	5.1 Pavlov's characterization and graph representation lemma
	5.2 Optimal mechanisms for constant power rate
	5.3 Optimal mechanisms for monotone power rate
	5.4 Optimal mechanism for uniform distributions under unit-demand constraint

	A Appendix: Proofs of Section 5

