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Catastrophic forgetting describes the fact that machine learning models will likely forget the knowledge of
previously learned tasks after the learning process of a new one. It is a vital problem in the continual learning
scenario and recently has attracted tremendous concern across different communities. In this paper, we explore
the catastrophic forgetting phenomena in the context of quantum machine learning. We find that, similar to
those classical learning models based on neural networks, quantum learning systems likewise suffer from such
forgetting problem in classification tasks emerging from various application scenes. We show that based on
the local geometrical information in the loss function landscape of the trained model, a uniform strategy can
be adapted to overcome the forgetting problem in the incremental learning setting. Our results uncover the
catastrophic forgetting phenomena in quantum machine learning and offer a practical method to overcome this
problem, which opens a new avenue for exploring potential quantum advantages towards continual learning.

Introduction.—Humans and animals are able to incremen-
tally acquire knowledge and skills from interacting experi-
ences with the real world throughout their lifespan, which is
functioned by a rich set of neurophysiological processes and
biological mechanisms [1, 2]. This capability is a crucial rea-
son why animals can survive the dynamically nondetermin-
istic nature. Likewise, artificially-constructed computational
systems may also be exposed to continuous streams of data
and interactions and are desired to learn information from new
experiences as well as preserving previously learned informa-
tion [3–5]. The ability to sequentially accumulate knowledge
over time is referred as continual learning or lifelong learn-
ing [6]. Continual learning is considered to integrate informa-
tion from progressively non-stationary data where the num-
ber of tasks to be learned is not predefined [7, 8]. Machine
learning algorithms applied to a number of difficult problems
have achieved enormous success [9–14] and they can achieve
human-level performance or even outperform human-beings
on many specific tasks such as playing Atari [9, 10] and Go
[11, 12]. Nevertheless, most machine learning algorithms
are designed to capture the solution of a predefined problem
and thus can hardly be reused when data of multiple tasks
comes progressively. The main issue prevents those learning
models from continual learning is the catastrophic forgetting
[15–17], a fact that the performances on those earlier trained
tasks abruptly decrease after learning new tasks because of
the oblivion of those information gathered from previous data
[15]. Catastrophic forgetting is widely believed to be a cru-
cial obstacle for achieving artificial general intelligence with
neural networks [18, 19].

In recent years, a number of variational quantum machine
learning algorithms have been proposed to solve problems
coming from the real world [20–23] and some of them have
been demonstrated in proof-of-principle experiments to dis-
play their possible potential on practical applications [24–27].
Those quantum learning algorithms exploit intrinsic proper-
ties underlying quantum computation systems like quantum
superposition and quantum entanglement and promise expo-
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FIG. 1. Illustration of quantum continual learning and the elastic
weight consolidation (EWC) strategy adapted to overcome catas-
trophic forgetting. (a) Illustration of quantum continual learning.
Here different tasks are sequentially learned by the quantum classi-
fier and the measurement result of a prefixed qubit denotes the output
of this quantum classifier. (b) Geometric picture of the EWC method.
The purple surface represents the loss landscape of task 1 and the
green surface represents the loss landscape of task 2. After finding
solution point A for task 1, retraining our quantum classifier for task
2 using original training strategy leads to a significant increase of the
loss for the previous task, which is shown as the forgetting (blue)
path. In contrast, with the EWC method, retraining results in only a
mild increase of the loss for task 1 while achieving a low loss for the
current task 2, as depicted by the EWC (red) path.

nential advantages compared with their classical counterparts
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[28–34]. Despite those potential advantages and growing ex-
citing results, there are still many unexplored aspects of quan-
tum machine learning algorithms, which advocates for sus-
tained research and development [35–37]. In particular, sim-
ilar to their classical counterparts, most quantum machine
learning algorithms are meant to accomplish a predefined task
and thus can hardly be generalized to learn multiple tasks se-
quentially. This prevents quantum learning agents from the
ability of continual learning and remains a vital barrier to the
accomplishment of quantum artificial general intelligence. In
order to address this issue, it is crucial to investigate catas-
trophic forgetting in quantum machine learning models and
to endow our learning agent based on quantum computer sys-
tems with the capacity of continual learning.

In this paper, we investigate the forgetting phenomena with
a focus on a specific kind of learning models called quantum
classifiers (see Fig. 1 for a pictorial illustration). We show
that, similar to traditional classifiers based on classical neu-
ral networks, quantum classifiers based on variational quan-
tum circuits likewise forget information after new parameter
updating. Neuroscience suggests that the relations among dif-
ferent tasks can influence the forgetting degree in successive
learning scenarios [2]. To determine whether our quantum
classifiers are affected by the similarities among tasks, we ex-
amine two different types of relations between tasks: one in
which the tasks are functionally identical but with permuted
formats of the input and one in which the tasks are dissimi-
lar in essential ways. Numerical experiments show that when
trained on tasks one by one, both relations above can lead ob-
vious decrease of the model’s performances on those previ-
ously trained tasks. Furthermore, we interpret this problem
more precisely and mitigate its influence via taking advan-
tages of the local geometrical information in the loss function
landscape of our adapted learning model. Based on our nu-
merical results, we find that in certain situations, catastrophic
forgetting in quantum machine learning can be overcome via
the correct description of the local information and quantum
continual learning is possible.

Catastrophic forgetting in quantum learning.—Quantum
classifiers are a common set of variational quantum circuits
targeted to accomplish classification tasks [38] and have been
explored from many perspectives like vulnerability [39–41],
relation to feature space [42] and so on [43–45]. But there
are also many aspects of quantum classifiers that remain un-
clear and catastrophic forgetting is a crucial one. The main
purpose of classification tasks is to identify and sort a number
of data into several different categories by recognizing and
extracting meaningful fundamental features underlying data.
Many practical problems can be abstracted as classification
tasks, such as face recognization and object detection [46]. To
illustrate catastrophic forgetting phenomena in quantum ma-
chine learning, we use a pre-fixed variational quantum circuit
to learn two classification tasks sequentially and observe the
performance of our quantum classifier on the first classifica-
tion task before and after the training process of the second
task. In practice, many learning tasks share somewhat simi-
lar underlying structures [47] and can be naively transformed
from one to another. Learning English letters in capital and
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FIG. 2. Catastrophic forgetting phenomena for quantum classifiers.
(a) Learning curve for the original MNIST images. The blue line
stands for the accuracy of the training set during the whole train-
ing process and the orange line for the accuracy of the testing set.
(b) Forgetting curve for two tasks with large similarity. Here, γold

(γnew) represents the accuracy of the quantum classifier on the old
(new) task. (c) Learning curve of time-of-flight images for the task
of classifying topological phases. (d) Forgetting curve of two dissim-
ilar tasks: the classifications of topological phases and hand-written
digits.

lower cases might be a gentle example of that. Abstractly,
although they look not the same, letters in capital case and
lower case share exactly the same rules and a simple encoding
map can be adapted to transform from capital case to lower
case and vice versa. For human-beings, the ability to identify
and recognize letters in one format is useful when they are
learning another format. However, instead of exploiting pre-
learned information, quantum classifiers have the tendency to
forget knowledge learned before.

To qualitatively understand this kind of forgetting, we di-
rectly construct a simple pair of tasks with similar underlying
distributions and similar difficulties. One of those tasks is to
classify hand-written digit images (0 and 9) randomly sam-
pled from MNIST dataset [48] and another task is to classify
the same images with a pre-fixed pixel-permutation. Because
the variational quantum circuit adapted here is generally ordi-
nary and has no architecture exploiting graph information in
images, we assume reasonably that a pre-fixed permutation of
pixels does not change the original classification task signif-
icantly. We carry out extensive numerical simulations with a
classical computer [49]. The classification performances are
plotted in Fig. 2(a) and Fig. 2(b). We firstly train our vari-
ational quantum classifier using original MNIST images and
after 40 epochs of parameter updating, the accuracy of our
classifier on target task is high (larger than 95%), which in-
dicates that this circuit actually learns how to classify hand-
written digit images. Then, we use the trained classifier to
learn how to distinguish those permuted hand-written digit
images. After several rounds of parameter updating, the accu-
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racy of our classifier on the new task is also larger than 95%
even when their pixels are not aligned in normal order. Unfor-
tunately, with the growth of the accuracy of our quantum clas-
sifier on this on-going new classification task, the accuracy on
the previous task is getting worse and worse, indicating that
the pre-learned information is being forgotten when our clas-
sifier is learning new information. After the training process
with permuted images is finished, it is evident that information
learned by the quantum classifier is almost refreshed and little
knowledge from the previous task is left. This implies that
catastrophic forgetting extends to quantum classifiers, even
for learning tasks that share similar underlying structures.

To further illustrate the forgetting problem for quantum
classifiers, we also consider the scenario of learning intrin-
sically dissimilar tasks. We choose two classification tasks
emerging from disjoint areas in order to make sure they are not
significantly related to each other. One of them is to classify
topological phases of matter and the other remains as classi-
fying MNIST hand-written digit images. Classifying different
phases of matter is one of the central problems in modern con-
densed matter physics and many machine learning algorithms
are proposed to deal with this task [31, 33, 38], giving rise
to a disciplinary research frontier connecting both machine
learning and condensed matter physics. Here, we focus on
classifying topological phases which are widely considered to
be more challenging than that for the conventional symmetry-
broken phases. We consider a two-dimensional (2D) square-
lattice model for quantum anomalous Hall effect with follow-
ing Hamiltonian [50]:

HQAH = Jx
∑
r

(c†r↑cr+x̂↓ − c
†
r↑cr−x̂↓) + h.c. (1)

+ iJy
∑
r

(c†r↑cr+ŷ↓ − c
†
r↑cr−ŷ↓) + h.c.

− t
∑
〈r,s〉

(c†r↑cs↑ − c
†
r↓cs↓) + µ

∑
r

(c†r↑cr↑ − c
†
r↓cr↓),

where c†rσ (crσ) is the fermionic creation (annihilation) op-
erator with pseudo-spin σ = (↑, ↓) at site r, and x̂, ŷ are unit
lattice vectors along the x, y directions. Jx and Jy are parame-
ters characterizing the spin-orbit coupling strength along the x
and y directions. The third and fourth terms describe the spin-
conserved nearest-neighbor hopping (with strength t) and the
on-site Zeeman interaction (with strength µ), respectively. In
the momentum space, this Hamiltonian has two Bloch bands
and their topological properties can be diagnosed using the
first Chern number:

C1 = − 1

2π

∫
BZ

dkxdkyFxy(k)

where Fxy(k) ≡ ∂kxAy(k)−∂kyAx(k) is the Berry curvature
with Aν(k) ≡ 〈ϕ(k) |i∂kν |ϕ(k)〉 being the Berry connection
(ν = x, y and |ϕ(k)〉 is the Bloch wave function of the lower
band), and the integration is over the whole first Brillouin zone
(BZ). In our numerical simulations [49], we first train a binary
quantum classifier to assign labels of C1 = 0 or C1 = 1 to the
time-of-flight images obtained from two distinct topological
quantum states respectively and then use the trained classifier

to learn how to identify hand-written digits. Our results are
plotted in Fig. 2(c) and Fig. 2(d), from which the catastrophic
forgetting problem is manifested. We observe that although
the learning curve of time-of-flight images is not very smooth,
the accuracy is reasonably high (larger than 95%). However,
during the learning process of classifying MNIST images, the
accuracy for the previous task has an abrupt decrease with
the growth of the accuracy for the new task. At the end, the
performance of the quantum classifier on learning topological
phases becomes poor.

Strategy overcoming catastrophic forgetting.—Artificial
general intelligence requires not only powerful representation
architectures to produce complicated probability distributions,
but also needs to preserve those experiences encountered be-
fore in order to imitate natural creatures. Quantum machine
learning promises a potentially exponentially enlarged repre-
sentation space to embed real-life distributions [20, 29, 38].
Nevertheless, results above show the undesirable fact that
catastrophic forgetting phenomena occurs commonly in vari-
ational quantum classifiers and thus continual learning in the
quantum machine learning domain cannot be gained for free.
To overcome catastrophic forgetting is inevitable in the way
towards quantum artificial general intelligence. In contrast to
variational quantum classifiers illustrated above, humans are
likely to remember knowledge and skills learned from previ-
ous experiences and take advantages from those related mem-
ories when coming across new environments. Recent research
suggests that avoiding forgetting when animals are learning
new tasks is related to the protection of some specific ex-
citatory synapses strengthened by history experiences [51].
Adapting similar philosophy, we can presume that some pa-
rameters in variational quantum circuits are more important
than others and should be protected carefully in following
learning processes. This inspires a successful method over-
coming forgetting phenomena in classical neural networks,
i.e., the elastic weight consolidation method (EWC) [52]. This
is the intuition how we may overcome catastrophic forgetting
in quantum classifiers as well.

From a high-level perspective, learning to assign different
labels to data is a searching process in parameter space by up-
dating parameters in the variational quantum circuit in order
to optimize performance on training data. Usually, machine
learning algorithm predefines a loss function assessing how
good the performance of current parameters is, and minimizes
this loss function via some carefully-designed optimizers such
as stochastic gradient descent [53] and adaptive moment es-
timation [54]. This optimization procedure in the learning
process is usually implemented on a high dimensional man-
ifold and thus is highly nontrivial [55]. Despite the difficulty
for achieving the global minimum, finding a satisfactory local
minimum in loss function landscape is likely accomplished in
practice. Furthermore, for neural network based classifiers,
there typically exist multiple local minimum points connected
by simple curves [56], which form a substantially rich set of
possible solutions for the target task. Thus, the aim of the
training process is to achieve a satisfactory local minimum in
the predefined loss function landscape.

Let us use the two-task (tasks A and B) scenario as an
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example to discuss the EWC method adapted here to over-
come the catastrophic forgetting problem in quantum machine
learning. From the maximum likelihood estimation in statis-
tical learning [57], we should maximize the likelihood func-
tion p(θ|Σ) of a model characterized by parameter θ condi-
tioned on the joint dataset Σ = ΣA + ΣB , where ΣA and ΣB
are datasets for the task A and B, respectively. This likeli-
hood function can be computed from the probabilities of given
datasets by using the Bayes’ rule under the assumption that
tasks A and B are independent to each other [49]:

log p(θ|Σ) = log p(ΣB |θ) + log p(θ|ΣA)− log p(ΣB).

Expanding the second term log p(θ|ΣA) around the local min-
imum θ∗A for the task A, we have the following expression
using Hessian matrix Hθ∗

A
with high order terms neglected:

log p(θ|ΣA) = log p(θ∗A|ΣA) +
1

2
(θ − θ∗A)THθ∗

A
(θ − θ∗A)

The Hessian matrixHθ∗
A

is equal to the minus of the Fisher in-
formation matrix F under specific regularity conditions [58],
which is an important concept in statistical learning [58–
60] and has been introduced to the quantum domain recently
[61, 62]. We thus approximate this posterior probability as a
Gaussian distribution with the mean value given by θ∗A and
the diagonal precision matrix given by the diagonal elements
of F , and rewrite the loss function of the task B as:

L(θ) = LB(θ) + λ
∑
i

Fi · (θi − θ∗A,i)2.

Here, LB(θ) is the original loss function for the second task
B, Fi is the i-th diagonal element of the Fisher information
matrix at the optimal point θ∗A for the previous task A, and
λ is a hyper-parameter controlling the strength of this EWC
restriction. We refer to the Supplementary Material [49] for
more details.

We can interpret this method more intuitively from a geo-
metrical perspective, as illustrated in Fig. 1(b). The target of
continual learning is to learn an adequate performance on the
new taskB with no significant decrease of the performance on
the previous task A. Based on this consideration, we can add
a regularization to the original loss function when training on
taskB to punish the deviation from the obtained optimal solu-
tion of task A according to the importance of each parameter.
To qualitatively evaluate the importance of different parame-
ters in the quantum classifier, the Fisher information matrix of
our trained quantum classifier is computed and its diagonal el-
ements are used as weights of the penalties for the changes of
different parameters. Under some mild regularity conditions,
the Fisher information matrix characters the corresponding
Hessian matrix, which describes the local curvature of the loss
function landscape. Informally speaking, the gradient of each
parameter nearly vanishes at the local minimum point in the
loss function landscape of quantum classifiers, and the diag-
onal elements of corresponding Hessian matrix indicate the
local curvatures along different directions at this local mini-
mum point. Those curvatures explicitly suggest the signifi-
cance of different parameters: a large curvature means the loss

function value increases significantly even with a small shift
of the corresponding parameter and a small curvature means
the loss function value changes relatively mildly if the corre-
sponding parameter is shifted a little bit. Thus, this regularity
term forces those parameters in quantum classifier to update
near the optimal solution of the previous task and punishes the
alteration according to its local curvatures. We remark that
this interpretation can help us extend this method to a more
general scenario in a straightforward manner. In order to con-
tinually learn more than two tasks, we can simply compute
the diagonal elements of the Fisher information matrix at the
solution point of each task after finishing the corresponding
training process and add a new regularization term according
to those values to protect the quantum classifier’s performance
on the corresponding task when learning following tasks. As
a result, the total loss will become very large if the current pa-
rameters are far away from those obtained optimal values for
previous tasks. Consequently, minimizing the regulated loss
function could achieve not only a decent accuracy for the new
task, but also maintain a favorable performance on the previ-
ous ones. Numerical experiments.—To benchmark the EWC
method for quantum classifiers, we use the incremental learn-
ing setting above and adapt the similar learning settings on
two pairs of classification tasks with different relations. The
first pair of tasks is to classify MNIST digit images and their
randomly pixel-permuted ones. We plot the continual learn-
ing result in Fig. 3(a) and compare it with the forgetting result
we discuss before. The upper panel of Fig. 3(a) shows the
full learning process of classifying original MNIST images
with and without the EWC method respectively. During the
second training phase targeting at classifying pixel-permuted
MNIST images, the EWC method preserves the high accu-
racy of our quantum classifier on the previous task where ev-
ident performance reduction is avoided. Meanwhile, the ac-
curacy on the current task grows to the similar level as that
of the quantum classifier trained without the regularization,
as shown in the lower panel of Fig. 3(a). The second pair
of tasks involves classifying time-of-flight images and hand-
written digit images, as discussed above. As for this pair of
dissimilar classification tasks, our numerical results are plot-
ted in Fig. 3(b), where an analogous performance-preserved
behavior is clearly observed.

We further test the EWC method on three dissimilar clas-
sification tasks emerging from different fields, and observe
their learning curves in different training phases. In addition
to classifying time-of-flight images and MNIST hand-written
digits, we now add a third task—to classify the symmetry pro-
tected topological phases. We consider the following Hamil-
tonian [63]:

H(h) = −
∑
i

σxi σ
z
i+1σ

x
i+2 + h

∑
i

σyi σ
y
i+1, (2)

where σx,y,zi are the usual Pauli matrices acting on the i-
th spin and h is a parameter describing the strength of the
nearest-neighbor interaction. This Hamiltonian is exactly
solvable and carries two well-studied quantum phases: one
is the Z2 × Z2 symmetry protected phase characterized by
a nonzero string order for h < 1, and the other is an an-
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FIG. 3. Performance benchmarking for the EWC strategy. (a) Learn-
ing curves of two similar tasks: classifying the original and pixel-
permuted MNIST images. Blue lines plot the accuracies for the two
tasks respectively trained without the EWC strategy, whereas orange
lines show the corresponding results with using of the EWC strategy.
(b) Learning curves of two dissimilar tasks: classifying time-of-flight
images from different topological phases and classifying the original
MNIST hand-written images. (c) Learning curves of three dissimilar
tasks: classifying time-of-flight images, the original MNIST images,
and the quantum states from different symmetry protected topologi-
cal (SPT) phases.

tiferromagnetic phase with long-range order for h > 1. A
quantum phase transition between these two phases occurs at
h = 1. Our results for learning three tasks sequentially with
and without the EWC strategy are plotted in Fig. 3(c), from
which the effectiveness of the EWC method is clearly man-
ifested. Without adaption of the EWC strategy, the perfor-
mance of the quantum classifier on classifying time-of-flight
images and hand-written digits decreases notably as we train
the classifier for the third task. In contrast, after the adap-
tion of the EWC method the quantum classifier will maintain
a reasonably good performance even at the end of the training
process. We stress that those three tasks are coming from three
distinct reach areas, and thus should share no significant un-
derlying structure. Even in this situation, the proposed EWC

strategy can still overcome catastrophic forgetting, which pro-
vides a possible way to achieve quantum continual learning in
the future.

Conclusion and outlook.—In summary, we have investi-
gated the catastrophic forgetting phenomena in the emergent
interdisciplinary field of quantum machine learning. In par-
ticular, we showed that the catastrophic forgetting problem
shows up commonly in quantum learning as well, and this
problem could be overcome through the adaption of the EWC
method. For concreteness, we carried out extensive numeri-
cal simulations involving a diverse spectrum of learning tasks,
such as identifying real-life handwritten digit images, classi-
fying time-of-flight images routinely obtained from cold-atom
experiments, and classifying quantum data for different sym-
metry protected topological phases. Our results not only re-
veal the notable catastrophic forgetting problem for quantum
learning systems, but also propose an intriguing method based
on Fisher information to overcome this problem.

This work represents only a preliminary step in the direc-
tion of quantum continual learning. Many important questions
remain unexplored and deserve further investigations. First,
in this work we have only considered the case of supervised
learning. How to extend our results to unsupervised and re-
inforcement learning remains unclear. We remark that such
an extension might be highly nontrivial given the fact that in
this scenario less or no priori knowledge will be available, or
sometimes even the task boundaries are poorly defined [64].
Second, quantum machine learning holds the intriguing poten-
tial of exhibiting exponential advantages [28–34]. Yet, these
advantages have only been explored in the context of a prede-
fined learning task. In the future, it would be interesting and
important to investigate how to unambiguously demonstrate
quantum advantages in the continual learning scenario. In ad-
dition, recently quantum learning systems have been shown
to be notably vulnerable to carefully crafted adversarial ex-
amples and perturbations [39–41]. Along this line, it would
be interesting and important to explore how quantum contin-
ual learning behaves under different adversarial settings. In
particular, it would be of both theoretical and practical impor-
tance to study whether there exist universal perturbations that
could deceive the quantum continual learning system for all
the sequential tasks. Finally, an experimental demonstration
of quantum continual learning, especially with quantum ad-
vantages, should be a crucial step toward the long-term holy
grail of achieving quantum artificial general intelligence.
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Supplemental Material: Quantum Continual Learning Overcoming Catastrophic Forgetting

I. THE SETTING

Our numerical simulations are based on the open source package Yao.jl [65]. To illustrate the catastrophic forgetting phe-
nomena, we randomly initialize an eight-qubit variational quantum circuit (as shown in Fig. S4) as the ansatz for our quantum
classifier, in which those rotation angles are variational parameters updated in the training process and unchanged in the infer-
ence process, and the CNOT gates is necessary to entangle all qubits since entanglement in quantum circuits is a key resource for
potential quantum advantages. This variational architecture is hardware-efficient [66] and is capable to achieve satisfactory per-
formances for our classification tasks (see Fig. S5). Besides, this architecture does not take advantages of the specific structure
information of datasets.

All data encountered in our numerical simulations consists of 256 features and can be represented by eight qubits using
amplitude encoding. For the original MNIST hand-written digit images, those 28×28-pixel images [67] are reduced to 16×16-
pixel images (see Fig. S5(a)), so that we can simulate this quantum learning process with moderate classical computational
resources. Then, we randomly choose a permutation of the 256 pixels and apply it for all images, which produces a new dataset
consisting of pixel-permuted images (see Fig. S5(b)). For time-of-flight (TOF) images, we diagonalize the Hamiltonian of
quantum anomalous Hall effect with an open boundary condition and calculate the atomic density distributions with different
spin bases for the lower band in momentum space to obtain input data. We vary the strength of the spin-orbit coupling and the
strength of the on-site Zeeman interaction in both the topological and topologically trivial regions to generate several thousand
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FIG. S4. A single layer of the variational ansatz of our quantum classifier. This is a single layer of the ansatz. All single qubit gates in this
ansatz are rotation gates (Rx(θ) = eiθ/2X and Rz(θ) = eiθ/2Z ). Those rotation angles θi,j (i indicates the i-th qubit and j indicates the j-th
parameter of this qubit) in the rotation gates are the variational parameters of the quantum classifier and will be updated during the training
process. Those CNOT gates are adapted here to introduce necessary entanglement among different qubits. We measure the first qubit and treat
its output as the classification result of this quantum classifier. Our quantum classifier used in numerical simulations consists of ten repeated
layers.
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data samples (see Fig. S5(c)). For the symmetry protected topological state (SPT), we consider the model involving eight spins
and exactly diagonalize its Hamiltonian to obtain the ground state which can be naturally represented using eight qubits (see
Fig. S5(d)). In this work, we use amplitude encoding to convert the data of our classification tasks into the input quantum states
for the quantum classifier.

The process of sequential learning is divided into different phases and our quantum classifier are trained with only one specific
dataset in each training phase. For example, to illustrate the catastrophic forgetting phenomena, we first use the randomly
initialized quantum classifier to learn to classify original MNIST images. After a satisfactory performance is obtained, this
classifier are trained to distinguish permuted MINIST images. The results of different learning phases are shown in the main
text, where the forgetting phenomena is revealed. As for continual learning via EWC method, the Fisher information matrix for
each task is computed after the corresponding training phases and is stored for those following training phases.

II. ELASTIC WEIGHT CONSOLIDATION

From a high-level perspective, overcoming catastrophic forgetting in quantum continual learning requires protecting the
learned knowledge of those previous tasks, as well as learning the new-coming knowledge of following tasks [64, 68]. So
our quantum learning model should have enough capacity to store those information. Besides, appropriate management of
model’s capacity is required to achieve quantum continual learning in practice. EWC method offers a practical method to do the
capacity management: it estimates the necessary capacity for previous tasks and refreshes the rest part which contains rare in-
formation about those previously trained tasks. To do this, EWC method evaluates the importance of each variational parameter
in the quantum classifier and only allows significant twist for those relatively unimportant ones.

We then give a detailed mathematical derivation of EWC method. For simplicity, we concern the two-task scenario here and
use the similar philosophy to explicitly write down the result for the multi-task scenario. From the perspective of maximum
likelihood estimation [57], we explore all possibilities of parameters θ of the quantum classifier to maximize the likelihood
function p(θ|Σ), where Σ = ΣA + ΣB is the total dataset (ΣA and ΣB are datasets for task A and task B respectively and we
assume that these two tasks are independent to each other). So we have expression

log p(θ|Σ) = log

(
p(ΣB |ΣA,θ)p(ΣA,θ)

p(ΣA,ΣB)

)
= log

(
p(ΣB |θ) · p(θ,ΣA)

p(ΣA)
· 1

p(ΣB)

)
= log p(ΣB |θ) + log p(θ|ΣA)− log p(ΣB),

(a)

(c)

(b)

(d)

FIG. S5. Results of learning single task. Here we show the classification performances of our quantum classifier on tasks used in our
simulations of quantum continual learning and we also plot a sample image of each task: (a) the original MNIST image and its learning
performance; (b) the permuted MNIST image and its learning performance; (c) the time-of-flight image and its learning performance; (d) the
symmetry protected topological state and its learning performance.
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where the first and third equation use the Bayes’ rule and the second equation uses the independence condition. As shown in the
main text, we have Taylor Series for the second term:

log p(θ|ΣA) = log p(θ∗A|ΣA) +
1

2
(θ − θ∗A)THθ∗

A
(θ − θ∗A).

It is worthwhile to mention that from the perspective of parameter estimation [69], this treatment means that we sample param-
eters from a multivariate normal distribution:

p(θ|ΣA) ∝ N
(
θ∗A, H

−1
θ∗
A

)
, (S3)

where the optimal solution θ∗A for task A is the mean value of this normal distribution and H−1θ∗
A

is the precision matrix

(
(
Hθ∗

A

)
ij

= ∂
∂θi∂θj

log p(θ|ΣA)|θ∗
A

is the Hessian matrix at the optimal solution θ∗A for task A and is equal to the minus of
the Fisher information matrix F under some specific conditions [58]). We can rewrite the quadratic term using the Fisher infor-
mation matrix and absorb it into the likelihood function of sequential tasks. This leads to the loss function for the second task in
our scenario:

L(θ) = LB(θ) + λ · (θ − θ∗A)TFθ∗
A

(θ − θ∗A).

To reduce the potential storage and computation overhead for those possible large quantum models, we use the diagonal elements
of the Fisher matrix as the weights of variational parameters and neglect those off-diagonal entries, which will be discussed later.
Thus, we could add the regularization term shown in the main text to the loss function of the second task in order to maximize
the likelihood function of joint tasks.

For continual learning of more than two tasks, we can compute the regularization term for each trained task and add them
together to overcome catastrophic forgetting:

L(θ) =L0(θ) + λA
∑
i

F
(A)
i ·

(
θi − θ∗A,i

)2
+ λA,B

∑
i

F
(A,B)
i ·

(
θi − θ∗A,B,i

)2
+ ...,

where L0(θ) is the original loss function for current task given current parameters θ, F
(A)
i is the i-th diagonal element of the

Fisher information matrix at the optimal point θ∗A for previous task A, λA is a hyper-parameter controlling the strength of this
EWC restriction and so on.

III. REASONS FOR NEGLECTING OFF-DIAGONAL ELEMENTS

In our numerical simulations, the quantum classifier consists of 248 variational parameters, in which computing and storing
the full Fisher matrix is not very hard. Nevertheless, if the number of parameters gets larger and larger to match the exponentially
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FIG. S6. Comparison between the learning result of using diagonal elements of the Fisher matrix and that of using the full Fisher matrix. We
train our quantum classifier using the original MNIST dataset and then adapt two kinds of regularization terms to train this classifier using the
new-coming permuted MNIST dataset. The learning settings for both cases are exactly the same except the strength parameter λ.
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FIG. S7. Illustration of quantum continual learning of classifying different MNIST images. Learning curves of three related tasks: classifying
digit 2 and digit 8, classifying digit 1 and digit 4, and classifying digit 0 and digit 9.

growing dimensionality of the Hilbert space, computing and storing its full Fisher matrix can be quite challenging. From a more
practical perspective, we use the diagonal elements of the Fisher matrix which can be estimated by the first order derivative [70].

To compare the learning result of using the diagonal elements of the Fisher matrix and that of using the full Fisher matrix, we
train our quantum classifier using the original MNIST images and the permuted MNIST images sequentially. In this simulation,
the diagonal elements of the Fisher matrix and the full Fisher matrix are adapted as the metric to quantify the derivative distance
in the parameter space respectively. The results in Fig. S6 shows that the performances of both metric choices are at the same
level. We remark here that in consideration of the summation of those off-diagonal elements, we manually lower down the
strength parameter λ in the simulation of using the full Fisher matrix. The similar performances between those two learning
scenarios indicate that neglecting those off-diagonal elements in the Fisher matrix has no significant influence on the results of
quantum continual learning. Thus, we use the diagonal elements as our distance metric in all other numerical simulations.

IV. MORE NUMERICAL RESULTS

In this section, we give more results of quantum continual learning. Performances of learning single tasks are shown in
Fig. S5 and one sample image of each dataset is plotted. Those results indicate that our quantum classifier is capable to achieve
satisfactory performances on those chosen classification tasks.

In the main text, we show that quantum continual learning of two-task case can be accomplished when those two problems
are similar or dissimilar to each other. As a complementary example, we also simulate the quantum continual learning of two
related problems. We use MNIST images of different digits to construct several classification tasks and find that the continual
learning of this kind of tasks can also be accomplished (see Fig. S7).

We group MNIST hand-written images of different digits to construct several binary classification tasks and use them to train
our quantum classifier. For multi-task cases, we choose three pairs of digits and use our quantum classifier to classify their
hand-written images. We first train our quantum classifier using images of digit 2 and images of digit 8, which ends with a high
classification performance (> 90%). Then, we train this quantum classifier to identify digit 1 and digit 4. In the favor of EWC
method, our quantum classifier behaves reasonably well at both tasks after the second training phase. Sequentially, we train
this circuit to classify digit 0 and digit 9, and find that our quantum classifier can perform relatively well in all three different
classification tasks after those training processes.

We also notice that in the continual learning scenario, the performance of our quantum classifier on each task has a slight
reduction compared with that in the single task learning scenario. Intuitively, this is caused by an inevitable small deviation from
the optimal solution of a single task to the optimal solution of the joint task.
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