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Preface

This volume of LNCS 11059 contains the collection of the papers presented at the 11th
International Symposium on Algorithmic Game Theory (SAGT 2018), held during
September 11–14, 2018, in Beijing, China. This year, we received a number of 54
submissions, among which 19 regular papers and six short papers were accepted by the
Program Committee. Each submission was evaluated by at least three Program Com-
mittee members.

In addition to the submitted presentations, the program also included five plenary
talks by distinguished researchers in algorithmic game theory: Edith Elkind (Oxford
University), Ron Lavi (Technion), Pinyan Lu (Shanghai University of Finance and
Economics), Paul Spirakis (University of Liverpool), and Andrew Yao (Tsinghua
University).

With the generous support of Springer, the Program Committee selected the best
paper award for this year: “The Complexity of Cake-Cutting with Unequal Shares,” by
Agnes Cseh of the Institute of Economics, Hungarian Academy of Sciences, and
Tamas Fleiner, of Department of Computer Science and Information Theory, Budapest
University of Technology and Economics.

Works accepted covered major aspects of algorithmic game theory, including
market equilibrium, auctions and applications, two-sided markets, cake-cutting,
cooperative games, voting games, multi-agent scheduling, price of stability, various
mechanism design problems, online dynamics, and multi-stages as well as revenue
maximization, resource allocation and applications such as hide-and-seek.

I would like to thank the SAGT Steering Committee for all their support and
direction during the organization of SAGT 2018. The SAGT 2017 organizers also
provided generous help with their experiences in handling the previous conference.

I would also like to thank all authors who submitted their work for evaluation, all the
Program Committee members, and all the external reviewers – together you made this
symposium possible. Even though we could not accept the submissions, we hope the
feedback from the reviewers can be of some help in further improvement of the work.

Finally, we thank Peking University for the conference venue on their beautiful
campus and the National Natural Science Foundation of China for their financial sup-
port. We are also indebted to Springer, especially Anna Kramer and Alfred Hofmann,
for helping with the proceedings, as well as the EasyChair system for the review process
management.

July 2018 Xiaotie Deng
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On Revenue Monotonicity
in Combinatorial Auctions

Andrew Chi-chih Yao

Tsinghua University, Beijing, China
andrewcyao@tsinghua.edu.cn

Abstract. Along with substantial progress made recently in designing
near-optimal mechanisms for multi-item auctions, interesting structural ques-
tions have also been raised and studied. In particular, is it true that the seller can
always extract more revenue from a market where the buyers value the items
higher than another market? In this paper we obtain such a revenue mono-
tonicity result in a general setting. Precisely, consider the revenue-maximizing
combinatorial auction for m items and n buyers in the Bayesian setting, specified
by a valuation function v and a set F of nm independent item-type distributions.
Let REV (v, F) denote the maximum revenue achievable under F by any
incentive compatible mechanism. Intuitively, one would expect that REV (v, G)
� REV (v, F) if distribution G stochastically dominates F. Surprisingly, Hart
and Reny (2012) showed that this is not always true even for the simple case
when v is additive. A natural question arises: Are these deviations contained
within bounds? To what extent may the monotonicity intuition still be valid? We
present an approximate monotonicity theorem for the class of fractionally sub-
additive (XOS) valuation functions v, showing that REV (v, G) � cREV (v, F) if
G stochastically dominates F under v where c > 0 is a universal constant.
Previously, approximate monotonicity was known only for the case n = 1:
Babaioff et al. (2014) for the class of additive valuations, and Rubinstein and
Weinberg (2015) for all subaddtive valuation functions.

Keywords: Mechanism design • Subadditive valuation • Maximum revenue



An Update on the Price of Stability
(Invited Talk)

Paul G. Spirakis1,2

1 Department of Computer Science, University of Liverpool, UK
P.Spirakis@liverpool.ac.uk

2 Computer Engineering and Informatics Department, University of Patras, Greece

Abstract. Here we review very recent results about the Price of Stability of
weighted congestion games, derived by joint work of the author and G.
Christodoulou, M. Gairing and Y. Giannakopoulos [4]. We also discuss older
works (some joint with the author and also other works on the topic). This
abstract corresponds to an invited talk (of the author) in SAGT 2018.
A main line of research in Algorithmic Game Theory has focused on how to

quantify the inefficiency of equilibria (compared to optimal solutions). Two
standard measures of this inefficiency have been adopted by the community:
(a) The Price of Anarchy, introduced by the seminal work of Koutsoupias and
Papadimitriou [10], which compares the worst-case equilibrium with the opti-
mum for the system where the game is played. (b) And also the Price of Stability
(PoS) [1, 18] which uses the best equilibrium for this comparison. The esti-
mation of PoS is the main subject of this abstract.
The main issues that were raised about the Price of Anarchy have been

resolved. The most well studied models, with respect to this, are the (atomic and
non-atomic) variants of congestion games (see [12] Chapter 18 for a detailed
discussion). Congestion games capture many scenarios in which users compete
for resources (such as routing games). The seminal work of Roughgarden and
Tardos [16, 17] provided the answer for the Price of Anarchy in non-atomic
congestion games. Awerbuch et al. [2] and Christodoulou and Koutsoupias [5]
resolved the Price of Anarchy for atomic congestion games.
Allowing the players to have different loads lead to the definition of weighted

congestion games. This class was defined quite early by Rosenthal [14, 15] and
can model numerous applications in selfish scheduling and routing. However,
although unweighted congestion games always have Pure Equilibria, weighted
congestion games may not have pure equilibria (see for example [8]) and the
problem of finding whether a weighted congestion game has a Pure Equilibrium,
is strongly NP-hard [7]. Moreover in such games there does exist, in general, a
potential function [11]. Exact pure Nash Equilibria exist for linear and expo-
nential latency functions (see [9, 13]).
As a result of this dichotomy about the existence of potentials, we have a

sharp contrast with respect to understanding the Price of Anarchy and the Price
of Stability. The asymptotic behaviour of weighted and unweighted congestion
games with respect to the Price of Anarchy is the same: it is Hððd= log dÞdÞ for
both game classes when the delays in resources are polynomials of degree d.

1 Supported by the ERC Project ALGAME.



The picture for the Price of Stability is very different. On one hand, for
unweighted congestion games, the PoS upper and lower bounds are quite tight
and much lower than the Price of Anarchy values. For example HðdÞ for
polynomials [3]. For weighted congestion games however there was a huge gap
for many years: The lower bound was known to be HðdÞ and the upper bound
Hððd=logdÞdÞ.
Since weighted congestion games are not potential games, we cannot use any

more the idea of the global minimizer of Rosenthals potential as an equilibrium
refinement. A completely fresh approach is hence required. We discuss here
briefly this new approach which is presented in detail in [4]. Basically we are
able to construct a congestion game, which is weighted and has a unique Nash
Equilibrium. That game allows us to lower bound the PoS for weighted con-
gestion games and to show that the lower bound is XðUdþ 1

d Þ, where Ud is the

unique positive solution of the equation ðxþ 1Þd ¼ xdþ 1. This bound closes the
previous huge gap between linear lower bounds and exponential upper bounds
for the PoS of weighted congestion games and asymptotically matches the upper
bound on the Price of Anarchy! The PoS (as we show) remains exponential even
for singleton games. More generally we provide a lower bound of
Xðð1þ 1=aÞd=dÞ on the PoS of a-approximate Nash Equilibria (even for sin-
gleton games). All our results extend to network congestion games and hold also
for mixed and correlated equilibria.
Our lower bound constructions of the “bad” game use players weights that

form basically a geometric increasing sequence. In particular in our construc-
tions the ratio R of the largest over the smallest weight grows very large as the
number of players grows. But for equal weights we know that the PoS is at most
dþ 1. It is hence natural to ask how the performance of equilibria captured by
the notion of PoS varies with the ratio R. We derive a general upper bound for a-
approximate equilibria which is sensitive to both R and a. For example, even for
equal weights, we get a PoS upper bound for a-approximate equilibria of
ðdþ 1Þ=a. This was also not known before to the best of our knowledge.
In order to derive our positive results (the upper bounds for small ranges of

weight ratios) we define a new approximate Potential Function (see also [6]).
This function generalizes that of Rosenthal’s in a smooth way. The technique for
defining this approximate potential function is purely analytical and may be of
independent interest.
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Correlation-Robust Mechanism Design

Pinyan Lu

ITCS, Shanghai University of Finance and Economics, Shanghai, China
lu.pinyan@mail.shufe.edu.cn

In this talk we will discuss the correlation-robust framework proposed by Carroll
[Econometrica 2017] and our recent developments. In this framework, the seller only
knows marginal distributions for each separate item or values of an individual bidder
but has no information about correlation across different items or different bidders in
the joint distribution. Any mechanism is then evaluated according to its expected profit
in the worst-case, over all possible joint distributions with given marginal distributions.
We illustrate the correlation-robust framework in the context of two well studied
revenue maximization settings: (i) single-item action with correlated bidders and
(ii) multi-item linear monopoly problem with a single buyer. In the first setting, a single
item is sold via sealed-bid auction to n bidders with potentially interdependent (cor-
related) values for the good. In the second setting, a monopolist seller has n hetero-
geneous items to sell to a single buyer with additive value for the items.

Carroll’s main result states that in multi-item monopoly problem with additive
buyer, i.e., buyer’s value for any set of items is the sum of values of individual item in
the set, the optimal correlation-robust mechanism should sell items separately. We
extend the separation result to the case where buyer has a budget constraint on her total
payment. Namely, we show that the optimal robust mechanism splits the total budget in
a fixed way across different items independent of the bids, and then sells each item
separately with a respective per item budget constraint.

For single-item auctions in this correlation-robust framework, we focus on one
specific class of single-item auctions, the sequential posted-price mechanism (SPM). We
show that (1) the best SPM is a constant approximation to the optimal revenue in this
correlation-robust framework; (2) when buyers have the same marginal distribution,
SPM has almost better worst-correlation revenue than the best second price auction with
common reserve price; (3) SPM also becomes the optimal correlation-robust auction
when the number of buyers is large enough.

In this talk we highlight our approach via a dual Linear Programming formulation
for the optimal correlation-robust mechanism design problem. This LP avoids explicit
construction of the worst-case distribution, which in general may have exponential in
the number of items and/or the number of bidders size. We show how our approach can
be adopted in a broad range of Bayesian settings with uncertainty about correlated prior
distribution.



Job Security, Stability and Production
Efficiency, with Applications to Auctions

(Invited Plenary Talk)

Ron Lavi1

Technion – Israel Institute of Technology
ronlavi@ie.technion.ac.il

https://ronlavi.net.technion.ac.il/

Abstract. This talk describes research results joint with Hu Fu, Robert Kleinberg,
and Rann Smorodinsky [1–3]. We study a two-sided matching market with a set
of heterogeneous firms and workers in an environment where jobs are secured by
regulation. Without job security Kelso and Crawford have shown that stable
outcomes and efficiency prevail when all workers are gross substitutes to each
firm. It turns out that by introducing job security, stability and efficiency may still
prevail, and even for a significantly broader class of production functions. Con-
nections to stability and equilibrium notions in combinatorial auctions and in
simultaneous single item auctions will be discussed as well.

References

1. Fu, H., Kleinberg, R., Lavi, R.: Conditional equilibrium outcomes via ascending price pro-
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Restricted Preference Domains in Social Choice:
Two Perspectives

Edith Elkind

University of Oxford, UK

Abstract. Preference aggregation is a challenging task: Arrow’s famous
impossibility theorem [1] tells us that there is no perfect voting rule. One of the
best-known ways to circumvent this difficulty is to assume that voters’ prefer-
ences satisfy a structural constraint, such as, e.g, being single-peaked. Indeed,
under this assumption many impossibility results in social choice disappear.
Restricted preference domains also play an important role in computational
social choice: for instance, there are voting rules that are NP-hard to compute in
general, but admit efficient winner determination algorithms when voters’
preferences belong to a restricted domain. However, restricted domains that
have nice social choice-theoretic properties are not necessarily attractive from an
algorithmic perspective, and vice versa. In this note, we will discuss some
domain restrictions that have proved to be useful from a computational per-
spective, and compare the use of restricted domains in computational and classic
social choice theory.
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On Revenue Monotonicity
in Combinatorial Auctions

Andrew Chi-chih Yao(B)

Tsinghua University, Beijing, China
andrewcyao@tsinghua.edu.cn

Abstract. Along with substantial progress made recently in designing
near-optimal mechanisms for multi-item auctions, interesting structural
questions have also been raised and studied. In particular, is it true that
the seller can always extract more revenue from a market where the buy-
ers value the items higher than another market? In this paper we obtain
such a revenue monotonicity result in a general setting. Precisely, con-
sider the revenue-maximizing combinatorial auction for m items and n
buyers in the Bayesian setting, specified by a valuation function v and a
set F of nm independent item-type distributions. Let REV (v, F ) denote
the maximum revenue achievable under F by any incentive compatible
mechanism. Intuitively, one would expect that REV (v,G) ≥ REV (v, F )
if distribution G stochastically dominates F . Surprisingly, Hart and Reny
(2012) showed that this is not always true even for the simple case when
v is additive. A natural question arises: Are these deviations contained
within bounds? To what extent may the monotonicity intuition still be
valid? We present an approximate monotonicity theorem for the class
of fractionally subadditive (XOS) valuation functions v, showing that
REV (v,G) ≥ cREV (v, F ) if G stochastically dominates F under v
where c > 0 is a universal constant. Previously, approximate monotonic-
ity was known only for the case n = 1: Babaioff et al. (2014) for the
class of additive valuations, and Rubinstein and Weinberg (2015) for all
subaddtive valuation functions.

Keywords: Mechanism design · Subadditive valuation
Maximum revenue

1 Introduction

Along with substantial progress made recently in designing near-optimal mech-
anisms for multi-item auctions, interesting structural questions have also been
raised and studied. In particular, is it true that the seller can always extract more
revenue from a market where the buyers value the items higher than another
market? In this paper we obtain such a revenue monotonicity result in a general
setting, leveraging on recent progress made in the mechanism design literature.

In the simplest case of Myerson’s 1-item auction [13], let REV (F) denote
the optimal revenue for independent valuation distributions F = F1 × · · · × Fn.
c© Springer Nature Switzerland AG 2018
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Is it true that REV (G) ≥ REV (F) when G = G1 × · · · × Gn stochastically
dominates F (i.e. Gi stochastically dominates Fi for each buyer i)? Intuitively,
if each buyer i is prepared to pay more for the item, it seems reasonable that
the seller should be able to extract more revenue. This is indeed true for the
1-item auctions, as remarked in Rubinstein and Weinberg [14], as a consequence
of Myerson’s characterization.

The revenue monotonicity question becomes much subtler when there are
m > 1 items in the auction. Hart and Reny [10] showed that revenue mono-
tonicity is not universally true even with just one buyer (n = 1) and two items
(m = 2). They gave examples with distributions G stochastically dominating F ,
yet REV (G) < REV (F). Thus, when there are m > 1 items, the target can
only be approximate revenue monotonicity, e.g. REV (G) ≥ cREV (F) for some
absolute positive constant c.

The following monotonicity results have been shown for n = 1 buyer and any
number of items: if G stochastically dominates F , then REV (G) ≥ 1

6REV (F)
when the valuation function is additive (Babaioff et al. [1]), and REV (G) ≥
1

338REV (F) for combinatorial auctions with any subadditive valuations (Rubin-
stein and Weinberg [14]). These results were obtained as immediate corollaries of
their respective near-optimal mechanisms which are revenue monotone in distri-
butions. Recently, near-optimal mechanism were found for any n,m in Yao [15]
and Cai, Devanur and Weinberg [2] for additive valuations, and in Cai and Zhao
[3] (also Feldman, Gravin and Lucier [7] for welfare maximization) for XOS valu-
ation functions. However, these mechanisms are not obviously revenue monotone
in distributions; as such, no general monotonicity results are known for n > 1.

Our main result is to resolve this question in the affirmative for the class of
XOS valuation functions. For any m,n, and combinatorial auctions with XOS
valuations v, we show that REV (G) ≥ cREV (F) for c = 1

1448 if G stochastically
dominates F with respect to v. We also prove two auxiliary theorems which are
needed in proving our main result, and also useful in their own right. Firstly,
for any single-parameter environment auction A ⊆ [0, 1]n, we show that the
optimal revenue satisfies REVA(G) ≥ REVA(F) if G stochastically dominates
F . This implies that revenue monotonicity is true not just for Myerson’s 1-item
optimal auctions, but also for general 1-dimensional auction problems in which
the allocation vectors are restricted to an arbitrary allowable set of patterns.
Secondly, as a consequence of the single-parameter monotonicity above, we infer
that REV (G) ≥ 1

24REV (F) in the unit-demand multi-item auctions.

Contributions of This Work: (1) We have given answers of great generality to
the revenue monotonicity question, applicable to all XOS subadditive valuation
functions, while previously little was known even for the additive valuations.
(2) Our key innovation in proof technique is a conceptual one (see Sect. 4.2),
requiring no complicated calculations or analysis. A main difficulty in proving
XOS monotonicity is the fact that the near-optimal mechanism given in [3] is
not monotone. To overcome this obstacle, we first embed our auction into a
more relaxed context (that of digital goods). In this larger space, we can then
establish revenue monotonicity via a connecting path (in the new space) between
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the two embedded distributions. (3) At a more philosophical level, we agree
with the sentiment (such as expressed in Hart and Nisan [9]) that the goal of
designing mechanisms is not only to produce an algorithm that works, but also to
reveal mathematical structures that allow interesting questions such as revenue
monotonicity to be answered. Our present work serves as another validation of
the fruitfulness of this approach.

2 Main Results

We present results in three standard auction models in the independent setting,
in which all the mn item-types are drawn from independent distributions. Some
familiar terminologies are reviewed below.

For any two random variables X,Y , we write X � Y if X and Y are equal in
distribution, i.e., Pr{X ∈ S} = Pr{Y ∈ S} for any measurable set S. Let F , G
be distributions over [0,∞). We write F � G if F is (stochastically) dominated
by G (i.e. Pr{F > t} ≤ Pr{G > t} for all t ∈ [0,∞)). Equivalently, we may
write G 	 F if G dominates F . Let F = F1 × · · · × Fn and G = G1 × · · · × Gn

be product distributions over [0,∞)n. We say F � G (or equivalently G 	 F) if
Fi � Gi for each i.

Let M = (x, p) be an n-buyer DIC-IR mechanism, and let F be an input
valuation distribution over [0,∞)n. Let XM, F and PM, F stand for the random
variables XM, F = x(t), PM, F = p(t) in the probability space {t| t ∼ F}.

A randomized DIC-IR mechanism is a family of mechanisms {Mr| r ∼ H},
where each Mr = (xr, pr) is a DIC-IR mechanism, and r is randomly chosen
according to some distribution H. Let xr = (xr

1, . . . , x
r
n), pr = (pr

1, . . . , p
r
n). The

revenue yielded by MR under input distribution F is defined as MR(F) =∑n
i=1 Er∼H, t∼F (pr

i (t)). Let XMR, F and PMR, F stand for the random variables
XMR, F = xr(t), PMR, F = pr(t) in the probability space {(r, t)| r ∼ H, t ∼ F}.

A single-parameter environment (see e.g. Gonczarowski and Nisan [8]) is
specified by a set of possible outcomes A ⊆ [0, 1]n. For a valuation distribution
F over [0,∞)n, REVA(F) is defined as the maximum revenue yielded by any
DIC-IR mechanism, where the allocation x(t) for any type profile t is restricted
to be in the set A.

Theorem 1 (Single-Parameter Environment). Let M = (x, p) with allo-
cation function x and payment function p be an n-player DIC-IR mechanism
with valuation distribution F over [0,∞)n. Let XM, F , PM, F denote the random
variables corresponding to x, p. Then for any valuation distribution G 	 F , there
exists a randomized DIC-IR mechanism MR such that
(A) (XMR, G , PMR, G) � {(x(t), pG(t)) | t ∼ F} where pG : [0,∞)n → [0,∞)n

and pG ≥ p.
(B) XMR, G � XM, F , and MR(G) ≥ M(F).

Corollary 1. For any single-parameter environment A, we have REVA(G) ≥
REVA(F) if G 	 F .
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Theorem 1 can be used to prove a monotonicity theorem for unit-demand
multi-item auctions. Let DREV UD(F) denote the optimal revenue achievable
by any deterministic DIC-IR mechanism for distribution F in the unit-demand
model, and let REV UD(F) be the optimal revenue achievable by any incentive-
compatible mechanism allowing randomized lotteries. It is known (Chawla,
Malec and Sivan [5]) that allowing lotteries sometimes can generate more
revenues.

Theorem 2 (Unit-Demand Multi-item Auction). If G 	 F , then

DREV UD(G) ≥ max{1
6
DREV UD(F),

1
24

REV UD(F)}.

Theorem 2 is useful in the proof of the next theorem, which is the main result
of this paper. Let v = (v1, · · · , vn) be a valuation function, and each vi has
αv(≥ 1)-supporting prices for all ti (see Sect. 5 for definitions). It is known that
αv = 1 if v is fractionally subadditive (XOS), and more generally αv = O(log m)
if v is subadditive. Let D and D′ be distributions over some type space. We
say that D v-stochastically dominates D′ if a coupled random pair (t, t′) can
be generated such that the marginal distributions satisfy t ∼ D, t′ ∼ D′ and
v(t, S) ≥ v(t′, S) for all S ⊆ [m].

In the next theorem, REVDIC(v,G) refers to the maximum revenue achiev-
able by any deterministic DIC-IR mechanism under valuation v and distribution
G; REVBIC(v,F) refers to the maximum revenue achievable by any randomized
BIC-BIR mechanism under valuation v and distribution F .

Theorem 3 (Subadditive Combinatorial Auction). Let v be a valuation
satisfying monotonicity, subadditivity and with no externalities. If G 	v F , then
for any 0 < b < 1 we have

REVDIC(v,G) ≥ 1
λ

REVBIC(v,F)

where λ = 32αv + 6
(
12 + 8

1−b + αv( 16
b(1−b) + 96

1−b )
)
.

Corollary 2. If v is XOS, then αv = 1 and choosing b = 1
4 gives

REVDIC(v,G) ≥ 1
1448

REVBIC(v,F).

Theorem 1 is easy to prove for the special case when all the distributions
Fi, Gi over [0,∞) are continuous and strictly increasing, using Myerson’s theory.
The general case needs greater care, due to discontinuities and plateaus of the
distributions. We omit the proof here.

We prove Theorems 2 and 3 in Sects. 3 and 4, respectively. More background
information and discussions will be presented along the way in proving these
results.
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3 Unit-Demand Auctions

Consider revenue maximization in an auction with m heterogenous items to sell,
and n buyers who are unit-demand, i.e., each buyer is allocated either 0 or 1
item. Buyer i has for item j valuation distribution Fij over [0,∞), and all Fij

are independent. Thus a deterministic mechanism M = (x, p) satisfies

xij(t) ∈ {0, 1} and
∑

�∈[m]

xi�(t) ≤ 1,
∑

�∈[n]

x�j(t) ≤ 1 for all i, j. (1)

Let DREV (UD)(F) be the maximum revenue achievable under F by any deter-
ministic DIC-IR mechanism. Let REV (UD)(F) denote the maximum revenue
achievable under F by any randomized BIC-BIR mechanism (equivalent to
incentive-compatible lottery-based mechanisms [5]).

An interesting connection was established in Chawla et al. [4,5] between unit-
demand auctions and single-parameter environment auctions. A unit-demand
auction with valuation distribution F induces a single-parameter auction
OPTCOPIES−UD for nm buyers Bij with independent valuation distributions
Fij , satisfying the same allocation constraints as Eq. 1. Let OPTCOPIES−UD(F)
denote the maximum revenue achievable under F .

Theorem A (Chawla et al. [4], Kleinberg and Weinberg [12])

DREV UD(F) ≤ OPTCOPIES−UD(F) ≤ 6 · DREV UD(F).

The upper bound 6 ·DREV UD(F) in Theorem A is accomplished by certain
sequential posted-price mechanism.

Theorem B (Chawla, Malec and Sivan [5], Cai, Devanur and Weinberg [2])

REV UD(F) ≤ 4 · OPTCOPIES−UD(F).

Proof of Theorem 2. From Theorem A and B, we have

DREV UD(G) ≥ 1
6
OPTCOPIES−UD(G),

OPTCOPIES−UD(F) ≥ max{DREV UD(F),
1
4
REV UD(F)}.

Now, OPTCOPIES−UD is a single-parameter environment auction, and thus by
Theorem 1,

OPTCOPIES−UD(G) ≥ OPTCOPIES−UD(F).

Theorem 2 follows from the above three inequalities. �
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4 Subadditive Combinatorial Auctions

4.1 Background

We consider revenue maximization in the combinatorial auction with n inde-
pendent buyers and m heterogeneous items. The auction is specified by a type
profile distribution F and valuation function v as elaborated below. We follow
the convention used in [3,14].

For each i ∈ [n], buyer i receives a type ti = (ti1, · · · , tim), where ti is
drawn from a product distribution Fi = Fi1 × · · · × Fim over some type space
Ti = Ti1 × · · · × Tim. Let F = F1 × · · · × Fn and t = (t1, · · · , tm). Let T =
T1 ×· · ·×Tn. We also regard the type profile t ∈ T as an n×m matrix t = (tij),
and F = (Fij) as an n×m matrix of independent distributions. For each i ∈ [n],
buyer i has a valuation function vi : Ti × 2[m] → [0,∞). The quantity vi(ti, S)
expresses the value buyer i attaches to the collection of items S ⊆ [m] if ti is
buyer i’s received type. Let v = (v1, · · · , vn).

A deterministic mechanism M = (x, p) specifies the allocation x = (x1,
· · · , xn) and payment p = (p1, · · · , pn), where xi : T → 2[m] and pi : T → [0,∞),
satisfying the condition that no item can be allocated to more than 1 buyer. A
randomized mechanism is specified by a distribution over the set of deterministic
mechanisms. Let REVDIC(v,F) and REVBIC(v,F) be the maximum achievable
revenue of any deterministic DIC-IR mechanism, and any randomized BIC-BIR
mechanism, respectively.

We are interested in valuation function vi that have the following properties:
(1) No Extenalities: For each ti ∈ Ti and S ⊆ [m], vi(ti, S) depends only on
(tij | j ∈ S).
(2) Monotone: For each ti ∈ Ti and U ⊆ V ⊆ [m], vi(ti, U) ≤ vi(ti, V ).
(3) Subadditive: For each ti ∈ Ti and U ⊆ V ⊆ [m], vi(ti, U ∪ V ) ≤ vi(ti, U) +
vi(ti, V ).

We are particularly interested in valuations vi that are XOS (or called
fractionally subadditive). Namely, vi(ti, S) = maxk∈[K] v

(k)
i (ti, S) where K is

finite for each k and v
(k)
i (ti, ·) is an additive function, i.e., v

(k)
i (ti, S) =

∑
j∈S v

(k)
i (ti, {j}) for all S ⊆ [m].

In Rubinstein and Weinberg [14], it was shown that, in the case of 1 buyer
(n = 1), for any subadditive valuation and F , there is a simple mechanism
achieving a constant approximation of optimal revenue. It was also shown in
Cai and Zhao [3] that for any n, F , and XOS valuation v, there exist certain
sequential posted price mechanisms that achieve a constant approximation of
optimal revenue. We review below some fact from [3] that are essential for our
proof of Theorem 3.

Definition 1. Rational Sequential Posted Price Mechanism (RSPM)
Let ξ = (ξij) where ξij ≥ 0 is a posted price for buyer i and item j. Let p = (pij)
where pij ≥ 0 is payment of buyer i if item j is chosen. For i = 1 to n, buyer
i picks at most 1 item j from the set S of available items, maximizing buyer i’s
utility Vij − ξij (where Vij = vi(ti, {j})) is a function of tij); buyer i pays pij
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if j is picked, and pays 0 if no item is picked. We use RSPMξ to denote this
mechanism.

Definition 2. Anonymous Sequential Posted Price with Entry Fee Mechanism
(ASPE)
This mechanism is specified by Q = (Q1, · · · , Qm), δ = (δ1, · · · , δn), where for
each j ∈ [m], Qj is posted price for item j, and for each i ∈ [n], δi(ti, S) is the
entry fee paid by buyer i with reported type ti when the set of available items
is S ⊆ [m]. The mechanism proceeds as follows. For i = 1 to n, buyer i either
picks no item (and pays 0), or picks a subset I from the set S ⊆ [m] of still
available items and pays δi(ti, S) +

∑
j∈I Qj; we update S. The chosen subset

I is determined by maximizing buyer i’s utility v(ti, I) − (δi(ti, S) +
∑

j∈I Qj)
among all I ⊆ S; ties are broken arbitrarily. We use ASPEQ,δ to denote this
mechanism.

Definition 3 Supporting Price (Dobzinski, Nisan and Schapira [6]). For any
α ≥ 1, a type ti and a subset S ⊆ [m], prices (pj | j ∈ S) are α-supporting prices
for vi(ti, S) if
(1) vi(ti, S′) ≥ ∑

j∈S′ pj for all S′ ⊆ S, and
(2)

∑
j∈S pj ≥ 1

αvi(ti, S).

Definition 4. Given any valuation v, let αv be such that for all i, ti and S,
there exist αv-supporting prices for vi(ti, S). Clearly, for XOS valuations vi, we
can take αv = 1. It is also known that for any subadditive valuations v, we can
take αv = O(log m).

Theorem C (Cai and Zhao [3]). For any v,F and constant b ∈ (0, 1), there
exist ξ,Q, δ such that

REVBIC(v,F) ≤ (12 +
8

1 − b
)RSPMξ(v,F) + 8αv

∑

j∈[m]

Qj ,

ASPEQ,δ(v,F) ≥ 1
4

∑

j∈[m]

Qj − C · RSPMξ(v,F).

where C = 5
2(1−b) + b+1

2b(1−b) .

4.2 Proof of Theorem 3

To prove Theorem 3, our plan is to prove the following two lemmas for the
{ξ,Q, δ} satisfying Theorem C above. As REVDIC(v,G) ≥ ASPEQ,δ(v,G), these
lemmas together with Theorem C immediately imply Theorem 3.

Lemma 1. If G 	v F , then RSPMξ(v,F) ≤ 6REVDIC(v,G).

Lemma 2. If G 	v F , then ASPEQ,δ(G) ≥ 1
4

∑
j∈[m] Qj − C · RSPMξ(v,F).
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Proof of Lemma 1. First we observe that RSPMξ (under v,F) can be regarded
as a mechanism for a standard unit-demand auction where buyer i has valua-
tion yij ∈ [0,∞) with distribution Yij = {yij = vi(ti, {j}) | ti ∼ Fi}. Let Fv

denote the product distribution of all Yij . It is easy to see that RSPMξ(v,F) ≤
DREV (UD)(Fv). Now, as G 	v F , we have Gv 	 Fv. By Theorem 2, we have

DREV (UD)(Fv) ≤ 6DREV (UD)(Gv) ≤ 6REVDIC(v,G).

Lemma 1 follows immediately. �
The rest of Sect. 4 is denoted to the proof of Lemma 2. We first define some

notations related to the operations of ASPEQ,δ. For any i ∈ [n] and type profile
t, let t<i = (t1, . . . , ti−1) and denote by Si(t<i) the available set of items (i.e.,
not purchased by buyers 1, . . . , i − 1) for buyer i to choose from. For any ti and
I ⊆ [m], let ui(ti, I) = maxI′⊆I(v(ti, I ′)−∑

j∈I′ Qj). By definition of ASPEQ,δ,
if ui(ti, I) < δi(I) where I = Si(t<i), then buyer i receives no item and pays 0; if
ui(ti, I) ≥ δi(I), buyer i receives a bundle I ′ ⊆ I maximizing v(ti, I ′)−∑

j∈I′ Qj

and pays δi(I)+
∑

j∈I′ Qj (regarded as entry fee δi(I) plus item price
∑

j∈I′ Qj).
Let SOLD(t) denote the set of items not picked by any buyer after ASPEQ,δ is
finished.

For any distribution G, the revenue ASPEQ,δ(G) consists of two parts:
EntryFee(G) and ItemPrice(G) which are the expected value of entry fees and
item prices, respectively, paid by all buyers.

We are now ready to prove Lemma 2. We show that

EntryFee(G) ≥ 1
4

∑

j∈[m]

Prt′∼G{j �∈ SOLD(t′)} · Qj − C · RSPMξ(v,F) (2)

ItemPrice(G) ≥
∑

j∈[m]

Prt′∼G{j ∈ SOLD(t′)} · Qj (3)

Lemma 2 follows immediately from Eqs. 2 and 3 by adding these inequalities
together.

Equation 3 is obvious by definition. We now prove Eq. 2. First recall the
following result from [3].

Lemma CZ (Cai and Zhao [3])

EntryFee(F) ≥1
4

∑

j∈[m]

Prt∼F{j �∈ SOLD(t)} · Qj

− C · RSPMξ(v,F).

Note that the righthand side of Eq. 2 and the righthand side of Lemma CZ
have exactly the same form, although their numerical values may be quite dif-
ferent. The key insight for proving Eq. 2 is to generalize Lemma CZ to a more
relaxed setting: the Digital Goods, where the type profile t’s distribution can be
de-coupled from the distribution of the available sets {Si(t<i)}. We show that
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in this setting, it becomes possible to compare the two entry fees EntryFee(F)
and EntryFee(G). We emphasize that we are not casting our original research
problem in a new setting. Rather, we merely embed F and G in this larger space
where we will be able to find a connecting path between them for the purpose
of comparing their revenues under ASPEQ,δ. (For more information on Digital
Goods, see e.g. Hartline and Karlin [11].)

In what follows, v and F are fixed, while Q, δ, ξ are determined by v, F (as
specified in [3]).

Digital Goods (DG):
In this setting, each item j ∈ [m] has an unlimited supply of identical copies, so
that j may be assigned to many buyers if necessary. Let I = (I1, . . . , In) where
each Ii is a distribution over 2[m]. Consider the following mechanism: given a
type profile t = (t1, . . . , tn), the seller generates for each buyer i ∈ [n] a random
Ii ∼ Ii and applies ASPEQ,δ to buyer i with Ii as the available set of items.
Thus, the buyer pays an entry fee δi(Ii) (and the appropriate item prices) if
the condition ui(ti, Ii) ≥ δi(Ii) is satisfied; otherwise buyer i pays nothing and
receives no items. For any I and type profile distribution H, let EntryFee(H, I)
denote the expected total entry fees collected when t ∼ H, that is,

EntryFee(H, I) =
∑

i∈[n]

Eti∼Hi
[PrIi∼Ii

{ui(ti, Ii) ≥ δi(Ii)} · δi(Ii)] .

Definition 5. (Embedding of H in DG Space) For any type profile distribution
H, let IH = (IH

1 , . . . , IH
n ) where each IH

i is {Si(t<i) | t ∼ H}. It is obvious that
H → (H, IH) is an embedding that preserves Entryfee, that is,

EntryFee(H) = EntryFee(H, IH).

We state below the embeddings of our targeted distributions F , G for easy
reference.

Fact 1.

EntryFee(F) = EntryFee(F , IF ) where IF
i is {Si(t<i) | t ∼ F},

EntryFee(G) = EntryFee(G, IG) where IG
i is {Si(t′<i) | t′ ∼ G}.

Fact 1 suggests that, EntryFee(F) and EntryFee(G) may be compared in the
DG space via a connecting point between (F , IF ) and (G, IG), such as (F , IG).
This turns out to be indeed the case as seen below.

Lemma 3 (Monotonicity). For any I and G 	v F ,

EntryFee(G, I) ≥ EntryFee(F , I).

Lemma 4 (Digital Goods Extension of CZ Lemma). For any I,

EntryFee(F , I) ≥ 1
4

∑

j∈[m]

Bj · Qj − C · RSPMξ(v,F)

where Bj = mini∈[n] [PrIi∼Ii
{j ∈ Ii}].
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Proof of Lemma 3. Write t′i ≥v ti if v(t′i, S) ≥ v(ti, S) for all S ⊆ [m]. By
definition of v-domination, one can generate a random pair of types (t′i, ti) such
that (a) t′i ≥v ti, and (b) marginal distribution of t′i, ti equals Gi, Fi respectively.
Noting that ui(t′i, Ii) ≥ ui(ti, Ii) whenever t′i ≥v ti, we have

EntryFee(G, I) =
∑

i∈[n]

Et′
i∼Gi

[PrIi∼Ii
{ui(t′i, Ii) ≥ δi(Ii)} · δi(Ii)]

≥
∑

i∈[n]

Eti∼Fi
[PrIi∼Ii

{ui(ti, Ii) ≥ δi(Ii)} · δi(Ii)]

= EntryFee(F , I)

�
Proof of Lemma 4. This requires a lengthy and complex proof. Fortunately, the
proof of Lemma CZ as given in [3] (in the arXiv full paper version, Lemmas
25–28) can be extended line-by-line to our Digital Goods Setting with minimum
(and obvious) modifications to yield the present lemma, and hence will not be
repeated here. �
Fact 2. For Ii = {Si(t′<i) | t′ ∼ G}, we have

Bj ≥ Prt′∼G{j �∈ SOLD(t′)}.

Proof. Obvious. �
It follows from Fact 1 and Lemma 3 that

EntryFee(G) ≥ EntryFee(F , I)

where Ii = {Si(t′<i) | t′ ∼ G}.
By Fact 2 and Lemma 4, we have then

EntryFee(G) ≥1
4

∑

j∈[m]

Prt′∼G{j �∈ SOLD(t′)} · Qj

− C · RSPMξ(v,F).

This proves Eq. 2 and thus Lemma 2. We have completed the proof of
Theorem 3.
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Abstract. Preference aggregation is a challenging task: Arrow’s famous
impossibility theorem [1] tells us that there is no perfect voting rule. One
of the best-known ways to circumvent this difficulty is to assume that
voters’ preferences satisfy a structural constraint, such as, e.g., being
single-peaked. Indeed, under this assumption many impossibility results
in social choice disappear. Restricted preference domains also play an
important role in computational social choice: for instance, there are
voting rules that are NP-hard to compute in general, but admit effi-
cient winner determination algorithms when voters’ preferences belong
to a restricted domain. However, restricted domains that have nice social
choice-theoretic properties are not necessarily attractive from an algo-
rithmic perspective, and vice versa. In this note, we will discuss some
domain restrictions that have proved to be useful from a computational
perspective, and compare the use of restricted domains in computational
and classic social choice theory.

1 Introduction

A family of three—Alice, Bob, and their daughter Claire—would like to decide
what to do on a hot Sunday morning. They are choosing among a bike ride, a
trip to the pool, and a visit to the farmers’ market, and they only have time for
one activity. Bob prefers the bike ride to the pool, and the pool to the farmers’
market. Alice prefers the farmers’ market to the bike ride, and the bike ride to
the pool. Finally, Claire prefers the pool to the farmers’ market, and the market
to the bike ride.

Aggregating these preferences into a decision that will be accepted by all
family members is not easy: whichever option is chosen, there will be another
option that would be preferred by a majority of the family members to the
original choice. Moreover, the collective preferences exhibit a cyclic structure: a
majority (Bob and Alice) prefer the bike ride to the pool, a majority (Bob and
Claire) prefer the pool to the farmers’ market, and a majority (Alice and Claire)
prefer the farmers’ market to the bike ride.

This simple example illustrates a fundamental difficulty in preference aggre-
gation, and underpins a classic result in social choice: Arrow’s impossibility the-
orem [1], which tells us that there is no universally acceptable way of aggregating
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individual preferences into a collective decision. Indeed, social choice theory is
unable to help Alice, Bob and Claire in this scenario unless they are willing to
use randomization.

Suppose, on the other hand, that Alice, Bob and Claire decide to stop fight-
ing, stay home, turn on the air conditioner and watch a movie. There is still a
decision to be made, namely, how to set the room temperature. Alice’s preferred
option is +21, Bob favors +23, and Claire is happy with +25. It is then safe
to assume that Alice also prefers +23 to +25, and Claire prefers +23 to +21.
Hence, if we select +23, a majority of the voters would prefer that choice to
+21, and a majority of the voters would prefer it to +25. Thus, it makes sense
for them to agree on +23.

Why was it easier for Alice, Bob, and Claire to decide on the room tempera-
ture, compared to selecting a joint activity? Were they lucky, or was there some-
thing fundamental about the structure of the problem that ensured the existence
of an acceptable alternative? Perhaps there is always a good solution for a fam-
ily of three, but a bigger family would struggle to identify a majority-supported
alternative? In turns out that there is a fundamental difference between the two
examples, which was identified by Black back in 1948 [3]: temperature is, fun-
damentally, a one-dimensional concept, so anyone whose top choice is x would
prefer x+1 to x+2, and x−1 to x−2. As demonstrated by Black, this rules out
the possibility that collective preferences are cyclic, for any number of voters.
Moreover, there always exist a choice that is preferred to any other choice by at
least half of the voters.

The preferences studied by Black are formally known as single-peaked prefer-
ences: the space of alternatives can be viewed as a line, and when we graph each
voter’s intensity of preferences, the resulting curve has a single peak. There are
other preference restrictions with similar properties, though the single-peaked
domain is perhaps the most famous one. Restricted preference domains that cir-
cumvent Arrow’s impossibility result and other similar impossibility theorems
have long been a subject of study in social choice theory.

Now, in the examples considered so far, computation was not an issue: with
just three voters and three alternatives one can easily implement any reasonable
choice mechanism. However, as the number of voters and alternatives increases,
algorithmic considerations become important. Consider, for instance, a student
computer club that needs to decide on the slate of seminar speakers. There
is a limited number of slots, and each club member has ranked all potential
speakers; the goal is then to select a subset of speakers so that there is some-
thing in the seminar program for every student. One can formalize this goal and
define a voting rule that selects an optimal set of speakers according to it; this
rule is known as the Chamberlin–Courant rule [4]. However, winner determina-
tion under this rule is known to be NP-hard [9]. Inspired by Black’s results we
can then ask: does this hardness result survive if voters’ preferences are single-
peaked? It turns out that the answer is no: for single-peaked preferences, the
output of the Chamberlin–Courant rule and other similar rules can be computed
in polynomial time using a dynamic programming approach [2].



14 E. Elkind

Inspired by this and similar observations, the computational social choice
community began to systematically investigate whether existing hardness results
in computational social choice still hold when voters’ preferences belong to a
restricted domain, with a focus on domains defined in the social choice litera-
ture. The answer to this question turned out to be more nuanced than one might
expect: while classic domain restrictions, such as single-peaked or single-crossing
preferences, turn out to be incredibly useful from an algorithmic perspective,
there are other domains that have some appealing social choice properties, but
do not enable efficient algorithms for important social choice problems, as well
as domains that do not rule out cyclic preferences, but are nevertheless algorith-
mically useful. In this talk, we will consider several such examples, including, in
particular, preferences single-peaked on trees [5,11,13], preferences single-peaked
on a circle [12], and single-peaked preferences in the approval setting [6].

2 Preliminaries and Notation

For every positive integer n, set [n] = {1, . . . , n}. Let C be a finite set of alterna-
tives, or candidates, and let m = |C|. A linear order over C is a binary relation
over C that is complete, transitive and antisymmetric. Given a linear order v
over C, we denote the top alternative in v by top(v).

Definition 1. A profile P = (v1, . . . , vn) over a set of alternatives C is a list
of linear orders over C. We associate P = (v1, . . . , vn) with a set of voters
N = [n]; the order vi is called the vote of voter i. For convenience, we write
a �i b whenever (a, b) ∈ vi, i.e., when voter i strictly prefers a to b.

Given a profile C over A, we define its weak majority relation �maj as a
binary relation over C such that

a �maj b ⇐⇒ |{i ∈ N : a �i b}| ≥ |{i ∈ N : b �i a}|.

We write a �maj b if a �maj b, but not b �maj a. Alternative a is a weak
Condorcet winner if a �maj b for all b ∈ C; it is a Condorcet winner is a �maj b
for all b ∈ C.

Single-Peaked Preferences. Let � be a linear order over the set of alternatives C.
A vote v over C is single-peaked with respect to � if for every pair of candidates
a, b ∈ C with top(v) � b � a or a � b � top(v) it holds that v ranks b above
a. A profile P over C is single-peaked with respect to � if every vote in P is
single-peaked with respect to �; P is single-peaked if there exists a linear order
� over C such that P is single-peaked with respect to �. We refer to any such
order � as an axis for P .

It is known that if voters’ preferences are single-peaked then the weak major-
ity relation is transitive; in particular, this means that single-peaked profiles
always have weak Condorcet winners.
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The Chamberlin–Courant Rule. We will now describe a family of voting rules
that will be used to illustrate the algorithmic properties of various restricted
preference domains considered in this note.

Rules in this family take a candidate set C, a profile P over this set and a
target committee size k as an input, and output a subset of candidates (commit-
tee) of size k. Given a candidate set C, |C| = m, every vector s = (s1, . . . , sm)
of non-negative integers with 0 = s1 ≤ · · · ≤ sm defines a positional misrep-
resentation function µs : P × 2C → Z as follows: µs(v, C ′) = si if v ranks
her most preferred candidate in C ′ in position i. The (utilitarian version of
the) Chamberlin–Courant rule outputs some committee C ′ of size k that min-
imizes the quantity

∑
v∈P µs(v, C ′) (which we call the s-score of C ′) over all

size-k subsets of C. The misrepresentation function associated with the vector
s = (0, 1, . . . ,m − 1) is known as the Borda misrepresentation function.

Finding a winning committee under the Chamberlin–Courant rule is known
to be NP-hard, even for the Borda misrepresentation function [9]. In contrast,
this problem can be solved in polynomial time for an arbitrary misrepresentation
function if the input profile is single-peaked [2]. The algorithm of Betzler et al. [2]
proceeds by dynamic programming: it considers the single-peaked ordering � of
the set of alternatives C, and, for every m′ ∈ [m] and every k′ ∈ [k], identifies the
minimum misrepresentation among all committees of size k′ that are contained
in the m′-prefix of � and contain the m′-th candidate. This approach works,
because it is easy to measure to benefit accomplished by adding candidate m′

to a committee whose rightmost member is r, r < m′.
In what follows, we will consider several extensions of the concept of single-

peaked preferences, and analyze the complexity of computing the Chamberlin–
Courant winners for preferences belonging to these domains.

3 Preferences Single-Peaked on a Tree

The domain of preferences single-peaked on a tree was introduced by
Demange [5]. Consider a profile P over a set of candidates C and a tree T
with vertex set C. The profile P is said to be single-peaked on T if it is single-
peaked on every path in T . Equivalently, for every vote v ∈ P and every s ∈ [m]
it holds that the set of top s candidates in v is a connected subset of vertices of
T . Clearly, a single-peaked profile is single-peaked on a tree (namely, the path
associated with the underlying order �), but the converse is not true.

Demange [5] has shown that if a profile is single-peaked on some tree then it
has a weak Condorcet winner. However, its weak majority relation need not be
transitive. In fact, it is not hard to see that for every tree that is not a path there
exists a profile that is single-peaked on that tree, but whose majority relation
is not transitive. Indeed, if a tree T is not a path, it has a vertex a with three
neighbors b, c, and d. If a voter ranks a first, followed by b, c, and d (in any
order), followed by all other candidates, then her preferences are single-peaked
on T . Thus, we can construct a profile single-peaked on T where a majority
of the voters prefers b to c, a majority prefers c to d and a majority prefers d
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to b. Hence, from a social choice perspective profiles that are single-peaked on
trees have some desirable properties; however, there is a clear boundary between
paths and other kinds of trees.

However, from a computational social choice perspective, the picture is very
different. The dynamic programming algorithm of Betzler et al. [2] can be
extended to trees, but its running time then becomes exponential in the number
of leaves [13]: intuitively, whenever we try to compute an optimal committee of
size k′ contained in a subtree rooted at a, we have to consider the subtrees rooted
at children of a, and, for each child, guess the topmost committee member in its
subtree. Indeed, it can be shown that computing Chamberlin–Courant winners
remains NP-hard when preferences are single-peaked on a tree, for a large class
of misrepresentation functions. The hardness result holds even if the underlying
tree is a star or has maximum degree 3. Thus, computing the Chamberlin–
Courant winners is easy for long skinny trees, but not for bushy trees. However,
this hardness result does not apply to the Borda misrepresentation function;
indeed, for this misrepresentation function computing the Chamberlin–Courant
winners is easy if the profile is single-peaked on a star, or, more generally, on a
tree with a small number of internal vertices [11].

Thus, for a social choice theorist all trees that are not stars have the same
properties, whereas a computational social choice theorist distinguishes between
‘nice’ trees and arbitrary trees.

4 Preferences Single-Peaked on a Circle

Peters and Lackner [12] extend the notion of single-peaked preferences from
paths to circles: under their definition, a profile P over a set of candidates C is
single-peaked on a circle with vertex set C if for each voter v ∈ P the circle C
could be cut so that v is single-peaked on the resulting path. We immediately
note that the preferences of Alice, Bob and Claire over morning activities are
single-peaked on a circle, and hence we cannot expect profiles that are single-
peaked on a circle to always have weak Condorcet winners or to guarantee the
transitivity of weak majority preferences. This explains why this model has not
been considered in the social choice literature.

On the other hand, preferences single-peaked on a circle turn out to be sim-
ple enough to be algorithmically useful: Peters and Lackner establish that for
such preferences one can compute a winning committee under the Chamberlin–
Courant rule in polynomial time. However, it is not clear how to use Betzler et
al.’s dynamic programming algorithm for this purpose: instead, Peters and Lack-
ner build on the techniques developed by Peters [10] to argue that the problem
of finding Chamberlin–Courant winners in this scenario can be encoded as an
integer linear program whose constraint matrix is totally unimodular.

5 Single-Peaked Preferences in the Approval Setting

So far, we assumed that voters’ preferences are expressed by linear orders over
alternatives. Instead, one can consider a simpler scenario: each voter approves
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a subset of alternatives and disapproves the remaining alternatives. Such pref-
erences are known as approval preferences. The setting of approval preferences
is considered to be fairly simple from a social choice perspective: if the goal
is to select a single winner, the rule that selects an alternative with the high-
est number of approvals has a number of attractive normative properties (see,
e.g., [8] and the references therein). Thus, domain restrictions in the context
of approval preferences have not been considered in the social choice literature.
However, voting with approval preferences still presents interesting algorithmic
challenges; in particular, a natural adaptation of the Chamberlin–Courant rule
for this setting remains NP-hard. On the other hand, for single-peaked approval
profiles (where alternatives can be placed on a line so that each voter approves a
contiguous segment of this line) Chamberlin–Courant winners can be computed
efficiently by dynamic programming [6].

6 Conclusion

We have seen three examples of restricted domains that would be viewed very
differently by a social choice theorist and an algorithms researcher: in the first
case, the algorithmic approach offers a more fine-grained view of the domain, and
in the second and third case, a domain restriction that is seen as not particularly
useful from a social choice perspective (either because it does not eliminate viola-
tions of the Condorcet principle or because the underlying domain is considered
to be simple enough to start with) turns out to be useful from an algorithmic
perspective. In this note, we focused on the Chamberlin–Courant rule; one can
consider other computationally challenging voting rules, in which case the pic-
ture becomes even more complicated. For more details, we refer the reader to
the recent survey [7].

Acknowledgments. This work was supported by the European Research Council
(ERC) under grant number 639945 (ACCORD).

References

1. Kenneth, J.A.: Social Choice and Individual Values. Wiley, New York (1951)
2. Betzler, N., Slinko, A., Uhlmann, J.: On the computation of fully proportional

representation. J. Artif. Intell. Res. 47(1), 475–519 (2013)
3. Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56(1), 23–34

(1948)
4. Chamberlin, J.R., Courant, P.N.: Representative deliberations and representative

decisions: proportional representation and the Borda rule. Am. Polit. Sci. Rev.
77(3), 718–733 (1983)

5. Demange, G.: Single-peaked orders on a tree. Math. Soc. Sci. 3(4), 389–396 (1982)
6. Elkind, E., Lackner, M.: Structure in dichotomous preferences. In: Proceedings

of the 24th International Joint Conference on Artificial Intelligence (IJCAI), pp.
2019–2025 (2015)



18 E. Elkind

7. Elkind, E., Lackner, M., Peters, D.: Structured preferences. In: Endriss, U. (ed.)
Trends in Computational Social Choice, Chap. 10, pp. 187–207. AI Access (2017)

8. Endriss, U.: Sincerity and manipulation under approval voting. Theory Decis.
74(3), 335–355 (2013)

9. Lu, T., Boutilier, C.: Budgeted social choice: from consensus to personalized deci-
sion making. In: Proceedings of the 22nd International Joint Conference on Arti-
ficial Intelligence (IJCAI), pp. 280–286 (2011)

10. Peters, D.: Single-peakedness and total unimodularity: new polynomial-time algo-
rithms for multi-winner elections. In: Proceedings of the 32nd AAAI Conference
on Artificial Intelligence (AAAI), pp. 1169–1176 (2016)

11. Peters, D., Elkind, E.: Preferences single-peaked on nice trees. In: Proceedings of
the 30th AAAI Conference on Artificial Intelligence (AAAI), pp. 594–600 (2016)

12. Peters, D., Lackner, M.: Preferences single-peaked on a circle. In: Proceedings of
the 31st AAAI Conference on Artificial Intelligence (AAAI), pp. 649–655 (2017)

13. Yu, L., Chan, H., Elkind, E.: Multiwinner elections under preferences that are
single-peaked on a tree. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI), pp. 425–431 (2013)



The Complexity of Cake Cutting with
Unequal Shares
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Abstract. An unceasing problem of our prevailing society is the fair
division of goods. The problem of proportional cake cutting focuses on
dividing a heterogeneous and divisible resource, the cake, among n play-
ers who value pieces according to their own measure function. The goal
is to assign each player a not necessarily connected part of the cake that
the player evaluates at least as much as her proportional share.

In this paper, we investigate the problem of proportional division with
unequal shares, where each player is entitled to receive a predetermined
portion of the cake. Our main contribution is threefold. First we present
a protocol for integer demands that delivers a proportional solution in
fewer queries than all known algorithms. Then we show that our pro-
tocol is asymptotically the fastest possible by giving a matching lower
bound. Finally, we turn to irrational demands and solve the proportional
cake cutting problem by reducing it to the same problem with integer
demands only. All results remain valid in a highly general cake cutting
model, which can be of independent interest.

1 Introduction

In cake cutting problems, the cake symbolizes a heterogeneous and divisible
resource that shall be distributed among n players. Each player has her own
measure function, which determines the value of any part of the cake for her.
The aim of proportional cake cutting is to allocate each player a piece that is
worth at least as much as her proportional share, evaluated with her measure
function [21]. The measure functions are not known to the protocol.

The efficiency of a fair division protocol can be measured by the number of
queries. In the standard Robertson-Webb model [18], two kinds of queries are
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20 Á. Cseh and T. Fleiner

allowed. The first one is the cut query, in which a player is asked to mark the
cake at a distance from a given starting point so that the piece between these
two is worth a given value to her. The second one is the eval query, in which a
player is asked to evaluate a given piece according to her measure function.

If shares are meant to be equal for all players, then the proportional share
is defined as 1

n of the whole cake. In the unequal shares version of the problem
(also called cake cutting with entitlements), proportional share is defined as a
player-specific demand, summing up to the value of the cake over all players.
The aim of this paper is to determine the query complexity of proportional cake
cutting in the case of unequal shares. Robertson and Webb [18] write in their
seminal book “Nothing approaching general theory of optimal number of cuts
for unequal shares division has been given to date. This problem may prove to be
very difficult.” We now settle the issue for the number of queries, the standard
measure of efficiency instead of the number of physical cuts.

1.1 Related Work

Equal Shares. Possibly the most famous cake cutting protocol belongs to the
class of Divide and Conquer algorithms. Cut and Choose is a 2-player equal-
shares protocol that guarantees proportional shares. It already appeared in the
Old Testament, where Abraham divided Canaan to two equally valuable parts
and his brother Lot chose the one he valued more for himself. The first n-
player variant of this algorithm is attributed to Banach and Knaster [21] and it
requires O (

n2
)

cut and eval queries. Other methods include the continuous (but
discretizable) Dubins-Spanier [11] and the Even-Paz protocols [13]. The latter
show that their method requires O (n log n) queries at most. The complexity
of proportional cake cutting in higher dimensions has been studied in several
papers [2,3,5,14,15,19], in which cuts are tailored to fit the shape of the cake.

Unequal Shares. The problem of proportional cake cutting with unequal shares
is first mentioned by Steinhaus [21]. Motivated by dividing a leftover cake,
Robertson and Webb [18] define the problem formally and offer a range of solu-
tions for two players. More precisely, they list cloning players, using Ramsey
partitions [17] and most importantly, the Cut Near-Halves protocol [18]. The
last method computes a fair solution for 2 players with integer demands d1 and
d2 in 2�log2(d1 + d2)� queries. Robertson and Webb also show how any 2-player
protocol can be generalized to n players in a recursive manner. The number of
physical cuts Cut Near-Halves makes for two players can be beaten for certain
demands, as Robertson and Webb [18] also note. For some demands, Carney [7]
designs such a protocol utilizing a number-theoretic approach.

Irrational Demands. The case of irrational demands in the unequal shares
case is interesting from the theoretical point of view, but beyond this, solv-
ing it might be necessary, because other protocols might generate instances
with irrational demands. E.g., in the maximum-efficient envy-free allocation
problem with two players and piecewise linear measure functions, any optimal
solution must be specified using irrational numbers, as Cohler et al. [8] show.
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Barbanel [1] studies the case of cutting the cake in an irrational ratio between
n players and presents an algorithm that constructs a proportional division.
Shishido and Zeng [20] solve the same problem with the objective of mini-
mizing the number of resulting pieces. Their protocol is simpler than that of
Barbanel [1].

Lower Bounds. The drive towards establishing lower bounds on the complexity
of cake cutting protocols is coeval to the cake cutting literature itself [21]. Even
and Paz [13] conjectured that their protocol is the best possible, while Robertson
and Webb explicitly write that “they would place their money against finding
a substantial improvement on the n log2 n bound” for proportional cake cut-
ting with equal shares. After approximately 20 years of no breakthrough in the
topic, Magdon-Ismail et al. [16] showed that any protocol must make Ω(n log n)
comparisons – but this was no bound on the number of queries. Essentially simul-
taneously, Woeginger and Sgall [22] came up with the lower bound Ω(n log n) on
the number of queries for the case where contiguous pieces are allocated to each
player. Not much later, this condition was dropped by Edmonds and Pruhs [12]
who completed the query complexity analysis of proportional cake cutting with
equal shares by presenting a lower bound of Ω(n log n). Brams et al. [6] study
the minimum number of actual cuts in the case of unequal shares and prove
that n − 1 cuts might not suffice – in other words, they show that there is no
proportional allocation with contiguous pieces. However, no lower bound on the
number of queries has been known in the case of unequal shares.

Generalizations in Higher Dimensions. There are two sets of multiple-
dimensional generalizations of the proportional cake cutting problem. The first
group focuses on the existence of a proportional division, without any construc-
tive proof. The existence can be shown easily using Lyapunov’s theorem, as
stated by Dubins and Spanier [11] as Corollary 1.1. Berliant et al. [4] investi-
gate the existence of envy-free divisions. Dall’Aglio [10] considers the case of
equal shares and defines a dual optimization problem that allows to compute a
proportional solution by minimizing convex functions over a finite dimensional
simplex. Complexity issues are not discussed in these papers, in fact, queries are
not even mentioned in them.

The second group of multiple-dimensional generalizations considers problems
where certain geometric parameters are imposed on the cake and the pieces, see
Barbanel et al. [2], Beck [3], Brams et al. [5], Hill [14], Iyer and Huhns [15],
Segal-Halevi et al. [19]. Also, some of these have special extra requirements on
the output, such as contiguousness or envy-freeness. These works demonstrate
the interest in various problems in multi-dimensional cake cutting, for which we
define a very general framework.

1.2 Our Contribution

We provide formal definitions for the n-player proportional cake cutting problem
with total demand D ≥ n in Sect. 2. Then, in Sect. 3 we focus on our protocol
for the problem, which is our main contribution in this paper. The idea is that



22 Á. Cseh and T. Fleiner

we recursively render the players in two batches so that these batches can sim-
ulate two players who aim to cut the cake into two approximately equal halves.
Our protocol requires only 2 (n − 1) · �log2 D� queries. Other known protocols
reach D · �log2 D� and n(n − 1) · �log2 D�, thus ours is the fastest procedure
that derives a proportional division for the n-player cake cutting problem with
unequal shares. Moreover, our protocol also works on a highly general cake (intro-
duced in Sect. 4), extending the notion of the cake to any finite dimension.

We complement our positive result by showing a lower bound of Ω (n log D)
on the query complexity of the problem in Sect. 5. Our proof generalizes, but
does not rely on, the lower bound proof given by Edmonds and Pruhs [12] for the
problem of proportional division with equal shares. Moreover, our lower bound
remains valid in the generalized cake cutting and query model, allowing a more
powerful notion of a query even on the usual, [0, 1] interval cake.

In Sect. 6 we turn to irrational demands and solve the proportional cake
cutting problem by reducing it to the same problem with integer demands only.
By doing so, we provide a novel and simple approach to the problem. Moreover,
our method works in the generalized query model as well. The query analysis of
known protocols for the n-player proportional cake cutting problem, and missing
proofs can be found in the full version of the paper [9].

2 Preliminaries

We begin with formally defining our input. Our setting includes a set of players
of cardinality n, denoted by {P1, P2, . . . , Pn}, and a heterogeneous and divisible
good, which we refer to as the cake and project to the unit interval [0, 1]. Each
player Pi has a non-negative, absolutely continuous measure function μi that is
defined on Lebesgue-measurable sets. We remark that absolute continuity implies
that every zero-measure set has value 0 according to μi as well. In particular,
μi((a, b)) = μi([a, b]) for any interval [a, b] ⊆ [0, 1]. Besides measure functions,
each player Pi has a demand di ∈ Z

+, representing that Pi is entitled to receive

di/
n∑

j=1

dj ∈]0, 1[ part of the whole cake. The value of the whole cake is identical

for all players, in particular it is the sum of all demands:

∀1 ≤ i ≤ n μi([0, 1]) = D =
n∑

j=1

dj .

We remark that an equivalent formulation is also used sometimes, where the
demands are rational numbers that sum up to 1, the value of the full cake.
Such an input can be transformed into the above form simply by multiplying
all demands by the least common denominator of all demands. As opposed to
this, if demands are allowed to be irrational numbers, then no ratio-preserving
transformation might be able to transform them to integers. That is why the
case of irrational demands is treated separately.
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The cake [0, 1] will be partitioned into subintervals in the form [x, y), 0 ≤
x ≤ y ≤ 1. A finite union of such subintervals forms a piece Xi allocated to
player Pi. We would like to stress that a piece is not necessarily connected.

Definition 1. A set {Xi}1≤i≤n of pieces is a division of the cake [0, 1] if⋃

1≤i≤n

Xi = [0, 1] and Xi ∩ Xj = ∅ for all i �= j. We call division {Xi}1≤i≤n

proportional if μi(Xi) ≥ di for all 1 ≤ i ≤ n.

In words, proportionality means that each player receives a piece with which
her demand is satisfied. We do not consider Pareto optimality or alternative
fairness notions such as envy-freeness in this paper.

We now turn to defining the measure of efficiency in cake cutting. We assume
that 1 ≤ i ≤ n, x, y ∈ [0, 1] and 0 ≤ α ≤ 1. Oddly enough, the Robertson-Webb
query model was not formalized explicitly by Robertson and Webb first, but
by Woeginger and Sgall [22], who attribute it to the earlier two. In their query
model, a protocol can ask agents the following two types of queries.

• Cut query (Pi, α) returns the leftmost point x so that μi([0, x]) = α. In this
operation x becomes a so-called cut point.

• Eval query (Pi, x) returns μi([0, x]). Here x must be a cut point.

Notice that this definition implies that choosing sides, sorting marks or cal-
culating any other parameter than the value of a piece are not counted as queries
and thus they do not influence the efficiency of a protocol.

Definition 2. The number of queries in a protocol is the number of eval and
cut queries until termination. We denote the number of queries for a n-player
algorithm with total demand D by T (n,D).

The query definition of Woeginger and Sgall is the strictest formalization of
the Robertson-Webb queries. Here we utilize an extension of a query, which has
been used in earlier papers [12,13,18,22] and is also referred to as a Robertson-
Webb query. The term proportional cut query stands for generalized cut queries
of the sort “Pi cuts the piece [x, y] in ratio a : b”, where a, b are integers. It is
easy to see that such a query is a concatenation of at most five cut and eval
queries. Also, following other papers, we allow queries to start from an arbitrary
point of the cake instead of 0 only.

3 Our Protocol

In this section, we present a simple and elegant protocol that beats all three
above mentioned protocols in query number. Our main idea is that we recursively
render the players in two batches so that these batches can simulate two players
who aim to cut the cake into two approximately equal halves. For now we work
with the standard cake and query model defined in Sect. 2. Later, in Sect. 4.3 we
will show how our protocol can be extended to a more general cake. We remind
the reader that cutting near-halves means to cut in ratio �D

2  : �D
2 �.
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To ease the notation we assume that the players are indexed so that when
they mark the near-half of the cake, the marks appear in an increasing order from
1 to n. In the subsequent rounds, we reindex the players to keep this property
intact. Based on these marks, we choose “the middle player”, this being the
player whose demand reaches the near-half of the cake when summing up the
demands in the order of marks from left to right. This player cuts the cake and
each player is ordered to the piece her mark falls to. The middle player is cloned
if necessary so that she can play on both pieces. The protocol is then repeated
on both generated subinstances, with adjusted demands. In the subproblem, the
players’ demands are according to the ratios listed in the pseudocode.

Proportional division with unequal shares

Each player marks the near-half of the cake X.
Sort the players according to their marks.
Calculate the smallest index j such that �D

2  ≤ ∑j
i=1 di =: a.

Cut the cake in two along Pj ’s mark.
Define two instances of the same problem and solve them recursively.

1. Players P1, P2, . . . , Pj share piece X1 on the left. Demands are set
to d1, d2 . . . , dj−1, dj − a + �D

2 , while measure functions are set
to μi · �D

2 /μi(X1), for all 1 ≤ i ≤ j.
2. Players Pj , Pj+1, . . . , Pn share piece X2 = X \ X1 on the right.

Demands are set to a − �D
2 , dj+1, dj+2, . . . , dn, while measure

functions are set to μi · �D
2 �/μi(X2), for all j ≤ i ≤ n.

Example 1. We illustrate our protocol on an example with n = 3, depicted in
Fig. 1. Let d1 = 1, d2 = 3, d3 = 1. Since D = 5 is odd, all players mark the
near-half of the cake in ratio 2 : 3. The cake is then cut at P2’s mark, since
d1 < �D

2 , but d1 + d2 ≥ �D
2 . The first subinstance will consist of players

P1 and P2, both with demand 1, whereas the second subinstance will have the
second copy of player P2 alongside P3 with demands 2 and 1, respectively. In
the first instance, both players mark half of the cake and the one who marked it
closer to 0 will receive the leftmost piece, while the other player is allocated the
remaining piece. The players in the second instance mark the cake in ratio 1 : 2.
Suppose that the player demanding more marks it closer to 0. The leftmost piece
is then allocated to her and the same two players share the remaining piece in
ratio 1 : 1. The player with the mark on the left will be allocated the piece on
the left, while the other players takes the remainder of the piece. These rounds
require 3 + 2 + 2 + 2 = 9 proportional cut queries and no eval query.

Theorem 1. Our “Protocol for proportional division with unequal shares” ter-
minates with a proportional division.

Theorem 2. For any 2 ≤ n and n < D, the number of queries in our n-player
protocol on a cake of total value D is T (n,D) ≤ 2(n − 1) · �log2 D�.
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Fig. 1. The steps performed by our algorithm on Example 1. The colored intervals are
the pieces already allocated to a player. (Color figure online)

With a query number of O(n log D), our protocol is more efficient than all
known protocols. We will now point out a further essential difference in fairness
when comparing to the fastest known protocol before our result, the generalized
Cut Near-Halves. Our protocol treats players equally, while the generalized Cut
Near-Halves does not. Equal treatment of players is a clear advantage if one
considers the perception of fairness from the point of view of a player.

We remark that our protocol is not truthful, which can be illustrated on
a simple example. Take the 2-player equal shares case with nonzero measure
functions on any nonzero measure interval. If the player whose mark is at the
left knows the measure function of the other player, she can easily manipulate
the outcome by marking the half of the cake just before the mark of the other
player. As a result, her piece will be larger than what she receives if she reports
the truth, unless their measure functions are special.

Remark 1. In the “Protocol for proportional division with unequal shares”

• each player answers the exact same queries as the other players in the same
round and same subinstance;

• no player is asked to disclose the outcome of an eval query.

The generalized Cut Near-Halves protocol fails to satisfy both of the above
points. It addresses both eval and cut queries to players and treats players dif-
ferently based on which type of query they got. In the 2-player version of Cut
Near-Halves, only one player marks the cake and the other player uses an eval
query to choose a side. This enables the second player to have a chance for a
piece strictly better than half of the cake, while the first player is only entitled
for her exact proportional share and has no chance to receive more than that.
Besides this, the player who is asked to evaluate a piece might speculate that
she was offered the piece because the other player cut it off the cake—and thus
gain information about the measure function of the other player.
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4 Generalizations

In this section we introduce a far generalization of cake cutting, where the cake is
a measurable set in arbitrary finite dimension and cuts are defined by a monotone
function. At the end of the section we prove that even in the generalized setting,
O(n log D) queries suffice to construct a proportional division.

4.1 A General Cake Definition

Our players remain {P1, P2, . . . , Pn} with demands di ∈ Z
+, but the cake is now

a Lebesgue-measurable subset X of Rk such that 0 < λ(X) < ∞. Each player
Pi has a non-negative, absolutely continuous measure function μi defined on the
Lebesgue-measurable subsets of X. An important consequence of this property
is that for every Z ⊆ X, μi(Z) = 0 if and only if λ(Z) = 0. The value of the
whole cake is identical for all players, in particular it is the sum of all demands:

∀1 ≤ i ≤ n μi(X) = D =
n∑

j=1

dj .

A measurable subset Y of the cake X is called a piece. The volume of a piece
Y is the value λ(Y ) taken by the Lebesgue-measure on Y . The cake X will be
partitioned into pieces X1, . . . , Xn.

Definition 3. A set {Xi}1≤i≤n of pieces is a division of X if
⋃

1≤i≤n

Xi = X

and Xi ∩ Xj = ∅ holds for all i �= j. We call division {Xi}1≤i≤n proportional if
μi(Xi) ≥ di holds for all 1 ≤ i ≤ n.

4.2 A Stronger Query Definition

The more general cake clearly requires a more powerful query notion. Cut and
eval queries are defined on an arbitrary piece (i.e. measurable subset) I ⊆ X.
Beyond this, each cut query specifies a value α ∈ R

+ and a monotone mapping
f : [0, λ(I)] → 2I (representing a moving knife) such that f(x) ⊆ f(y) and
λ(f(x)) = x holds for every 0 ≤ x ≤ y ≤ λ(I).

• Eval query (Pi, I) returns μi(I).
• Cut query (Pi, I, f, α) returns an x ≤ λ(I) with μi(f(x)) = α or an error

message if such an x does not exist.

As queries involve an arbitrary measurable subset I of X, our generalized queries
automatically cover the generalization of the previously discussed Edmonds-
Pruhs queries, proportional queries and reindexing. If we restrict our attention
to the usual unit interval cake [0, 1], generalized queries open up a number of
new possibilities for a query, as Example 2 shows. The new notions also allow
us to define cuts on a cake in higher dimensions, see Example 3.
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Example 2. On the [0, 1] cake the following rules qualify as generalized queries.

• Evaluate an arbitrary measurable set.
• Cut a piece of value α surrounding a point x so that x is the midpoint of the

cut piece.

Example 3. Defined on the generalized cake X ⊆ R
k, the following rules qualify

as generalized queries.

• Evaluate an arbitrary measurable set.
• Multiple cut queries on piece I ⊂ R

2: one player always cuts I along a hori-
zontal line, the other player cuts the same piece along a vertical line.

4.3 The Existence of a Proportional Division

Our algorithm “Proportional division with unequal shares” in Sect. 3 extends to
the above described general setting and hence proves that a proportional division
always exists.

Theorem 3. For any 2 ≤ n and n < D, the number of generalized queries
in our n-player protocol on the generalized cake of total value D is T (n,D) ≤
2(n − 1) · �log2 D�.

5 The Lower Bound

In this section, we present our lower bound on the number of queries any deter-
ministic protocol needs to make when solving the proportional cake cutting
problem with unequal shares. This result is valid in two relevant settings: 1.
on the [0, 1] cake with Robertson-Webb or with generalized queries, 2. on the
general cake and queries introduced in Sect. 4.

The lower bound proof is omitted due to space restrictions, but we outline
its structure. In the first step, we define a single-player cake-cutting problem
where the goal is to identify a piece of small volume and positive value for the
sole player. For this problem, we design an adversary strategy and specify the
minimum volume of the identified piece as a function of the number of queries
asked. In the second step, we turn to the problem of proportional cake cutting
with unequal shares. We show that in order to allocate each player a piece of
positive value, at least Ω(n log D) queries must be addressed to the players—
otherwise the allocated pieces overlap.

Theorem 4. To construct a proportional division in an n-player unequal shares
cake cutting problem with total demand D one needs Ω(n log D) queries.
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6 Irrational Demands

In this section we consider the case when some demands are irrational numbers.
Apart from this, our setting is exactly the same as before. Even though two direct
protocols have been presented for the problem of proportional cake cutting with
irrational demands [1,20], we feel that our protocol sheds new light to the topic.
The complexity of all known protocols for irrational shares falls into the same
category: finite but unbounded. Shishido and Zeng [20] present a protocol that is
claimed to be simpler than the one of Barbanel [1]. First they present a 2-player
protocol, in which one player marks a large number of possibly overlapping
intervals that are worth the same for her. The other player then chooses one
of these so that it satisfies her demand. The authors then refer to the usual
inductive method to the case of n players, in which the n-th player shares each
of the n − 1 pieces the other players have already obtained. This procedure is
cumbersome compared to our protocol that reduces the problem to one with
rational demands or decreases the number of players. Moreover, our method
works on our generalized cake and query model.

Let us choose an arbitrary piece A ⊆ X such that μi(A) > 0 for all players Pi.
If the players share A and X \A in two separate instances, both in their original
ratio d1 : d2 : . . . : dn, then the two proportional divisions will give a proportional
d1 : d2 : . . . : dn division of X itself. Assume now that μi(A) < μj(A) for
some players Pi and Pj , and some piece A ⊆ X. When generating the two
subinstances on A and X \A, we reduce di on A to 0 and increase it in return on
X \ A and swap the roles for dj , increasing it on A and decreasing it on X \ A.
The first generated instance thus has n − 1 players with irrational demands,
while the second instance has n players with irrational demands. We will show
in Lemma 2 that if we set the right new demands in these instances, the two
proportional divisions deliver a proportional division of X. The key point we
prove in Lemma 3, which states that the demands in the second subinstance
sum up to slightly below all players’ evaluation of X \ A. Redistributing the
slack as extra demand among players gives us the chance to round the demands
up to rational numbers in the second subinstance and keep proportionality in
the original instance. Iteratively breaking up the instances into an instance with
fewer players and an instance with rational demands leads to a set of instances
with rational demands only.

We now describe our protocol in detail. Without loss of generality we can
assume that d1 ≤ d2 ≤ . . . ≤ dn. As a first step, P1 answers the cut query with
x = d1 and I = X. We denote the piece in f(d1) by A and ask all players to
evaluate A. Let Pj be one of the players whose evaluation is the highest. Notice
that μj(A) ≥ d1, because μ1(A) = d1. We distinguish two cases from here.

1. If μj(A) = d1, then μi(A) ≤ d1 for all players. We allocate A to P1 and
continue with an instance I1 with n − 1 players having the same demands as
before. The measure functions need to be normalized to D−d1

D−μi(A) · μi for all
i �= 1 so that all players of I1 evaluate X \ A to D − d1.

2. Otherwise, μj(A) = d1 + ε, where ε > 0. We generate instances I2a and I2b.
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(a) In the first instance I2a, the cake is A, P1’s demand is 0, Pj ’s demand is
dj + d1, while all other players keep their original di demand. In order to
make all players evaluate the full cake to the sum of their demands D,
measure functions are modified to D

μi(A) · μi.

(b) In the second instance I2b, the cake is X \ A, P1’s demand is d1 + d2
1

D−d1
,

Pj ’s demand is dj − d1(d1+ε)
D−(d1+ε) , while the original di demands are kept for

all other players. In order to make all players evaluate the full cake to D,
we set D

D−μi(A) · μi.

Proportional division with irrational demands

P1 marks d1 → A. All players evaluate A. Pj has the highest
evaluation.
If μj(A) = d1, then allocate
A to P1 and continue with
n − 1 players on I1.

Otherwise μj(A) = d1 + ε.
Define two instances I2a and
I2b. While I2a has n − 1
players, demands in I2b sum
up to below D and thus can
be rationalized.

I1 I2a I2b

cake X \ A A X \ A

d1 0 0 d1 + d2
1

D−d1

dj dj dj + d1 dj − d1(d1+ε)
D−(d1+ε)

di di di di

μi
D−d1

D−μi(A)μi
D

μi(A)μi
D

D−μi(A)μi

Lemma 1. A proportional division in I1 extends to a proportional division in
the original problem once P1’s allocated piece A is added to it.

Lemma 2. If each player receives her demanded share in I2a and I2b, then the
union of these pieces gives a proportional division in the original problem.

Lemma 3. By slightly increasing all demands, I2b can be transformed into an
instance of proportional cake cutting with rational demands.

Theorem 5. Any instance of the proportional cake cutting problem with n play-
ers and irrational demands can be transformed into at most n − 1 proportional
cake cutting problems with rational demands and thus can be solved using a finite
number of queries.

We would like to emphasize that even though we have transformed any pro-
portional cake cutting problem with irrational demands into a set of problems
with rational demands, we did not show any upper bound on its query com-
plexity. When the problems with rational demands are created, D might grow
arbitrarily large, which hugely affects the query number.
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Abstract. With the increased popularity of cloud computing it is of
paramount importance to understand energy-efficiency from a game-
theoretic perspective. An important question is how the operator of a
server should deal with combining energy-efficiency and the particular
interests of the users. Consider a cloud server, where clients/agents can
submit jobs for processing. The quality of service that each agent per-
ceives is given by a non-decreasing function of the completion time of
her job which is private information. The server has to process the jobs
and charge each agent while trying to optimize the social cost, defined as
the energy expenditure plus the sum of the values of the cost functions
of the agents. The operator would like to design a mechanism in order
to optimize this objective, which ideally is computationally tractable,
charges the users “fairly” and induces a game with an equilibrium.

We describe and analyze one such mechanism called modAVR, which
relies on an adaption of the well-known Average Rate (AVR) algorithm
for scheduling the jobs. We prove that modAVR combines the aforemen-
tioned properties with a constant Price of Anarchy, i.e., despite the fact
that it is based on an algorithm designed for optimizing the energy alone,
every equilibrium it results in is near-optimal for the total social cost as
well. The existence of a Nash equilibrium is proven for both mixed strate-
gies and (in a slightly more restricted setting) pure strategies.

A further interesting feature of modAVR is that it is indirect: each
user needs only to declare an upper bound on the completion time of her
job, and not the cost function.

Additionally, we prove that for the corresponding mechanism that
uses the classical YDS algorithm for scheduling the jobs no pure Nash
equilibrium can exist for a very broad and natural class of cost func-
tions. Finally, we are able to extend several of our results for modAVR
to a mechanism based on a slight variation of the YDS algorithm. This
variation is known also to not admit Nash equilibria in pure strategies.

Antonios Antoniadis was supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation)under AN 1262/1-1, and Andrés Cristi by CONICYT
grant PCI PII 20150140 and CONICYTPFCHA/MaǵısterNacional/2017-22171387.

c© Springer Nature Switzerland AG 2018
X. Deng (Ed.): SAGT 2018, LNCS 11059, pp. 31–42, 2018.
https://doi.org/10.1007/978-3-319-99660-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99660-8_4&domain=pdf


32 A. Antoniadis and A. Cristi

1 Introduction

Chip manufacturers are, at a growing rate, incorporating energy-saving func-
tionalities to their processors as a response to the ever increasing importance of
energy-efficiency in computing environments. The most common such function-
ality is dynamic speed scaling, i.e., the capability of the processor to dynamically
adjust its operating speed. A higher speed implies a higher performance, but this
comes at the cost of a higher energy-consumption per unit of work done. On the
other hand, a lower speed although more energy-efficient, leads to a degradation
with respect to the Quality of Service (QoS). In practice, it has been observed
that the energy consumption of the processor is roughly the cube of its running
speed, which results in a nontrivial trade-off between energy and QoS.

Dynamic speed scaling has been extensively studied in the algorithmic lit-
erature since the seminal paper by Yao, Demers and Shenker in 1995 [22]. The
deadline-based dynamic speed scaling problem that was studied in there, has
over the years been considered in the offline, the online, the single and the
multiprocessor setting, either alone or in conjunction with other energy-saving
functionalities (for some examples see [2,3,5,6,8]). Several variants of the prob-
lem where the jobs do not have deadlines and the QoS is flow time have been
studied [4,9,11,16]. For two surveys on dynamic speed scaling see [1,15].

We study dynamic speed scaling under a game theoretic point of view. Con-
sider a shared computing system to which users submit jobs to be processed.
Each user has a waiting cost function which is non-decreasing in the completion
time of her job and is private information. We note that our functions gener-
alize those considered in [13]. This function is modeling the QoS that the user
receives. The service operator who manages the computer system would like to
simultaneously optimize two opposing objectives: On one hand he wants to keep
the total energy consumption for scheduling the jobs as low as possible, while on
the other hand he wants to keep the users happy by finishing the processing of
their jobs sooner rather than later. However simultaneously optimizing these two
objectives is a hard problem [17]. In order to achieve this, the operator would like
to design a mechanism, not only for optimizing these objectives, but ideally also
so that it is computationally tractable, the payments assigned to the users are
proportional to the energy that is required for processing their job, and so that
the induced game has at least one Nash equilibrium in pure or mixed strategies.

Outline. We give a formal model of our setting in the next subsection, followed
by our contribution in Subsect. 1.2 and discuss connections to previous work in
Subsect. 1.3. Then in Sect. 2 we present the modAVR mechanism before showing
the existence of Nash equilibria in pure strategies under a slightly restricted
setting and in mixed strategies for the more general setting for the induced
game. Subsect. 2.4 contains our main result: The game induced by modAVR has
a constant Price of Anarchy. In Sect. 3 we study another two very natural choices
of scheduling algorithms, one of which was introduced in [13]. After showing that
the resulting mechanism does not admit equilibria in pure stratgies even on very
simple instances, we prove that, by slightly modifying the algorithm we can
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extend several results of the previous section to this mechanism. We conclude
by discussing generalizations of our work as well as open problems in Sect. 4.

Due to space constraints all of the proofs are deferred to the full version of
the paper.

1.1 Formal Problem Statement and Preliminaries

Consider n users, each of which at timepoint 0 presents to the service operator a
job i of some particular workload wi which is assumed to be public information.
Each user is also equipped with a non-decreasing waiting cost function fi(t)
which is private information and represents the loss in value that the user faces
if her job completes the processing at time t.

The service operator has to schedule the submitted jobs on a single processor
equipped with dynamic speed scaling capabilities. Following the speed-scaling
literature, we assume that the power consumption of the processor is given by a
power function P (s) = sα for some constant value α which is believed to lie in
practice between 2 and 3 [7,10], that preemption of jobs is allowed, and that the
processor speed is unbounded. The service operator has to decide on the speed
s(t) on which the processor resides at each timepoint t as well as on which job
to schedule at each timepoint t in order to process all the workload. The total
energy consumption of the schedule is given by integrating P (s) over time. We
also define the individual energy consumption of a job in the schedule as the
integral of P (s) over the timepoints at which the respective job is processed.
The problem faced by the operator is offline in the sence that at timepoint 0 all
public information is available and the agents know their waiting cost functions.

Ideally the service operator would like to keep the total social cost of the solu-
tion, which is comprised by the total energy expenditure plus the total waiting
costs (which can be seen as the loss on the QoS), as low as possible. The operator
would like to design a mechanism in order to achieve this objective. However,
besides keeping the total social cost low, there are some desirable properties the
mechanism should ideally have, namely:

(i) That the induced game has a Nash equilibrium in mixed strategies,
(ii) To be strictly budget balanced: Not only should the sum of the payments be

at least the energy consumption, but even more restrictively, the payment
from each agent should be exactly the energy consumed processing her job.
This is a very natural property which also helps ensure fairness.

(iii) To be computationally tractable for the operator.

We call a mechanism that satisfies the above three properties, a fairly budget
balanced mechanism.

It is non-trivial to answer whether these conditions can be simultaneously
fulfilled. For instance, assuming unlimited computational power from the oper-
ator, a VCG type mechanism can be implemented in a way that the payments
cover the energy consumption, however individual payments will not equal the
consumed energy. Furthermore a VCG mechanism will in general require a larger
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communication capacity: the agents would have to report their entire waiting
cost functions. This paper overcomes these difficulties, and presents a mechanism
with the aforementioned desirable properties.

We would also like to stress that the assumption of preemptive jobs can
be removed for all of our main results. Indeed, one can use our mechanism
for deciding on the payments and on when to return a processed job back to
the corresponding agent, but use a different simple mechanism for the actual
scheduling of the jobs without incurring any further costs.

Since the algorithms YDS and AVR by Yao, Demers and Shenker [22] for
deadline-based speed scaling play a central role in our results, it is fitting to give
a rough description of them here and discuss some of their properties. A more
formal description of YDS can be found in the full version of the paper. AVR,
and a modification of it are formally defined in Subsect. 2.1.

The YDS Algorithm. The YDS-algorithm takes as input a set of n tasks,
each task j with a workload wj , a release time rj = 0 (in our particular setting)
and a deadline dj that have to be feasibly scheduled on a single, speed-scalable
processor with the least possible energy expenditure. The YDS-algorithm then
repeatedly and in a greedy fashion identifies a subset of the jobs that have to run
at the highest possible speed in a particular interval (called critical interval), and
schedules them at that speed throughout the interval according to the Earliest
Deadline First (EDF) principle. It then adapts the remaining instance. YDS
produces a solution of minimum energy and runs in polynomial time.

The AVR Algorithm. The AVR-algorithm was originally defined as an online
algorithm for the same setting as YDS. At every time t it runs the processor at
a speed equal to the sum of the rates wi/(di − ri) of the available jobs, in any
feasible order, for instance EDF. It has a constant competitive ratio.

We note that our results regarding modAVR can be extended to arbitrary
rj . See the full version of the paper.

1.2 Our Contribution

The main contribution of this paper is that we develop a mechanism for the
problem that attains all these desired properties. More formally, we show that

Theorem 1. There exists a fairly budget balanced mechanism for the problem
such that the social cost of any equilibrium is guaranteed to be within a constant
factor of the optimal social cost (bounded Price of Anarchy).

The first mechanism that we describe is called modAVR and is based on a
modified version of the well known online algorithm for energy minimization,
called AVR which is also due to Yao, Demers and Shenker [22]. We show that
the induced game admits a Nash equilibrium in mixed strategies (and even on
pure strategies for a slightly more restrictive setting). Furthermore, through a
smoothness argument we show a Price of Anarchy of O(α2α−2) on the general
setting and of O(αα−2) when the waiting cost functions are linear. For the prac-
tically relevant values of α ∈ [2, 3] the Price of Anarchy is in the range [5, 14]. An
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interesting feature of our mechanism is that it is indirect (consequently there is
no question about truthfulness): each agent reports a requested upper bound on
the completion time which is just a positive real number, instead of declaring her
entire waiting cost function, which might need the transmission of an unrealistic
amount of information in the general setting. We denote that the competitive-
ness of AVR for the energy part alone and the common release-date setting
that we study here is αα. It is therefore somewhat surprising that a mechanism
based solely on AVR performs so well with respect to the total social cost. As a
drawback, our result about existence of equilibrium is non-constructive, so even
though the implementation is tractable, the equilibrium can be hard to compute.

Furthermore, we show that for the mechanism which uses the classical YDS
algorithm for scheduling the jobs, no pure Nash equilibrium can exist. As the
mechanism based on a modified version of YDS (modYDS, defined in Sect. 3)
is known to also not admit a Nash equilibrium in pure strategies (see [13]), we
look into Nash equilbria in mixed strategies and are able to extend several of our
results from modAVR and show that such Nash equilibria exist and also give an
upper-bound on the Price of Anarchy for modYDS.

In summary, our main contribution is presenting a new mechanism modAVR
as well as analyzing modAVR and modYDS. Both satisfy all three properties of
Theorem 1. As a side-effect our work also improves upon results from [13].

1.3 Previous Work on the Model

Dürr, Jez and Vasquez [13] investigate the existence of pure Nash equilibria under
two different mechanisms. Similar to our model, each player has an internal cost
function (however these are restricted to linear), and declares a deadline to
the scheduler. The scheduler then implements a modified YDS algorithm which
releases each task back to the client at its deadline. Subsequently, the player is
charged. They analyze two charging schemes: (i) proportional cost share where
every player has to pay exactly the cost generated during the execution of her
job (what we call here modYDS), and (ii) marginal cost share where every player
pays the marginal increase in energy caused by adding her to the game. They
show that the proportional cost share (modYDS) mechanism does not necessar-
ily admit a pure Nash equilibrium, while marginal cost share does, but at the
cost of overcharging the players. Furthermore, the convergence time of iterative
best-response dynamics to this pure Nash equilibrium may be unbounded. The
authors also prove that the social optimum is a pure Nash equilibrium, however
as the mechanism is not direct and no general guarantee is provided, it is not
clear if it induces a bounded Price of Anarchy.

A similar model is studied by the same set of authors [12]. Here, they con-
sider a mechanism in which the scheduler fixes an arbitrary order of the jobs,
and the users have to declare their (again linear) waiting cost functions. The
scheduler then efficiently computes the optimal schedule under this fixed order.
Their main result states that under a certain payment function this mechanism
is truthful and that the sum of the payments covers the energy expenditure.
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Unfortunately, fixing the order of the tasks can lead to outcomes with arbitrar-
ily worse social cost than that of an optimal solution that is not restricted to a
particular order. Indeed, consider a two-job instance, where w1 = n, w2 = 1/n,
f1(x) = (1/n)

α
α−1 x and f2(x) = n

α
α−1 x. By calculating the optimal cost for both

possible permutations of the jobs (see also [12, Theorem 1]) one can see that
they are a factor n2 apart.

Finally, our work is related to cost-sharing mechanisms [18,19] which study
similar situations in which the cost is only a function of the set of served players.
The main concern in that setting is that of finding truthful mechanisms, which
are also budget-balanced, economically efficient and computationally tractable.

2 Nash Equilibria and Price of Anarchy for modAVR

We describe a mechanism that we call modAVR, in which each agent reports
a requested upper bound dj on the completion time and the schedule is built
using a slight variation of the Average Rate algorithm [22], considering these
reports as deadlines. The payments will be exactly the energy consumed by each
job, and the additional property that each job j is completed exactly at the
corresponding declared deadline dj will hold.

2.1 Definition of modAVR

We describe modAVR in two parts. In the first part we define the speed profile,
i.e., we define the speed function s(t) for each timepoint t. In the second part
we define which job is scheduled at each timepoint t at the given speed s(t).
Although the first part is identical to the definition of AVR in [22], and therefore
the total energy consumed will remain the same, the second part diverges from
simply doing earliest deadline first (EDF). This change is key for the continuity of
the costs and therefore for the existence of equilibrium, and for our smoothness
analysis and therefore for the bounded Price of Anarchy result (whether our
results also apply to the mechanism that is induced by classical AVR is an open
problem). We note that modAVR here is an offline algorithm, since all jobs are
available at timepoint 0.

Part I: The Speed Profile. As in the classical AVR, each job j contributes an
amount of wj/dj , to the speed throughout the interval [0, dj ]. In other words, at
each time t, the speed is given by:

s(t) :=
∑

j:t≤dj

wj

dj
.

We note that since wj > 0 for all j, the speed level will change at exactly the
declared deadlines of the jobs. Therefore, we can consider the partition of the
time horizon R+ into intervals I(d), which is induced by the vector of declared
deadlines d. Furthermore, by slightly abusing notation by using I ≤ di for I =
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[a, b] and b ≤ di, the speed throughout interval I under modAVR with a vector
of declared deadlines d is given by

sI(d) =
∑

i:I≤di

wi

di
.

We note that the speed function is a step-wise decreasing function, where
each step corresponds to an interval in the partitioning, see also Fig. 1.

Part II: The Job Assignment. It remains to decide which job will be executed
at each timepoint. We describe how this is done for a particular interval I in the
partitioning. For each job j with I ≤ dj we will process in I a total amount of
volume of wI

j := wj · |I|
dj

.
These amounts of volumes are processed throughout I sequentially in a last

deadline first (LDF) order, at speed sI(d).
It is easy to verify that the resulting schedule is feasible, and has the property

that for each job j its completion time Cj is exactly its declared deadline dj ,
i.e., Cj = dj .

We note that under the mechanism, the energy expenditure charged to agent
i, when d is the vector of declared deadlines, is

EmodAVR
i (d) =

∑

I∈I(d):I≤di

|I| · sI(d)α wi/di

sI(d)
.

In some proofs where there is no ambiguity we just denote this by Ei(d).
Recall that on the induced game, each agent i wishes to minimize Costi(d) =
EmodAVR

i (d) + fi(Ci) = EmodAVR
i (d) + fi(di). This results in the fact that the

social cost is exactly the sum of the costs of all agents. We denote this as

Cost(d) =
n∑

i=1

Costi(d).

0 d1 d2 d3 d4

j4
j4

j4
j4

j3
j3

j3

j2
j2

j1

Fig. 1. An example of a modAVR schedule with four jobs. The height of the rectangles
represents the speed at which the corresponding job runs.

Corollary 2 The mechanism modAVR can be implemented in polynomial time,
and each agent i is charged exactly the energy spent for processing job i.

In order to prove Theorem 1 it therefore remains to bound the price of
Anarchy of modAVR.
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2.2 Existence of Nash Equilibria in Pure Strategies for modAVR

We start by proving the existence of Nash equilibria in pure strategies for a
natural class of power functions, under some assumptions regarding the waiting
cost functions and the workloads of the jobs.

Theorem 3. For common release times, if α = 2, the waiting costs are linear,
i.e. fi(x) = cix for positive ci, and there is an order of the agents such that
wi

ci
≤ wi+1

ci+1
and w2

i

ci
≤ w2

i+1
ci+1

for every i = 1, . . . , n−1, then there is a pure strategy

N.E. in which the declared deadlines are given by d∗
i =

√
wi

ci

∑i
k=1 wk.

Corollary 4 If α = 2, the waiting costs are linear, and all the workloads are
the same, then there is a pure strategy N.E. under modAVR.

Corollary 5 If α = 2 and the waiting costs are all given by the same linear
function, then there is a pure strategy N.E. under modAVR.

We have just proven the existence of Nash equilibria in pure strategies for the
mechanism based on modAVR, for a natural and broad class of settings. Whether
Nash equilibria in pure strategies without the assumptions on the power function,
the waiting cost functions and the workloads exist remains an open question.
However, in the next subsection, we will show the existence of Nash equilibria
in mixed strategies in the general setting.

2.3 Existence of Nash Equilibria in Mixed Strategies

As the game induced by the mechanism described in Subsect. 2.1 has an infi-
nite strategy space, the existence of equilibria is non-trivial. The goal of this
section is to show that it has a Nash equilibrium in mixed strategies. Since
we use a smoothness argument for the Price of Anarchy, all the results can be
immediately extended to a very broad collection of equilibrium concepts (see
Roughgarden [20], [21]).

Theorem 6 ([14]). Let G be a game played by n agents who have compact
Hausdorff pure strategy spaces A1, . . . , An and real-valued and continuous payoff
functions over A1×· · ·×An. Then G has a Nash equilibrium in mixed strategies.

We start by showing that the energy charged to every job is continuous in
the vector of declared deadlines.

Lemma 1. On modAVR the energy consumed by a job, and hence the charging
to the agent, is a continuous function in the vector of declared deadlines.

We now proceed with stating the main theorem of this subsection.

Theorem 7. Assume that α ≥ 2 and that for every agent i ∈ {1, . . . , n} the
waiting time cost function fi : [0,∞) → [0,∞) is continuous, non-decreasing,
and satisfies both fi(0) = 0 and limx→∞ f(x) = ∞. Then the game induced by
the modAVR mechanism has a Nash equilibrium in mixed strategies.
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2.4 Bounded Price of Anarchy

This subsection is devoted to proving a constant (depending on α) upper bound
on the Price of Anarchy of the modAVR mechanism of Subsect. 2.1. We first
state the theorem in its general form, i.e., for any waiting cost functions.

Theorem 8. The expected social cost of any mixed Nash equilibrium on the
game induced by the modAVR mechanism is within a constant factor Kα =
O(α2α−2) of the optimal social cost.

After proving Theorem 8, we will show an improved bound for the special
case when the waiting cost functions are linear, in Theorem 9.

The idea of proving Theorems 8 and 9 is to use a smoothness argument and
the Extension Theorem for cost-minimization games due to Roughgarden [20,
Proposition 2.3]. We start by stating a sequence of three lemmas.

Lemma 2. If λ, μ > 0 are such that (x + 1)α−1 ≤ μxα + λ,∀x ≥ 0, then the
inequality

n∑

i=1

Ei(d∗
i , d−i) ≤ μE(d) + λE(d∗)

holds for any two vectors of deadlines d and d∗ in R
n
+.

Lemma 3. Assume α ≥ 2. For any μ ∈ (0, 1) there is a λ > 0 such that
(x + 1)α−1 ≤ μxα + λ for every x ≥ 0.

In particular, for λ = αα−2 + 2α−1

α−1

(
α

α−1

)(α−3)α

and μ = 1/2, there holds

(x + 1)α−1 ≤ μxα + λ, for all x ≥ 0.

The next lemma helps us compare the energy costs of modAVR (AVR) to
the energy costs of the optimal (with respect to energy) YDS algorithm.

Lemma 4. When all the jobs are released at time 0, for any fixed vector of
deadlines d ∈ R

n
+, the energy cost for modAVR (AVR) is at most αα times the

energy cost for YDS.

Linear Waiting Cost Functions. We now look a bit more closely to the
special case when the waiting cost functions are of the form fi(t) = ci · t, for
some constants ci, in which we are able to find a better Price of Anarchy. The key
idea behind the proof is that the linearity of the waiting cost implies a balance
between it and the energy expenditure.

Theorem 9. If the waiting cost functions are linear, the expected social cost of
any mixed Nash equilibrium on the game induced by the modAVR mechanism is
within a constant factor O(αα−2) of the optimal social cost.
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3 Analysis of YDS and modYDS

In this section we (re)define and analyze the mechanisms YDS and modYDS.

The YDS Mechanism. We call YDS mechanism the one that asks for dead-
lines, implements the YDS algorithm, releases the jobs when completed and
charges each agent the individual energy consumption.

The modYDS Mechanism. Similar to the definition of modAVR, we define
modYDS, as a modified version of the YDS mechanism that releases each job
exactly at its deadline, instead of the completion time.

The modYDS mechanism has already been shown in [13] (where it is called
proportional cost share mechanism) to not admit a pure Nash equilibrium. We
prove that this is also the case for the YDS mechanism. More specifically, with
respect to the YDS mechanism there can be no pure Nash equilibrium for n ≥ n0

many agents. Here, n0 is a constant depending on α and the maximum degree of
the polynomial functions fj . This holds even for the special case when all agents
share the same w, and have the same waiting cost function f . We then extend
our results about the existence of mixed Nash equilibria and the bounded PoA
from modAVR to modYDS, with a small loss in the factor of the latter.

Theorem 10. The YDS mechanism does not always admit a pure Nash equi-
librium, even in the case when all the jobs have the same weight and every agent
has the same waiting cost function f(x) = cxk, for any k > 1, and any α > 1.

3.1 Nash Equilibria in Mixed Strategies for ModYDS

Analogously to our results for modAVR, we start by showing the existence of
Nash equilibria in mixed strategies for modYDS.

Theorem 11. Assume that α ≥ 2 and that for every agent i ∈ {1, . . . , n} the
waiting time cost function fi : [0,∞) → [0,∞) is continuous, non-decreasing,
and satisfies both fi(0) = 0 and limx→∞ f(x) = ∞. Then the game induced by
the modYDS mechanism has a Nash equilibrium in mixed strategies.

3.2 Bounded Price of Anarchy for ModYDS

Regarding the smoothness argument for modYDS, we use the following two
lemmas to build upon the smoothness of modAVR.

Lemma 5. Let d be a fixed vector of valid deadlines. If the release dates are all
zero and α ≥ 2, then for any job i, EYDS

i (d) ≤ EAVR
i (d).

Using this lemma in combination with Lemma 3 and the smoothness for the
energy in modAVR, we can prove the smoothness for the energy in modYDS.
As we do for modAVR, we use the smoothness for the energy to prove a bound
on the social cost:

Theorem 12. The expected social cost of any mixed Nash equilibrium on the
game induced by the modYDS mechanism is within a constant factor K ′

α of the
optimal social cost.
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4 Discussion

We have studied two mechanisms based on variations of the AVR and YDS
algorithm respectively. We have shown that these mechanisms (i) can be imple-
mented efficiently, (ii) have the property that the payment from each agent is
exactly the energy spent for processing her job, and (iii) the induced games have
an equilibrium and a bounded Price of Anarchy.

An interesting question would be whether modAVR admits a pure Nash
equilibrium for any α > 2. We conjecture that this is indeed the case, at least
when the remaining conditions in Corollaries 4 and 5 hold.

We note that Theorems 7 and 8 (see the full version of the paper for more
details) can be extended, at a slight loss in the constant factors involved, to
the case where each job i is associated with a release-time ri before which it
cannot be processed. However Lemma 5 does not hold in this setting (see the
full version of the paper for a counterexample). It would therefore be interesting
to study whether one can nevertheless extend Theorem 12 to the setting with
release-times.

Furthermore, our mechanism assumes that the players are forced to partic-
ipate. A natural question to investigate, is whether it is possible to extend the
above results to a voluntary participation model, namely, when the waiting cost
functions do not tend to infinity.

Finally, it would be very interesting to study whether the online nature of
the AVR algorithm can be exploited, i.e., to study the context in which the
agents can submit their jobs for scheduling in an online fashion. This would
however require using a different solution concept, such as subgame perfect Nash
equilibria.

Acknowledgments. We would like to thank José Correa, Dimitris Fotakis, Martin
Hoefer, Ruben Hoeksma, Minming Li, and Sebastian Ott for interesting discussions
related to this work.
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Abstract. In this paper we design information elicitation mechanisms
for Bayesian auctions. While in Bayesian mechanism design the distri-
butions of the players’ private types are often assumed to be common
knowledge, information elicitation considers the situation where the play-
ers know the distributions better than the decision maker. To weaken the
information assumption in Bayesian auctions, we consider an information
structure where the knowledge about the distributions is arbitrarily scat-
tered among the players. In such an unstructured information setting, we
design mechanisms for auctions with unit-demand or additive valuation
functions that aggregate the players’ knowledge, generating revenue that
are constant approximations to the optimal Bayesian mechanisms with
a common prior. Our mechanisms are 2-step dominant-strategy truthful
and the revenue increases gracefully with the amount of knowledge the
players collectively have.

Keywords: Information elicitation · Distributed knowledge
Removing common prior

1 Introduction

Bayesian auction design has been extremely flourishing since the seminal work of
[23]. One of the main focuses is to generate revenue, by selling m heterogeneous
items to n players. Each player has a private valuation function describing how
much he values each subset of the items, and the valuations are drawn from
prior distributions. An important assumption in Bayesian mechanism design is
that the distributions are commonly known by the seller and the players—the
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common prior assumption. However, as pointed out by another seminal work
[25], such common knowledge is “rarely present in experiments and never in
practice”, and “only by repeated weakening of common knowledge assumptions
will the theory approximate reality.”

In this paper, we weaken the information assumption about the seller and
the players by adopting an information elicitation approach [22]. We consider a
framework for auctions where the knowledge about the players’ value distribu-
tions are arbitrarily scattered among the players and the seller. The seller must
aggregate pieces of information from all players to gain a good understanding
about the distributions, so as to decide how to sell the items.

As in information elicitation, the players get rewards for reporting their
knowledge. However, different from classic information elicitation where a
player’s utility is exactly his reward, in our model a player’s utility comes not
only from his knowledge, but also from participating in the auction. Moreover,
information elicitation usually assumes the prior distribution is correlated: each
player observes a private signal and reports the corresponding posterior distri-
bution. This means every player has information about every other player. In
our model, following the convention in multi-item auctions, the players’ value
distributions for individual items are assumed to be independent. A player may
be totally ignorant about some players and only partially knows some other
players.

We focus on auctions with unit-demand valuation functions and auctions
with additive valuation functions—two valuation types widely studied in the lit-
erature [7,16]. In such auctions, a player’s valuation function is specified by m
values, one for each item. For each player i and item j, the value vij is inde-
pendently drawn from a distribution Dij . When all players are unit-demand
(respectively, additive), we call such an auction a unit-demand auction (respec-
tively, an additive auction) for short. Each player privately knows his own values
and some (or none) of the distributions of some other players for some items, like
long-time competitors in the market. There is no constraint about who knows
which distributions. The seller may also know some of the distributions, but he
does not know which player knows what.

We introduce directed knowledge graphs to succinctly describe the players’
knowledge. Each player knows the distributions of his neighbors, different items’
knowledge graphs may be totally different, and the structures of the graphs are
not known by anybody. Interestingly, the intuition behind such an information
structure has long been considered by philosophers. In [19], the author discussed
a world where “everything in the world might be known by somebody, yet not
everything by the same knower.” Due to lack of space, most proofs and extensions
of our results are given in the full version [9].

1.1 Main Results

Under Arbitrary Knowledge Graphs. Our goal is to design 2-step dominant
strategy truthful (2-DST) information elicitation mechanisms whose expected
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revenue approximates that of the optimal Bayesian incentive compatible (BIC)
mechanism, denoted by OPT . 1 In order for the seller to aggregate the players’
knowledge about the distributions, it is natural for the mechanism to ask each
player to report his knowledge to the seller, together with his own values. A
2-DST mechanism [2] is such that, (1) no matter what knowledge the players
may report about each other, it is dominant for each player to report his true
values; and (2) given that all players report their true values, it is dominant for
each player to report his true knowledge about others.

When the knowledge graphs are such that some distributions are not known
by anybody, it is easy to see that no information elicitation mechanism can be
a bounded approximation to OPT . Thus it is natural to consider the following
benchmark: the optimal BIC mechanism applied to players and items for whom
the distributions are indeed known by somebody, denoted by OPTK . This is
a natural benchmark when considering players with limited knowledge and, if
every distribution is known by somebody, then it is exactly OPT . We have the
following, formalized in Sect. 3.

Theorems 1 and 3 (sketched). For any knowledge graph, there is a 2-DST infor-
mation elicitation mechanism for unit-demand auctions with revenue ≥ OPTK

96 ,
and such a mechanism for additive auctions with revenue ≥ OPTK

70 .

To prove Theorem 1, we actually show a general result: any Bayesian mech-
anism for unit-demand auctions that is a good approximation in the COPIES
setting (formally defined in Sect. 3.2) can be converted to information elicitation
mechanisms; see Theorem 2. This applies to a large class of Bayesian mecha-
nisms, including the ones in [7,8,20].

To prove Theorem 3, we have developed a novel approach for using the
adjusted revenue [27]. Although this concept is very useful in Bayesian auctions,
it was unexpected that we found an interesting and highly non-trivial way of
using it to analyze information elicitation mechanisms.

When Everything Is Known by Somebody. When the knowledge graphs
become denser, the amount of knowledge increases and the seller may generate
more revenue. Indeed, if every distribution is known by somebody, OPTK =
OPT . We show the revenue that can be generated by information elicitation
mechanisms increases gracefully together with the amount of knowledge. More
precisely, for any integer k ≥ 1, let τk = k

(k+1)
k+1
k

. Note τ1 = 1
4 and τk → 1 when

k gets larger. We have the following theorems, formalized in [9].

Theorems 5 and 6 (sketched). ∀k ∈ [n−1], when each distribution is known by
at least k players, there is a 2-DST information elicitation mechanism for unit-
demand auctions with revenue ≥ τk

24 · OPT , and such a mechanism for additive
auctions with revenue ≥ max{ 1

11 , τk
6+2τk

}OPT.

Finally, by exploring the knowledge graph’s combinatorial structure, we have
the following for single-good auctions, formalized in Sect. 4.
1 A Bayesian mechanism is BIC if it is a Bayesian Nash equilibrium for all players to
report their true values.
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Theorem 4 (sketched). When the knowledge graph is 2-connected,2 there is a
2-DST information elicitation mechanism for single-good auctions with revenue
≥ (1 − 1

n )OPT .

1.2 Discussions

The Use of Scoring Rules. Since our mechanisms elicit the players’ knowledge
about each other’s value distributions, we will use scoring rules (see, e.g., [4])
to reward the players for their reported knowledge, as typical in information
elicitation. However, the use of scoring rules does not solve the main problems
in our auctions. Indeed, because a player’s utility comes both from the reward
and from participating in the auction, the difficulties in designing information
elicitation mechanisms are to guarantee that, even without rewarding the players
for their knowledge, (1) it is dominant for each player to report his true values,
(2) reporting his true knowledge never hurts him, and (3) the resulting revenue
approximates the desired benchmark.

Accordingly, in Sects. 3 and 4 we focus on designing information elicitation
mechanisms without rewarding the players. Scoring rules are used later solely to
break the utility-ties and make it strictly better for a player to report his true
knowledge. In [9], we show how to add scoring rules to our mechanisms.

Extensions of Our Results. In our main results, the seller asks the players
to report the distributions in their entirety, without being concerned with the
communication complexity for doing so. This is common in information elicita-
tion and allows us to focus on the main difficulties in aggregating the players’
knowledge. In [9], we show how to modify our mechanisms so that the players
only report a small amount of information about the distributions.

Furthermore, in the main body of this paper we consider auction settings
where a player i’s knowledge about another player i′ for an item j is exactly the
prior distribution Di′j . This simplifies the description of the knowledge graphs.
In [9], we consider settings where a player may observe private signals about
other players and can further refine the prior.

Future Directions. As Bayesian auctions require the seller (and the players
under common-prior assumption) has correct knowledge about all distributions,
in our main results we do not consider scenarios where players have “insider”
knowledge. If the insider knowledge is correct, then our mechanisms’ revenue
increases. Still, how to aggregate the incorrect information that the players may
have about each other is a very interesting question for future studies. Another
direction is to elicit players’ information for BIC mechanisms. For example, the
BIC mechanisms in [5,13] are optimal in their own settings, and it is unclear
how to convert them to information elicitation mechanisms.

2 A directed graph is 2-connected if for any node i, the graph with i and all adjacent
edges removed is still strongly connected..
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1.3 Related Work

Information Elicitation. Following [22], information elicitation has become
an important research area in the past decade [24,28]. A mechanism asks each
player to report his private knowledge about the prior distribution. The decision
maker wants the mechanism to be BIC, and a player is rewarded based on his
reported information and other players’ report. Different from auctions, there are
no allocations or prices, and a player’s utility equals his reward. Most studies
on information elicitation require a common prior. Mechanisms without this
assumption are considered by [26], and our work is information elicitation in
auctions without a common prior. Moreover, information elicitation does not
consider the players to have any cost for revealing their knowledge. It would be
interesting to include such costs in the general model as well as in ours, to see
how the mechanisms will change accordingly.

Bayesian Auction Design. In his seminal work [23], Myerson introduced the
first optimal Bayesian mechanism for single-good auctions, which also applies
to single-parameter settings [1]. Since then, there has been a huge literature on
designing (approximately) optimal Bayesian mechanisms that are either BIC or
dominant-strategy truthful (DST); see [17] for an introduction. Mechanisms for
multi-parameter settings have been constructed recently. In [5], the authors char-
acterize optimal BIC mechanisms for combinatorial auctions. For unit-demand
auctions, [6–8,20] construct DST Bayesian mechanisms that are constant approx-
imations. For additive auctions, [6,16,21,27] provide logarithmic or constant
approximations under different conditions.

Removing the Common Prior Assumption. Following [25], a lot of effort
has been made to remove the common prior assumption. In DST Bayesian mech-
anisms it suffices to assume that the seller knows the prior distribution [20,27]. In
prior-free mechanisms [14,18] the distribution is unknown and the seller learns
it from the values of randomly selected players. In [12,15] the seller observes
independent samples from the distribution before the auction begins. In [10,11]
the players have arbitrary possibilistic belief hierarchies about each other. In
robust mechanism design [3] the players have arbitrary probabilistic belief hier-
archies. In crowdsourced Bayesian auctions [2] each player privately knows all
the distributions (or their refinements), which is a special case of our model.
Indeed, all knowledge graphs will be complete graphs under their setting (that
is, everybody knows everything), while we allow arbitrary knowledge graphs. In
[9], we further discuss how to elicit the players’ knowledge refinements, and how
to handle correlated distributions in a setting that is a special case of our model
but is still more general than that of [2].

2 Preliminaries

In this work, we focus on multi-item auctions with n players (denoted by N) and
m items (denoted by M). A player i’s value for an item j, vij , is independently
drawn from a distribution Dij . Let vi = (vij)j∈M , Di = ×j∈MDij and D =
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×i∈NDi. Player i’s value for a subset S of items is maxj∈S vij in unit-demand
auctions, and is

∑
j∈S vij in additive auctions. The players’ utilities, denoted by

ui, are quasi-linear, and the players are risk-neutral.

Knowledge Graphs. It is illustrative to model the players’ knowledge graphi-
cally. We consider a vector of knowledge graphs, G = (Gj)i∈M , one for each item.
Each Gj is a directed graph with n nodes, one for each player. For any i �= i′,
an edge (i, i′) is in Gj if and only if player i knows Di′j . There is no constraint
about the knowledge graphs: the same player’s distributions for different items
may be known by different players, different players’ distributions for the same
item may also be known by different players, and some distributions may not be
known by anybody. Each player knows his own out-going edges, and neither the
players nor the seller knows the whole graph.

We measure the amount of knowledge in the system by the number of players
knowing each distribution. For any k ∈ {0, 1 . . . , n − 1}, a knowledge graph
is k-informed if each node has in-degree at least k: a player’s distribution is
known by at least k other players. The vector G is k-informed if all knowledge
graphs are so. Note that every knowledge graph is 0-informed, and “everything
is known by somebody” when k ≥ 1. A common prior would imply all knowledge
graphs are complete directed graphs, or (n− 1)-informed, which is the strongest
condition in our model. The seller’s knowledge can be naturally incorporated
into the knowledge graphs by considering him as a special “player 0”. All our
mechanisms can easily utilize the seller’s knowledge, and we will not further
discuss this issue.

Information Elicitation Mechanisms. Let Î = (N,M,D) be a Bayesian
auction instance and I = (N,M,D, G) a corresponding information elicitation
instance, where G is a knowledge graph vector. Different from Bayesian mecha-
nisms, which has D as input, an information elicitation mechanism has neither D
nor G as input. Instead, it asks each player i to report a valuation bi = (bij)j∈M

and a knowledge Ki = ×i′ �=i,j∈MDi
i′j —a distribution for the valuation subpro-

file v−i. Ki may contain “⊥” at some places, indicating i does not know the
corresponding distributions. Ki is i’s true knowledge if Di

i′j = Di′j whenever
(i, i′) ∈ Gj , and Di

i′j = ⊥ otherwise. An information elicitation mechanism
maps a strategy profile (bi,Ki)i∈N to an allocation and a price profile, and may
be randomized. To distinguish whether a mechanism M is a Bayesian or an
information elicitation mechanism, we may explicitly write M(Î) or M(I). The
(expected) revenue of M is denoted by Rev(M), and sometimes by EDRev(M)
to emphasize the distribution.

3 Under Arbitrary Knowledge Graphs

3.1 Knowledge-Based Revenue Benchmark

When the knowledge graphs can be totally arbitrary, some distributions may
not be known by anybody. It is not hard to see that in this case, no information
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elicitation mechanism can be a bounded approximation to OPT . Indeed, if all
but one value distributions of the players are constantly 0, and if the only non-
zero distribution, denoted by Dij , is unknown by anybody, then a Bayesian
mechanism can find the optimal reserve price based on Dij , while an information
elicitation mechanism can only set the price for player i based on the reported
values of the other players, which are all 0.

Thus, for arbitrary knowledge graphs, we define a natural revenue bench-
mark: the optimal Bayesian revenue on players and items for which the dis-
tributions are known in the information elicitation setting. More precisely, let
Î = (N,M,D) be a Bayesian instance and I = (N,M,D, G) a corresponding
information elicitation instance. Let D′ = ×i∈N,j∈MD′

ij be such that D′
ij = Dij

if there exists a player i′ with (i′, i) ∈ Gj , and D′
ij is constantly 0 otherwise. We

refer to D′ as D projected on G. Letting I ′ = (N,M,D′) be the resulting Bayesian
instance, the knowledge-based revenue benchmark is OPTK(I) � OPT (I ′), the
optimal BIC revenue on I ′. This is a demanding benchmark in information
elicitation settings: it takes into consideration the knowledge of all players, no
matter who knows what. When everything is known by somebody, even if G is
only 1-informed, we will have I ′ = Î and OPTK(I) = OPT (Î).

3.2 Unit-Demand Auctions

For unit-demand auctions, sequential post-price Bayesian mechanisms have been
constructed by [8,20]. For information elicitation, if the seller asks the players to
report both their values and knowledge, and directly uses the reported distribu-
tions in these mechanisms, then a player may want to withhold his knowledge
about the other players. By doing so, a player may prevent the seller from selling
the items to the others, so the items are still available when it is his turn to buy.

A simple idea is to partition the players into two groups: a set of reporters
who will not receive any item and is only asked to report their knowledge; and
a set of potential buyers whose knowledge is never used. It is possible that the
reported knowledge may not contain a potential buyer’s value distributions on
all items, thus the technical part is to prove that the seller generates a good
revenue even though the players’ knowledge is only partially recovered.

Our mechanism MIEUD is simple and intuitive; see Mechanism1, where
MUD is the Bayesian mechanism of [20]. It’s worth pointing out that, although
mechanism MUD is used as a black-box, Mechanism 1 is not a reduction from
arbitrary Bayesian mechanisms. Instead, we will prove a projection lemma that
allows such a reduction from an important class of Bayesian mechanisms, where
mechanism MUD is an important example. We have the following theorem.

Theorem 1. Mechanism MIEUD for unit-demand auctions is 2-DST and, for
any instances Î = (N,M,D) and I = (N,M,D, G), Rev(MIEUD(I)) ≥
OPTK(I)

96 .

The key of the 2-DSTness is that the use of the players’ values and the use
of their knowledge are disentangled. In [9], we add scoring rules to mechanism
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Mechanism 1. MIEUD

1: Each player i reports to the seller a valuation bi = (bij)j∈M and a knowledge
Ki = (Di

i′j)i′ �=i,j∈M .
2: Randomly partition the players into two sets, N1 and N2, where each player is

independently put in each set with probability 1
2
.

3: Set N3 = ∅.
4: for players i ∈ N1 lexicographically do
5: For each player i′ ∈ N2 and item j ∈ M , if D′

i′j has not been defined yet and

Di
i′j �= ⊥, then set D′

i′j = Di
i′j and add player i′ to N3.

6: end for
7: For each i ∈ N3 and j ∈ M such that D′

ij is not defined, set D′
ij ≡ 0 (i.e., 0 with

probability 1) and bij = 0.
8: Run mechanism MUD on the unit-demand Bayesian auction

(N3, M, (D′
ij)i∈N3,j∈M ), with the players’ values being (bij)i∈N3,j∈M . Let

x′ = (x′
ij)i∈N3, j∈M be the resulting allocation where x′

ij ∈ {0, 1}, and let
p′ = (p′

i)i∈N3 be the prices. Without loss of generality, x′
ij = 0 if D′

ij ≡ 0.
9: For each player i �∈ N3, i gets no item and his price is pi = 0.
10: For each player i ∈ N3, i gets item j if x′

ij = 1, and his price is pi = p′
i.

MIEUD to reward the players’ knowledge, so that a player’s utility will be strictly
larger when he reports his true knowledge than when he lies.

To analyze the revenue of MIEUD, note that it runs the Bayesian mechanism
on a smaller (randomized) Bayesian instance: Î projected to the player-item
pairs (i, j) such that i ∈ N3 and Dij has been reported. To understand how
much revenue is lost by the projection, we consider the COPIES instance [8],
ÎCP = (NCP ,MCP ,DCP ), as a bridge between the original Bayesian instance
and the information elicitation instance. ÎCP is obtained from Î by replacing
each player with m copies and each item with n copies, where a player i’s copy
j only wants item j’s copy i, with the value distributed according to Dij . Thus
ÎCP is a single-parameter auction, with NCP = N × M , MCP = M × N , and
DCP = ×(i,j)∈NCP Dij . We now lower-bound the optimal BIC revenue in the
projected COPIES instance. For any subset NM ⊆ N × M , let ÎCP

NM be ÎCP

projected to NM . By definition, OPT (ÎCP
NM ) is the optimal BIC revenue for

ÎCP
NM . Moreover, let OPT (ÎCP )NM be the revenue of the optimal BIC mecha-

nism for ÎCP obtained from players in NM .

Lemma 1 (The projection lemma). For any Î and NM ⊆ N × M ,

OPT (ÎCP
NM ) ≥ OPT (ÎCP )NM .

We elaborate the related definitions and prove Lemma1 in [9]. Given mech-
anism MIEUD, the subset NM is the set of player-item pairs (i, j) such that
i ∈ N3 and Dij is reported. Theorem 1 holds by combining the projection lemma,
the randomized partition in MIEUD, and the results on COPIES setting in
Bayesian auctions [6,20].
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Note that Lemma 1 is only concerned with COPIES instances. Using this
lemma and similar to our proof of Theorem1, any Bayesian mechanism M
whose revenue can be properly lower-bounded by the COPIES instance can be
converted to an information elicitation mechanism in a black-box way. We have
the following theorem, with the proof omitted.

Theorem 2. Let M be any DST Bayesian mechanism such that Rev(M(Î)) ≥
αOPT (ÎCP ) for some α > 0. There exists a 2-DST information elicitation
mechanism that uses M as a black-box and is a α

16 -approximation to OPTK .

By Theorem 2, the mechanisms in [7,8] automatically imply information elic-
itation mechanisms. For single-good auctions, replacing MUD with Myerson’s
mechanism, the resulting mechanism is a 4-approximation to OPTK .

3.3 Additive Auctions

Information elicitation mechanisms for additive auctions are harder to construct
and analyze. First, randomly partitioning the players as before may cause a
significant revenue loss, as the revenue of additive auctions may come from selling
a subset of items as a bundle to a player i. Even when i’s value distribution
for each item is reported with constant probability, the probability that his
distributions for all items in the bundle are reported may be very low, thus
the mechanism may rarely sell the bundle to i at the optimal price. Second,
the seller can no longer “throw away” player-item pairs whose distributions are
not reported and focus on the projected instance. When the players are not
partitioned into reporters and potential buyers, doing so may cause a player to
lie and withhold his knowledge about others, so that they are thrown away.

To simultaneously achieve truthfulness and a good revenue guarantee, our
mechanism is very stingy and never throws away any information. If a player i’s
value distribution for an item j is reported by others, then j may be sold to i
via the β-Bundling mechanism of [27], denoted by Bund. If i’s distribution for
j is not reported, then j may still be sold to i via the second-price mechanism.
Indeed, our mechanism handles the players neither solely based on the original
Bayesian instance Î nor solely based on the projected instance I ′. Rather, it
works on a hybrid of the two.

Our mechanism MIEA is still simple; see Mechanism 2. However, significant
effort is needed to analyze its revenue. Indeed, note that in Mechanism 2, each
Mi is defined according to the original Bayesian instance Î, while the partition
of M is done according to the knowledge graphs in the information elicitation
instance I. The mechanism Bund is run on a hybrid instance, where βi is based
on Î and D′

i is based on I. Finally, part of player i’s winning set is sold according
to mechanism Bund and part of it is sold using second-price.

To bound the revenue of MIEA, in [9], we develop a novel way to use the
adjusted revenue [27] in our analysis. As we show there, the adjusted revenue
in a hybrid information setting, combined with the revenue of the second-price
sale, eventually provides a desirable lower-bound to the revenue of MIEA. We
have the following theorem.
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Mechanism 2. MIEA

1: Each player i reports a valuation bi = (bij)j∈M and a knowledge Ki =
(Di

i′j)i′ �=i,j∈M .
2: For each item j, set i∗(j) = arg maxibij (ties broken lexicographically) and pj =

maxi�=i∗ bij .
3: for each player i do
4: Let Mi = {j | i∗(j) = i} be player i’s winning set.

5: Partition M into M1
i and M2

i as follows: ∀j ∈ M1
i , some i′ has reported Di′

ij �= ⊥
(if there are more than one reporters, take the lexicographically first); and ∀j ∈
M2

i , Di′
ij = ⊥ for all i′.

6: ∀j ∈ M1
i , set D′

ij = Di′
ij ; and ∀j ∈ M2

i , set D′
ij ≡ 0.

7: Compute the optimal entry fee ei and reserve prices (p′
j)j∈M1

i
according to mech-

anism Bund with respect to (D′
i, βi), where βij = maxi′ �=i bi′j ∀j ∈ M . By the

definition of Bund, we always have p′
j ≥ βij for each j. If ei = 0 then it is

possible that p′
j > βij for some j; while if ei > 0 then p′

j = βij for every j.
8: Sell M1

i ∩ Mi to player i according to Bund. That is, if ei > 0 then do the
following: if

∑
j∈M1

i ∩Mi
bij ≥ ei +

∑
j∈M1

i ∩Mi
p′
j , player i gets M1

i ∩ Mi with

price ei +
∑

j∈M1
i ∩Mi

p′
j ; otherwise the items in M1

i ∩ Mi are not sold. If ei = 0

then do the following: for each item j ∈ M1
i ∩ Mi, if bij ≥ p′

j , player i gets item
j with price p′

j ; otherwise item j is not sold.
9: In addition, sell each item j in M2

i ∩ Mi to player i with price pj(= βij).
10: end for

Theorem 3. Mechanism MIEA for additive auctions is 2-DST and, for any
instances Î = (N,M,D) and I = (N,M,D, G), Rev(MIEA(I)) ≥ OPTK(I)

70 .

4 When Everything Is Known by Somebody

When the knowledge graph vector G is k-informed with k ≥ 1, both mechanisms
in Sect. 3 of course apply, but we can do better when k gets larger. In fact, in
[9], we show that, for both unit-demand auctions and additive auctions, as k
gets larger, the approximation ratio approaches the best known approximation
to OPT by DST Bayesian mechanisms [6,20,27].

Below, we show that for single-good auctions, if the knowledge graph is only
k-informed for some small k, but has nice combinatorial structures, then nearly
optimal revenue can be generated by leveraging such structures.

Single-Good Auctions with 2-Connected Knowledge Graphs. If the
knowledge graph is only k-informed for some small k but has certain combi-
natorial structures, then good revenue may be generated by leveraging such
structures. For single-good auctions, we show a nearly optimal information elic-
itation mechanism under a natural combinatorial structure.

Recall that a directed graph is strongly connected if there is a directed path
from any node i to any other node i′. A directed graph is 2-connected if it remains
strongly connected after removing any single node and the adjacent edges. For a
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knowledge graph G, being strongly connected means that for any two players i
and i′, “i knows a guy who knows a guy ... who knows i′”. G being 2-connected
means there does not exist a crucial player as an “information hub”, without
whom the players will split into two parts, with one part having no information
about the other. Note that being 2-connected implies being 2-informed.

We define the information elicitation Myerson mechanism MIEM in Mecha-
nism 3. Recall that Myerson’s mechanism maps each player i’s reported value bi

to the (ironed) virtual value, φi(bi;Di). It runs the second-price mechanism with
reserve price 0 on virtual values and maps the resulting “virtual price” back to
the winner’s value space, as his price.

Theorem 4. For any single-good auction instances Î = (N,M,D) and I =
(N,M,D, G) where G is 2-connected, MIEM is 2-DST and Rev(MIEM (I)) ≥
(1 − 1

n )OPT (Î).

The mechanism disentangles the use of the players’ values and the use of
their knowledge, but in a more subtle and stingy way than randomized partition.
When computing a player’s virtual value in Step 10, his knowledge has not been
used yet. Only when a player is removed from S—that is, when it is guaranteed
that he will not get the item, will his knowledge be used.

It is important for G to be 2-connected, so that mechanism MIEM does
not stop until N ′ = ∅, and all players’ distributions are reported. Indeed, by
2-connectedness, there is always an edge from N \ (N ′ ∪ {i∗}) to N ′. Therefore
MIEM recovers Î and runs Myerson’s mechanism on it after randomly excluding
a player a, and the revenue guarantee follows. Note that if the seller knows at
least two distributions, then the mechanism can use him as the starting point
and the revenue will be exactly OPT .

Mechanism 3. MIEM

1: Each player i reports a value bi and a knowledge Ki = (Di
j)j∈N\{i}.

2: Randomly choose a player a, let S = {j | Da
j �= ⊥}, N ′ = N \ ({a} ∪ S), and

D′
j = Da

j ∀j ∈ S.
3: If S = ∅, the item is unsold, price pi is 0 ∀i, and halt.
4: Set i∗ = arg maxj∈Sφj(bj ;D′

j). (Ties are broken lexicographically.)
5: while N ′ �= ∅ do
6: Set S′ = {j | j ∈ N ′, ∃i′ ∈ S \ {i∗} s.t. Di′

j �= ⊥}.
7: If S′ = ∅ then go to Step 12.
8: For each j ∈ S′, set D′

j = Di′
j , where i′ is the first player in S\{i∗} with Di′

j �= ⊥.
9: Set S = {i∗} ∪ S′ and N ′ = N ′ \ S′.
10: Set i∗ = arg maxj∈Sφj(bj ;D′

j).
11: end while
12: Set φsecond = maxj∈N\({a,i∗}∪N′) φj(bj ;D′

j) and pi = 0 for each player i.
13: If φi∗(bi∗ ;D′

i∗) < 0 then the item is unsold; otherwise, the item is sold to player i∗

and pi∗ = φ−1
i∗ (max{φsecond, 0};D′

i∗).



54 J. Chen et al.

References
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Abstract. Coreness represents solution concepts related to core in coop-
erative games, which captures the stability of players. Motivated by the
scale effect in social networks, economics and other scenario, we study
the coreness of cooperative game with truncated submodular profit func-
tions. Specifically, the profit function f(·) is defined by a truncation of
a submodular function σ(·): f(·) = σ(·) if σ(·) ≥ η and f(·) = 0 other-
wise, where η is a given threshold. In this paper, we study the core and
three core-related concepts of truncated submodular profit cooperative
game. We first prove that whether core is empty can be decided in poly-
nomial time and an allocation in core also can be found in polynomial
time when core is not empty. When core is empty, we show hardness
results and approximation algorithms for computing other core-related
concepts including relative least-core value, absolute least-core value and
least average dissatisfaction value.

1 Introduction

With the wide popularity of social media and social network sites such as
Facebook, Twitter, WeChat, etc., social networks have become a powerful plat-
form for spreading information among individuals. Thus, influential users always
play important role in a social network. Motivated by this background, influence
diffusion in social networks has been extensively studied [3,9,15]. Most of pre-
vious works focus on exploring influential nodes. To the best of our knowledge,
there is no study about the “stability” of influential nodes (seed set) when they
are treated as a coalition.

Consider the following scenario. A group of influential people in a social
network are considering forming a coalition so that they can better serve many
advertisers through viral marketing in the social network. To make the coalition
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stable, we need to design a fair profit allocation scheme among the members
of the coalition, such that no individual or a subset of people have incentive to
deviate from this coalition, thinking that the allocation to them is unfair and
they could earn more by the deviation and forming an alliance by themselves.
A useful and mature framework of studying such incentives for stable coalition
formation is the cooperative game theory, and in particular the coreness (core
and its related concepts) of the cooperative games [7,17].

In the above social influence scenario, the typical way of measuring the contri-
bution of any set S of influential people is by its influence spread function σ(S),
which measures the expected number of people in the social network that could
be influenced by S under some stochastic diffusion model. Extensive researches
have been done on stochastic diffusion models, and it has been shown that under
a large class of models σ(S) is both monotone and submodular1 [3,15,18]. How-
ever, the advertisers would only be interested in the coalition as a viral marketing
platform when the influence spread reaches certain scale level. In other words,
the coalition can only receive profit after the influence spread is above a cer-
tain scale threshold η. Therefore, the true profit function for the coalition is
f(S) = σ(S) when σ(S) ≥ η, and f(S) = 0 otherwise. We call such f truncated
submodular functions. This motivate us to study the coreness of the cooperative
games with truncated submodular profit functions.

Both submodularity and scale effect are common in economic behaviors
beyond the above example of viral marketing in social networks. Therefore,
considering truncated submodular functions as the profit functions is reason-
able. In this paper, we study the computational issues related to the coreness of
cooperative games with truncated submodular profit functions.

Solution Concepts in Cooperative Games. A cooperative game Γ = (V, γ)
consists of a player set V = {1, 2, · · · , n} and a profit function γ : 2V → R with
γ(∅) = 0. A subset of players S ⊆ V is called a coalition and V is called the grand
coalition. For each coalition S, γ(S) represents the profit obtained by S without
help of other players. An allocation over the players is denoted by a vector
x = (x1, x2, · · · , xn) ∈ R

n whose components are one-to-one associated with
players in V , where xi ∈ R is the value received by player i ∈ V under allocation
x. For any player set S ⊆ V , we use the shorthand notation x(S) =

∑
i∈S xi.

A set of all allocations satisfying some specific requirements is called a solution
concept.

The core [11,21] is one of the earliest and most attractive solution concepts
that directly addresses the issue of stability. The core of a game is the set of
allocations ensuring that no coalition would have an incentive to split from the
grand coalition, and do better on its own. More precisely, the core of a game Γ
(denoted by C(Γ )), is the following set of allocations: C(Γ ) = {x ∈ R

n : x(V ) =
γ(V ), x(S) ≥ γ(S), ∀ S ⊆ V }. Intuitively, the requirement of x(S) ≥ γ(S)
means that the coalition S receives profit allocation x(S) that is at least their
profit contribution γ(S), so they would prefer to stay with the grand coalition.
1 A set function f is monotone if f(S) ≤ f(T ) for all S ⊆ T , and is submodular if

f(S ∪ {u}) − f(S) ≥ f(T ∪ {u}) − f(T ) for all S ⊆ T and u �∈ T .
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In practice, core is very strict and may be even empty in some cases. When C(Γ )
is empty, there must be some coalition becoming dissatisfied since they can
obtain more benefits if they leave the grand coalition and work as a separated
team. In this case, we use the dissatisfaction degree (or dissatisfaction value),
defined as dv(S, x) = max{γ(S) − x(S), 0}, to capture the instability of player
set S with respect to the allocation x. Then, the overall stability of the game
can be measured as either the worst-case or average-case dissatisfaction degree,
for which we consider the following three versions.

The first one is the relative least-core value (RLCV) [10], which reflects the
relative stability, i.e. the minimum value of the maximum proportional difference
between the profits and the payoffs among all coalitions.

Definition 1. Given a cooperative game Γ , the relative least-core value of Γ

(RLCV(Γ )) is minx maxS
dv(S,x)

γ(S) . Technically, RLCV(Γ ) is the optimal solution
of the following linear programming:

min r

s.t.

⎧
⎨

⎩

x(V ) = γ(V )
x(S) ≥ (1 − r)γ(S) ∀ S ⊆ V
x({i}) ≥ 0 ∀ i ∈ V

(1)

The second one is the absolute least-core value (ALCV) [16], which reflects the
absolute stability, i.e. the minimum value of the maximum difference between the
profits and the payoffs among all coalitions. The formal definition is as following.

Definition 2. Given a cooperative game Γ , the absolute least-core value of Γ
(ALCV(Γ )) is minx maxS dv(S, x). Technically, ALCV(Γ ) is the optimal solu-
tion of the following linear programming:

min ε

s.t.

⎧
⎨

⎩

x(V ) = γ(V )
x(S) ≥ γ(S) − ε ∀ S ⊆ V
x({i}) ≥ 0 ∀ i ∈ V

(2)

The above two classical least-core values capture the stability from the per-
spective of the most dissatisfied coalition i.e. the worst-case stability. Sometimes
the worst case is too extreme to reflect the real stability. Thus, we introduce the
least average dissatisfaction value (LADV), which reflects the minimum value
of average dissatisfaction degree among all coalitions.

Definition 3. Given a cooperative game Γ , the least average dissatisfaction
value of Γ (LADV(Γ )) is minx ES(dv(S, x)). Technically, LADV(Γ ) is the opti-
mal value of the following linear programming:

min 1
2n

∑
S⊆V max{γ(S) − x(S), 0}

s.t.
{

x(V ) = γ(V )
x({i}) ≥ 0 ∀ i ∈ V

(3)
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In this paper, we consider the following computational problems in the con-
text of truncated submodular functions: (a) Whether the core of a given coop-
erative game is empty? (b) How to find an allocation in core if the core is not
empty? (c) If the core is empty, how to compute the relative least-core value, the
absolute least-core value and the least average dissatisfaction value of a cooper-
ative game?

Contributions. We study the coreness of truncated submodular profit cooper-
ative game Γf . We consider computational properties of the core, the relative
least-core value, the absolute least-core value and the least average dissatis-
faction value of Γf , which are denoted by C(Γf ), RLCV(Γf ), ALCV(Γf ) and
LADV(Γf ), respectively.

We first prove that checking the non-emptiness of C(Γf ) can be done in
polynomial time. Moreover, we can find an allocation in the core if the core is
not empty. Next, we consider the case when the core is empty. For the problem of
computing the relative least-core value (RLCV(Γf )), we show that it is in general
NP-hard, but when truncation threshold η = 0, there is a polynomial time
algorithm. Along the way, we also find an interesting partial result showing that
there is no polynomial time separation oracle for the RLCV(Γf )’s linear program
unless P = NP, which is of independent interest since it reveals close connections
with a new class of combinatorial problems. For the absolute least-core value
problem ALCV(Γf ), we prove that finding ALCV(Γf ) is APX-hard even when
σ(·) is defined as the influence spread under the classical independent cascade
(IC) model in social network. We also prove that there exists a polynomial time
algorithm which can guarantee an additive term approximation. Finally, for the
least average dissatisfaction value problem LADV(Γf ), we show that we can use
the stochastic gradient descent algorithm to compute LADV(Γf ) to an arbitrary
small additive error.

Related Work. Cooperative game theory is a branch of (micro-)economics that
studies the behavior of self-interested agents in strategic settings where binding
agreements between agents are possible [2]. Numerous classical studies about
cooperative game provide rich mathematical framework to solve issues related
to cooperation in multi-agent systems [6,8]. Schulz and Uhan study the approx-
imation of the absolute least core value of supermodular cost cooperative games
[19], the results of which can be generalized to submodular profit cooperative
games. An important application of our study is to analyze the stability of influ-
ential people in social networks. Almost all the existing studies focus on selecting
the seed set [5,12,22]. To the best of our knowledge, there is no study consider-
ing the stability of the selected seed set. We utilize cooperative game theory to
analyse the stability of seed set, and generalize it to a generic cooperative game
with truncated submodular functions. The truncated operation represents the
“threshold effect” which has been studied widely in literature [1,13].
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2 Model and Problems

2.1 Cooperative Games with Truncated Submodular Profit
Functions

A truncated submodular profit cooperative game is denoted by Γf = (V, f(·)). In
Γf , V is the player set and f(·) is the profit function which is defined as follows:

f(S) =

{
σ(S), if σ(S) ≥ η

0, if σ(S) < η

Note that σ(·) is a nonnegative monotone increasing submodular function with
σ(∅) = 0 and 0 ≤ η ≤ σ(V ) is a nonnegative threshold. To make it explicit,
henceforth, a truncated submodular profit cooperative game is denoted by a
triple (V, σ(·), η). Note that the explicit representation of σ(·) might be expo-
nential in the size of V . The standard way to bypass this difficulty is to assume
that σ(·) is given as a value oracle.

2.2 Computational Problems on the Coreness

Given a truncated submodular profit cooperative game Γf , we focus on the
following problems:
CORE: Is C(Γf ) 	= ∅ and how to find an allocation in C(Γf ) when C(Γf ) 	= ∅?
ALCV: When C(Γf ) = ∅, how to compute ALCV(Γf )?
RLCV: When C(Γf ) = ∅, how to compute RLCV(Γf )?
LADV: When C(Γf ) = ∅, how to compute LADV(Γf )?

Before we analyze the above problems, we introduce a specific instance of
truncated submodular profit cooperative game (see Sect. 2.3).

2.3 Influence Cooperative Game (Γinf )

As the description in our introduction, an important motivation of our model is
influence in social networks. In this section, we introduce a specific instance of
truncated submodular profit cooperative game, influence cooperative game.

Social Graph. A social graph is a directed graph G = (V ∪ U,E;P ), where
V ∪U is the vertex set and E is the edge set. P = {pe}e∈E and pe is the influence
probability on each edge e ∈ E. Note that, V and U denote the vertex set of
influential people and target people in G, respectively.

Influence Diffusion Model. The information diffusion process follows the
independent cascade (IC) model proposed by [15]. In the IC model, discrete
time steps t = 0, 1, 2, · · · are used to model the diffusion process. Each node in
G has two states: inactive or active. At step 0, nodes in seed set S are active and
other nodes are inactive. For any step t ≥ 1, if a node u is newly active at step
t − 1, u has a single chance to influence each of its inactive out-neighbor v with
independent probability puv to make v active. Once a node becomes active, it
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will never return to the inactive state. The diffusion process stops when there is
no new active nodes at a time step. For any S ⊆ V , we use σIC(S) to denote the
influence spread of S, the expected number of activated nodes in U from seed
set S ⊆ V , at the end of an IC diffusion. According to [15], σIC(·) is a monotone
submodular function.

Definition 4. An influence cooperative game Γinf = (V, σIC(·), η) is a special
form of the truncated cooperative game, with V as the player set, and the trun-
cation of influence spread function σIC(·) as the profit function.

In the rest of this paper, we analyze problems defined in Sect. 2.2 one by one.
Note that our positive results (properties and algorithms) could apply to all
truncated submodular profit cooperative games including influence cooperative
game. Our hardness results are established for the influence cooperative games,
so it is stronger than the hardness results for general truncated submodular
cooperative games.

3 Computing Core

We start by considering the core of Γf (C(Γf )). In Γf , we say a player i ∈ V is a
veto player if σ(S) < η for any S ⊆ V \ {i}. That is to say, a successful coalition
must include all veto players.

Lemma 1. C(Γf ) 	= ∅ if and only if:

(i) There exists at least one veto player in Γf , or
(ii) σ(S) =

∑
i∈S σ({i}), for any S ⊆ V .

Proof. Suppose the player set of Γf is V = {1, 2, · · · , n}. We first prove the
sufficiency of Lemma 1. On one hand, suppose i is a veto player of Γf , then
we can find a trivial allocation x in C(Γf ): x({i}) = σ(V ) and x({j}) = 0,
∀ j ∈ V \ {i}. On the other hand, x({i}) = σ({i}) ( ∀i ∈ V ) is an allocation in
C(Γf ) if σ(S) =

∑
i∈S σ({i}).

Now we prove the necessity. Suppose C(Γf ) 	= ∅ and x ∈C(Γf ). Let
σ(V ) =

∑n
i=1 Mi, where Mi = σ({1, 2, · · · , i}) − σ({1, 2, · · · , i − 1}) is the

marginal increasing of player i. If there is no veto player, then for any i ∈ V ,
σ(V \ {i}) ≥ η since σ(S) is monotone. Thus, f(V \ {i}) = σ(V \ {i}), ∀ i ∈ V .
Suppose σ(V \ {i}) =

∑i−1
j=1 Mj +

∑n
j=i+1 M ′

ij , where M ′
ij = σ({1, 2, · · · ,

i − 1, i + 1, · · · , j}) − σ({1, 2, · · · , i − 1, i + 1, · · · , j − 1}). Note that M ′
ij ≥ Mj

since σ(S) is submodular. By the definition of the core, for any i ∈ {1, 2, · · · , n},
we have: x(V \ {i}) ≥ f(V \ {i}) = σ({V \ {i}}). That is, x(V ) − x({i}) ≥
∑i−1

j=1 Mj +
∑n

j=i+1 M ′
ij , ∀ i ∈ V .

Summing up these inequalities for all i ∈ V , we have, (n − 1)
∑n

i=1 x({i}) ≥
∑n

i=1(
∑i−1

j=1 Mj+
∑n

j=i+1 M ′
ij) ≥ ∑n

i=1(
∑i−1

j=1 Mj+
∑n

j=i+1 Mj) =
∑n

i=1(σ(V )−
Mi) = (n − 1)σ(V ).

We have known that
∑n

i=1 x({i}) =
∑n

j=1 Mj = σ(V ) and then Mj = M ′
ij ,

∀i, j ∈ V . Thus, σ(S) =
∑

i∈S σ({i}).
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An important application of Lemma 1 is Theorem 1.

Theorem 1. Deciding whether C(Γf ) is empty can be done in polynomial time
and an allocation in C(Γf ) can be computed in polynomial time if C(Γf ) is not
empty.

Proof (Sketch). First, it takes polynomial time to check the non-emptiness of
C(Γf ). When C(Γf ) is not empty, then (xj = σ(V ),0{i:i�=j}) ∈ C(Γf ) when j is
a veto player and (σ({1}), · · · , σ({n})) ∈ C(Γf ) when (ii) is satisfied.

The detail proof of Theorem 1 is shown in our full version [4].

4 Computing Relative Least-Core Value

From Lemma 1, C(Γf ) may be empty in many cases. It is obvious that RLCV(Γf )
> 0 if C(Γf ) = ∅ and RLCV(Γf ) = 0 otherwise. In this section, we study compu-
tational properties of the RLCV problem. The linear programming correspond-
ing to RLCV(Γf ) (LP-RLCV) is as follows:

min r

s.t.

⎧
⎨

⎩

x(V ) = σ(V )
x(S) ≥ (1 − r)σ(S) ∀ S ⊆ V, σ(S) ≥ η
x({i}) ≥ 0 ∀ i ∈ V

(4)

A special case of computing RLCV(Γf ) is when η = 0. It captures the sce-
nario that the profit of any coalition exactly equals to its influence spread under
influence cooperative game. In Theorem 2 we show that, although there are
exponential number of constraints, LP-RLCV can be solved in polynomial time
by providing a polynomial time separation oracle when η = 0. A separation ora-
cle for a linear program is an algorithm that, given a putative feasible solution,
checks whether it is indeed feasible, and if not, outputs a violated constraint. It
is known that a linear program can be solved in polynomial time by the ellipsoid
method as long as it has a polynomial time separation oracle [14].

Theorem 2. There exists a polynomial time separation oracle of LP-RLCV
when η = 0. Therefore, RLCV can be solved in polynomial time when η = 0.

Proof. Given any solution candidate of LP-RLCV (x′, r′), we need to either
assert (x′, r′) is a feasible solution or find a constraint in LP-RLCV such that
(x′, r′) violates it. Note that, checking x′(V ) = σ(V ) and x′({i}) ≥ 0 (∀ i ∈ V )
can be done in polynomial time. Thus, we only need to check whether g(S) �
1 − x′(S)/σ(S) ≤ r′, ∀S ⊆ V .

An important property is that g(S) achieves its maximum value when S con-
tains only one single player. This is because g(S) = 1− x′(S)

σ(S) ≤ 1−
∑

i∈S x′
i∑

i∈S σ({i}) ≤
1 − mini:i∈S{ x′

i

σ({i})} = maxi:i∈S{g({i})}. The first inequality is due to the sub-

modularity of σ(S) and the second inequality is due to mini:i∈[n]{ai

bi
} ≤

∑n
i=1 ai∑n
i=1 bi

,
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∀ai, bi ∈ R. Thus, the exponential number of constraints can be simplified to n
constraints on all single players. Then, we can find a polynomial time separation
oracle of LP-RLCV directly.

When η = 0, RLCV can be solved in polynomial time is mainly because the
most dissatisfaction coalition is a single player. However, when η 	= 0, it becomes
intractable to find the most dissatisfaction coalition.

Theorem 3. There is no polynomial time separation oracle of LP-RLCV for
some η > 0, unless P=NP.

Theorem 3 can not imply the NP-hardness of RLCV. However, the proof
of Theorem 3 reveals an interesting connection between RLCV problem and a
series of well defined combinatorial problems. The proof of Theorem 3 and the
generalized combinatorial problem is shown in our full version [4].

In the left of this section, we prove the NP-hardness of RLCV, a stronger
hardness result than which in Theorem 3.

Theorem 4. It is NP-hard to compute RLCV(Γf ), even under influence coop-
erative game.

Proof (Sketch). We construct a reduction from the SAT problem. A boolean
formula is in conjunctive normal form (CNF) if it is expressed as an AND of
clauses, each of which is the OR of one or more literals. The SAT problem is
defined as follows: given a CNF formula F , determine whether F has a satisfiable
assignment. Let F be a CNF formula with m clauses C1, C2, · · · , Cm, over n
literals z1, z2, · · · , zn. Without loss of generality, we set m > 4n.

We construct a social graph G as follows: G = (V1 ∪V2 ∪V3, E) is a tripartite
graph (see the sketch graph in Fig. 1). In the first layer (V1), there are two
nodes Si and Ti corresponding to each i ∈ {1, 2, · · · , n}, n + 1 dummy nodes
labeled as u1, u2, · · · , un+1 and n dummy nodes labeled as v1, v2, · · · , vn. In
the second layer (V2), there are two nodes xi and xi corresponding to each
i ∈ {1, 2, · · · , n}, one node cj for each j ∈ {1, 2, · · · ,m} and a dummy node
w. The third layer (V3) contains only node Q. Edges exist only between the

Fig. 1. The reduction from SAT to RLCV(Γf )
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adjacent layers. For each i ∈ {1, 2, · · · , n}, Si sends an edge to every node in
{xi, xi} ∪ {cj : clause Cj contains literal zi, j ∈ {1, 2, · · · ,m}}. Similarly, for
each i ∈ {1, 2, · · · , n}, Ti sends an edge to every node in {xi, xi} ∪ {cj : clause
Cj contains literal zi, j ∈ {1, 2, · · · ,m}}. The probabilities on edges sent from
Si and Ti are 1. There is an edge with influence probability 1 from ui to ci

for any i ∈ {1, 2, · · · , n} and m − n edges form un+1 to cn+1, cn+2, · · · , cm.
There is an edge from ui to w with influence probability 1 − n+1

√
1/2 for any

i ∈ {1, 2, · · · , n + 1}. There is also exists an edge from vi to w with influence
probability 1 − n

√
1/2 for any i ∈ {1, 2, · · · , n}. The left edges are from Q to all

nodes in the second layer. The influence probability on edge (Q,w) is 1/2 and
all other probabilities on edges sent from Q is 1. The influence cooperative game
defined on G is Γ (G) = (V = V1 ∪V3, σ

IC(·), η = 2n+m+1/2). For convenient,
we set N = 2n + m.

Suppose r∗ is the optimal solution of the relative least-core value of Γ (G).
We can prove that r∗ ≥ 1 − 1

3 (N + 7
8 )/(N + 1

2 ) if F is satisfiable and r <
1 − 1

3 (N + 7
8 )/(N + 1

2 ) if F is un-satisfiable. The proof of this part is shown in
the full version [4].

5 Computing Absolute Least-Core Value

5.1 Hardness of ALCV

Theorem 5. ALCV problem of influence cooperative game cannot be approxi-
mated within 1.139 under the unique games conjecture.

Proof (Sketch). We construct a reduction from MAX-CUT problem. Under our
construction, for any instance of MAX-CUT problem, we can construct an
instance of ALCV problem such that the optimal solution of these two instances
are equal. The detail proof is shown in our full version [4].

5.2 Approximating ALCV(Γf )

In this section, we approximate ALCV(Γf ) by approximating the following linear
programming (LP-PRIME):

min ε

s.t.

⎧
⎨

⎩

x(V ) = σ(V )
x({S}) ≥ σ({S}) − ε ∀S ⊆ V, σ(S) ≥ η
x({u}) ≥ 0 ∀u ∈ V

The intractability of LP-PRIME lies on the exponential number of constraints
and the hardness of identifying all successful coalitions. We use a relaxed version
LP-RE and a strengthen version LP-STR of LP-PRIME to design an approxi-
mation algorithm of ALCV(Γf ). (5) and (6) are formal definitions of LP-RE and
LP-STR, respectively.
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min ε

s.t.

⎧
⎨

⎩

x(V ) = σ(V )
x(S) ≥ η − ε ∀ S ⊆ V, σ(S) ≥ η
x({u}) ≥ 0 ∀ u ∈ V

(5)

min ε

s.t.

⎧
⎨

⎩

x(V ) = σ(V )
x(S) ≥ σ(S) − ε ∀ S ⊆ V
x({u}) ≥ 0 ∀ u ∈ V

(6)

Intuitively, LP-RE and LP-STR denote absolute least-core values of two
cooperative games with new profit functions. Specifically, LP-RE relaxes the
constraints in LP-PRIME by reducing the profits of all successful coalitions
excepting V to η. Formally, the profit function in LP-RE is g(S): g(V ) = σ(V ),
∀ S ⊂ V , g(S) = η if σ(S) ≥ η and g(S) = 0 otherwise. The profit function in
LP-STR is h(S) = σ(S), ∀S ⊆ V . Clearly, LP-STR strengthens LP-PRIME by
increasing the profits of all unsuccessful coalitions.

Our main result in this section is shown in Theorem 6.

Theorem 6. ∀ δ > 0, there exists an approximate algorithm A of the ALCV(Γf )
problem with running time in poly(n, 1/δ, log σ(V )), A outputs ε′

p such that ε∗
p ≤

ε′
p ≤ min{ε∗

p + σ(V ) − η + 2δ, max{3ε∗
p, η}}.

We prove Theorem 6 by show Lemmas 2, 3 and 4 in order.

Lemma 2. Suppose the optimal value of LP-PRIME, LP-RE and LP-STR are
ε∗
p, ε∗

r and ε∗
s, respectively. Then, we have

ε∗
p ≤ ε∗

r + (σ(V ) − η) ≤ ε∗
p + (σ(V ) − η), (7)

ε∗
p ≤ ε∗

s ≤ max{ε∗
p, η}. (8)

Lemma 3. There exists a polynomial time approximate algorithm of LP-STR
outputting ε′

s such that ε∗
s ≤ ε′

s ≤ 3ε∗
s.

Lemma 4. ∀ δ > 0, there exists an algorithm of LP-RE outputting ε′
r such that

ε∗
r ≤ ε′

r ≤ ε∗
r + 2δ, with runs time in poly(n, 1/δ, log σ(V )).

The proofs of Lemmas 2–4 rely heavily on mathematical computation and we
report them in our full version [4].

6 Computing Least Average Dissatisfaction Value

Based on Definition 3, LADV(Γf ) equals the optimal value of the following linear
program:

min F (x) = 1
2n

∑
S⊆V max{f(S) − x(S), 0}

s.t.
{

x(V ) = σ(V )
x({i}) ≥ 0 ∀ i ∈ V

(9)
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where f(S) = σ(S) if σ(S) ≥ η and f(S) = 0 otherwise. There are exponential
terms in F (x), however, we can utilize stochastic gradient algorithm to approx-
imate the optimal solution of (9). This is because the object function F (x) is a
convex function (Lemma 5) and the feasible solution area in (9) is a convex set.

Lemma 5. F (x) is a convex function.

The proof of Lemma 5 is shown in our full version [4]. The stochastic gradi-
ent descent algorithm (SGD, cf. [20]) can be used to compute LADV(Γf ) (see
Algorithm 1).

Algorithm 1. Stochastic gradient descent for LADV
1: Parameters: Scaler α > 0, integer T > 0
2: Initialize: X1 = 0, t = 0.
3: Set D = {X : Xi ≥ 0(∀ i ∈ V ),

∑
i∈V Xi = σ(V )}.

4: for t = 1 to T do
5: /*choose a random Yt such that E[Yt|Xt] is a subgradient of F .*/
6: Uniformly at random choose a set S ∈ 2V .
7: if f(S) ≥ Xt(S) then
8: Set Yt = (−1S ,0V \S).
9: else

10: Set Yt = 0.
11: end if
12: update Xt+ 1

2 = Xt − αYt.

13: /*Project Xt+ 1
2 to D*/

14: Xt+1 = arg minX∈D ‖X − Xt+ 1
2 ‖2.

15: end for
16: return F̂ = min{F (Xt)}t∈{1,2,··· ,T}.

Let F ∗ be the optimal solution of LADV(Γf ), F̂ be the output of Algorithm 1
and the profit of grand coalition σ(V ) = V . Then, the performance of Algorithm
1 can be formalized in the following theorem.

Theorem 7. ∀ ε > 0, E[F̂ ] − F ∗ ≤ ε if T ≥ σ(V )4n4

ε2 and α =
√

σ(V )4

Tn4 in
Algorithm 1.

Following the standard analysis of SGD (e.g. in Chap. 14 of [20]), Theorem 7
holds since it is easy to check that E[Yt|Xt] is a subgradient of F (X) at node
Xt, for any t ∈ [T ] (lines 6–11 in Algorithm 1).

7 Conclusion and Future Work

In this paper, we study the core related solution concepts of truncated submod-
ular profit cooperative game. One possible future work is to change the way
of truncating a function. For example, we can set f(S) = σ(S) if |S| ≥ k and
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f(S) = 0 otherwise. This setting is a special case of the setting in our paper and
thus it may allow efficient algorithms. In this paper, we prove that computing
the relative least-core value is NP-hard. We also prove that the relative least-core
value can be solved in polynomial time in a special case. A directly future work
is to design an approximate algorithm of RLCV under general case.
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15. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146. ACM (2003)

16. Maschler, M., Peleg, B., Shapley, L.S.: Geometric properties of the Kernel, nucle-
olus, and related solution concepts. Math. Oper. Res. 4(4), 303–338 (1979)

17. Meir, R., Rosenschein, J.S., Malizia, E.: Subsidies, stability, and restricted coop-
eration in coalitional games. In: IJCAI, pp. 301–306 (2011)

18. Mossel, E., Roch, S.: Submodularity of influence in social networks: from local to
global. SIAM J. Comput. 39(6), 2176–2188 (2010)

19. Schulz, A.S., Uhan, N.A.: Approximating the least core value and least core of
cooperative games with supermodular costs. Discrete Optim. 10(2), 163–180 (2013)

20. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, New York (2014)

http://arxiv.org/abs/1806.10833


68 W. Chen et al.

21. Shapley, L.S.: Markets as cooperative games. In: IJCAIR and Corporation Mem-
orandum (1955)

22. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martin-
gale approach. In: SIGMOD, pp. 1539–1554. ACM (2015)



Simple Games Versus Weighted Voting
Games

Frits Hof1, Walter Kern1, Sascha Kurz2, and Daniël Paulusma3(B)
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Abstract. A simple game (N, v) is given by a set N of n players and
a partition of 2N into a set L of losing coalitions L with value v(L) = 0
that is closed under taking subsets and a set W of winning coalitions W
with v(W ) = 1. Simple games with α = minp≥0 maxW∈W,L∈L

p(L)
p(W )

< 1

are exactly the weighted voting games. Freixas and Kurz (IJGT, 2014)
conjectured that α ≤ 1

4
n for every simple game (N, v). We confirm this

conjecture for two complementary cases, namely when all minimal win-
ning coalitions have size 3 and when no minimal winning coalition has
size 3. As a general bound we prove that α ≤ 2

7
n for every simple game

(N, v). For complete simple games, Freixas and Kurz conjectured that
α = O(

√
n). We prove this conjecture up to a lnn factor. We also

prove that for graphic simple games, that is, simple games in which
every minimal winning coalition has size 2, computing α is NP-hard,
but polynomial-time solvable if the underlying graph is bipartite. More-
over, we show that for every graphic simple game, deciding if α < a is
polynomial-time solvable for every fixed a > 0.

1 Introduction

Cooperative Game Theory provides a mathematical framework for capturing
situations where subsets of agents may form a coalition in order to obtain some
collective profit or share some collective cost. Formally, a cooperative game (with
transferable utilities) consists of a pair (N, v), where N is a set of n agents
called players and v : 2N → R+ is a value function that satisfies v(∅) = 0.
In our context, the value v(S) of a coalition S ⊆ N represents the profit for
S if all players in S choose to collaborate with (only) each other. The central
problem in cooperative game theory is to allocate the total profit v(N) of the
grand coalition N to the individual players i ∈ N in a “fair” way. To this end
various solution concepts such as the core, Shapley value or nucleolus have been
designed; see [24] for an overview. For example, core solutions try to allocate
the total profit such that every coalition S ⊆ N gets at least v(S). This is of
course not always possible, e.g., the core might be empty. This leads to related
c© Springer Nature Switzerland AG 2018
X. Deng (Ed.): SAGT 2018, LNCS 11059, pp. 69–81, 2018.
https://doi.org/10.1007/978-3-319-99660-8_7
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questions like: “How much do we need to spend in total if we want to give at
least v(S) to each coalition S ⊆ N?” In the specific case of simple games (cf.
below) where v takes only values 0 and 1, classifying coalitions into “losing” and
“winning” coalitions resp., one may also ask: “How much do we have to give in
the worst case to a losing coalition if we want to give at least v(S) = 1 to each
winning coalition?”

As mentioned above, we study simple games. Simple games form a clas-
sical class of games, which are well studied; see also the book of Taylor and
Zwicker [29]. The notion of being simple means that every coalition either has
some equal amount of power or no power at all. Formally, a cooperative game
(N, v) is simple if v is a monotone 0–1 function with v(∅) = 0 and v(N) = 1, so
v(S) ∈ {0, 1} for all S ⊆ N and v(S) ≤ v(T ) whenever S ⊆ T . In other words, if
v is simple, then there is a set W ⊆ 2N of winning coalitions W that have value
v(W ) = 1 and a set L ⊆ 2Nof losing coalitions L that have value v(L) = 0. Note
that N ∈ W, ∅ ∈ L and W ∪L = 2N . The monotonicity of v implies that subsets
of losing coalitions are losing and supersets of winning coalitions are winning.
A winning coalition W is minimal if every proper subset of W is losing, and a
losing coalition L is maximal if every proper superset of L is winning.

A simple game is a weighted voting game if there exists a payoff vector p ∈ R
n
+

such that a coalition S is winning if p(S) ≥ 1 and losing if p(S) < 1. Weighted
voting games are also known as weighted majority games and form one of the
most popular classes of simple games.

However, it is easy to construct simple games that are not weighted voting
games. We give an example below, but in fact there are many important sim-
ple games that are not weighted voting games, and the relationship between
weighted voting games and simple games is not yet fully understood. Therefore,
Gvozdeva, Hemaspaandra, and Slinko [16] introduced a parameter α, called the
critical threshold value, to measure the “distance” of a simple game to the class
of weighted voting games:

α = α(N, v) = min
p≥0

max
W,L

p(L)
p(W )

, (1)

where the maximum is taken over all winning coalitions in W and all losing
coalitions in L. A simple game (N, v) is a weighted voting game if and only if
α < 1. This follows from observing that each optimal solution p of (1) can be
scaled to satisfy p(W ) ≥ 1 for all winning coalitions W .

A concrete example of a simple game (N, v) that is not a weighted voting
game and that has in fact a large value of α was given in [12]:

Example. Let N = {1, . . . , n} for some even integer n ≥ 4, and let the minimal
winning coalitions be the pairs {1, 2}, {2, 3}, . . . {n − 1, n}, {n, 1}. Consider any
payoff p ≥ 0 satisfying p(W ) ≥ 1 for every winning coalition W . Then pi+pi+1 ≥
1 for i = 1, . . . , n (where n + 1 = 1). This means that p(N) ≥ 1

2n. Then, for at
least one of L = {2, 4, 6, . . . , n} and L = {1, 3, 5, . . . , n − 1}, we have p(L) ≥ 1

4n,
showing that α ≥ 1

4n. On the other hand, it is easily seen that p ≡ 1
2 satisfies
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p(W ) ≥ 1 for all winning coalitions and p(L) ≤ 1
4n for all losing coalitions,

showing that α ≤ 1
4n. Thus α = 1

4n.

This example led the authors of [12] to the following conjecture:
Conjecture 1 [12]. For every simple game (N, v), it holds that α ≤ 1

4n.

Our Results. In Sect. 2 we prove that Conjecture 1 holds for the case where all
minimal winning coalitions have size 3 and for its complementary case where no
minimal winning collection has size 3. We were not able to prove Conjecture 1
for all simple games. However, in Sect. 3 we show that α ≤ 2

7n ≈ 0.2858n.
In Sect. 4 we consider a subclass of simple games based on a natural desirabil-

ity order [25]. A simple game (N, v) is complete if the players can be ordered by
a complete, transitive ordering �, say, 1 � 2 � · · · � n, indicating that higher
ranked players have more “power” than lower ranked players. More precisely,
i � j means that v(S ∪ i) ≥ v(S ∪ j) for any coalition S ⊆ N\{i, j}. The class
of complete simple games properly contains all weighted voting games [14]. For
complete simple games, we show an asymptotically lower bound on α, namely
α = O(

√
n ln n). This bound matches, up to a lnn factor, the lower bound of

Ω(
√

n) in [12] (conjectured to be tight in [12]). Intuitively, complete simple games
are much closer to weighted voting games than arbitrary simple games. So, from
this perspective, our result seems to support the hypothesis that α is indeed a
sensible measure for the distance to weighted voting games.

In Sect. 5 we discuss some algorithmic and complexity issues. We focus on
instances where all minimal winning coalitions have size 2. We say that such
simple games are graphic, as they can conveniently be described by a graph
G = (N,E) with vertex set N and edge set E = {ij | {i, j} is winning}. For
graphic simple games we show that computing α is NP-hard in general, but
polynomial-time solvable if the underlying graph G = (N,E) is bipartite, or if
α is known to be small (less than a fixed number a).

Related Work. Due to their practical applications in voting systems, com-
puter operating systems and model resource allocation (see e.g. [3,7]), structural
and computational complexity aspects for solution concepts for weighted voting
games have been thoroughly investigated [9,10,13,16].

Another way to measure the distance of a simple game to the class of weighted
voting games is to use the dimension of a simple game [28], which is the small-
est number of weighted voting games whose intersection equals a given simple
game. However, computing the dimension of a simple game is NP-hard [8], and
the largest dimension of a simple game with n players is 2n−o(n) [21]. Moreover,
α may be arbitrarily large for simple games with dimension larger than 1. Hence
there is no direct relation between the two distance measures. Gvozdeva, Hemas-
paandra, and Slinko [16] introduced two other distance parameters as well. One
measures the power balance between small and large coalitions. The other one
allows multiple thresholds instead of threshold 1 only.

For graphic simple games, it is natural to take the number of players n as the
input size for answering complexity questions, but in general simple games may
have different representations. For instance, one can list all minimal winning
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coalitions or all maximal losing coalitions. Under these two representations the
problem of deciding if α < 1, that is, if a given simple game is a weighted voting
game, is also polynomial-time solvable. This follows from results of [17,23], as
shown in [13]. The latter paper also showed that the same result holds if the
representation is given by listing all winning coalitions or all losing coalitions.

As mentioned, a crucial case in our study is when the simple game is graphic,
that is, defined on some graph G = (N,E). In the corresponding matching game
a coalition S ⊆ N has value v(S) equal to the maximum size of a matching in
the subgraph of G induced by S. One of the most prominent solution concepts
is the core of a game, defined by core(N, v) := {p ∈ R

n | p(N) = v(N), p(S) ≥
v(S) ∀S ⊆ N}. Matching games are not simple games. Yet their core constraints
are readily seen to simplify to p ≥ 0 and pi + pj ≥ 1 for all ij ∈ E. Classical
solution concepts, such as the core and core-related ones like least core, nucleolus
or nucleon are well studied for matching games, see, for example, [4,5,11,19,20,
27]. However, for graphic simple games we aim to bound p(L) over all losing
coalitions, subject to p ≥ 0, pi + pj ≥ 1 for all ij ∈ E, whereas for matching
games with an empty core we wish to bound p(N), subject to p ≥ 0, pi + pj ≥ 1
for all ij ∈ E. Nevertheless, basic tools from matching theory like the Gallai-
Edmonds decomposition play a role in both cases.

2 Two Complementary Cases

We will treat the following two “complementary” cases: when all winning coali-
tions have size equal to 3, and when no winning coalition has size equal to 3.
First observe that winning coalitions of size 1 do not cause any problems. If
{i} is a winning coalition of size 1, we satisfy it by setting pi = 1. Since no
losing coalition L contains i, we may remove i from the game and solve (1) with
respect to the resulting subgame. A similar argument applies if some i ∈ N is
not contained in any minimal winning coalition. We then simply define pi = 0
and remove i from the game. Thus, we may assume without loss of generality
that all minimal winning coalitions have size at least 2 and that they cover all
of N .

We first investigate the case where all minimal winning coalitions have size
exactly 2. This case (which is a crucial case in our study) can conveniently be
translated to a graph-theoretic problem. Let G = (N,E) be the graph with ver-
tex set N whose edges are exactly the minimal winning coalitions of size 2 in our
game (N, v). Our assumption that N is completely covered by minimal winning
coalitions means that G has no isolated vertices. Losing coalitions correspond to
independent sets of vertices L ⊆ N . Then the min max problem (1) becomes

α := αG := min
p

max
L

p(L), (2)

where the minimum is taken over all feasible pay-off vectors p, that is, p ∈ R
n
+

with pi+pj ≥ 1 for every ij ∈ E, and the maximum is taken over all independent
sets L ⊆ N .
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Fig. 1. A well-spread bipartite graph.

We first consider the case where G = (A ∪ B,E) is bipartite. To explain the
basic idea, we introduce the following concept (illustrated in Fig. 1).

Definition. Let G = (A ∪ B,E) be a bipartite graph of order n = |A| + |B|
without isolated notes and assume without loss of generality that |A| ≤ |B|. Let
λ ≤ 1

2 such that |A| = λn (and |B| = (1 − λ)n). We say that G is well-spread
with parameter λ if for all S ⊆ A we have

|S|
|N(S)| ≤ |A|

|B| =
λ

1 − λ
.

(Here, as usual, N(S) ⊆ B denotes the set of neighbors of S in B.)

Examples of well-spread bipartite graphs are biregular graphs or biregular graphs
minus an edge. Note that if G is well-spread with parameter λ ≤ 1

2 , then Hall’s
condition |N(S)| ≥ |S| for all S ⊆ A is satisfied, implying that A can be com-
pletely matched to B (see, for example, [22]). The following lemma is the key
observation.

Lemma 1. Let G = (A ∪ B,E) be well-spread with parameter λ ≤ 1
2 . Then

p ≡ λ on B and p ≡ 1 − λ on A yields αG ≤ 1
4n.

Proof. Assume L ⊆ N is an independent set. Let ρ ≤ 1 such that |L∩A| = ρλn.
Since G is well-spread, we get |N(L ∩ A)| ≥ ρ(1 − λ)n, so that |L ∩ B| ≤ (1 −
ρ)(1−λ)n. Thus p(L) = |L∩A|(1−λ)+|L∩B|λ ≤ ρλn(1−λ)+(1−ρ)(1−λ)nλ ≤
ρ 1
4n + (1 − ρ) 14n ≤ 1

4n. ��
In general, when G = (A ∪ B,E) is not well-spread, we seek to decompose

G into well-spread induced subgraphs Gi = (Ai ∪ Bi, Ei) with A =
⋃

Ai and
B =

⋃
Bi. Of course, this can only work if G = (A ∪ B,E) is such that A can

be matched to B in G.

Proposition 1. Let G = (A∪B,E) be a bipartite graph without isolated vertices
and assume that A can be matched into B. Then G decomposes into well-spread
induced subgraphs Gi = (Ai ∪ Bi, Ei), with A =

⋃
Ai and B =

⋃
Bi in such a

way that for all i, j with i < j, λi ≥ λj and no edges join Ai to Bj.

Proof. Let S ⊆ A maximize |S|/|N(S). Set A1 := S and B1 := N(S). Let G′

be the subgraph of G induced by A\A1 and B′ := B\B1. Then G′ satisfies the
assumption of the Proposition. Indeed, if A′ cannot be matched into B′ in G′,
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then there must be some S′ ⊆ A′ with |S′| > |N ′(S′)|, where N ′(S′) = N(S′)\B1

is the neighborhood of S′ in G′. But then |S ∪S′| = |S|+ |S′| and |N(S ∪S′)| ≤
|N(S)| + |N ′(S)| shows that S cannot maximize |S|/|N(S)|, a contradiction.
Thus, by induction, we may assume that G′ decomposes in the desired way into
well-spread subgraphs G2, . . . , Gk with parameters λ2 ≥ · · · ≥ λk. The claim
then follows by observing that (i) no edges join B1 to A′; and (ii) λ1 ≥ λ2

(otherwise S ∪ A2 would contradict the choice of S maximizing |S|/|N(S)|). ��
We combine the last two results.

Corollary 1. For every bipartite graph G = (A ∪ B,E) of order n satisfying
the assumption of Proposition 1, there exists a payoff vector p ≥ 0 such that
pi + pj ≥ 1 for ij ∈ E and p(L) ≤ 1

4n for any independent set L ⊆ A ∪ B. In
addition, p can be chosen so as to satisfy p ≥ 1

2 on A.

Proof. The result follows immediately from Lemma 1 and Proposition 1. Note
that if p is chosen as p ≡ 1 − λi on Ai, then it holds that p ≥ 1

2 indeed. ��
As we will see, the assumption of Proposition 1 is not really restrictive for

our purposes. A (connected) component C of a graph G is even (odd) if C has
an even (odd) number of vertices. A graph G = (N,E) is factor-critical if for
every vertex v ∈ V (G), the graph G − v has a perfect matching. We recall the
well-known Gallai–Edmonds Theorem (see [22]) for characterizing the structure
of maximum matchings in G; see also Fig. 2. There exists a (unique) subset
A ⊆ N , called a Tutte set, such that (i) every even component of G − A has a
perfect matching; (ii) every odd component of G − A is factor-critical; and (iii)
every maximum matching in G is the union of a perfect matching in each even
component, a nearly perfect matching in each odd component and a matching
that matches A (completely) to the odd components.

Fig. 2. Tutte set A splitting G into even and odd components (possibly single nodes).

We are now ready to derive our first main result.1

1 For n is odd, the upper bound in Theorem 1 can be slightly strengthened to n2−1
4n

[18].
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Theorem 1. Let G = (N,E) be a graph of order n. Then αG ≤ 1
4n.

Proof. Let A ⊆ N be a Tutte set. Contract each odd component in G − A to
a single vertex and let B denote the resulting set of vertices. The subgraph Ḡ
induced by A ∪ B then satisfies the assumption of Corollary 1. Let p̄ ∈ R

|A|+|B|

be the corresponding payoff vector. We define p ∈ R
n by setting pi = p̄i for every

vertex i ∈ A and every vertex i that corresponds to an odd component of size 1
in G − A. All other vertices get pj = 1

2 .
It is straightforward to check that p ≥ 0 and pi + pj ≥ 1. Indeed, it holds

that p̄ ≥ 1
2 everywhere except on B, so the only critical edges ij have i ∈ A

and j a singleton odd component. But in this case pi + pj = p̄i + p̄j ≥ 1. Thus
we are left to prove that for every independent set L ⊆ N , p(L) ≤ 1

4n. Let B0

denote the set of singleton odd components i ∈ B, L0 := (L ∩ A) ∪ (L ∩ B0) and
n0 := |A| + |B|. Clearly, L0 is an independent set in the bipartite graph Ḡ, and
p ≡ p̄ on L0. We thus conclude that p(L0) ≤ 1

4n0.
Next let us analyze L ∩ C where C ⊆ N\A is an even component. As C is

perfectly matchable, L contains at most |C|/2 vertices of C. So p(L∩C) ≤ 1
4 |C|.

A similar argument applies to the odd components. Let C be an odd component
in G − A of size at least 3. Then certainly L cannot contain all vertices of C, so
there exists some i ∈ C\L. Since C is factor-critical, C\i is perfectly matchable,
implying that L can contain at most half of C\i. Thus |L∩C| ≤ (|C|−1)/2 and
p(L ∩ C) ≤ (|C| − 1)/4.

Summarizing, n − n0 = |N | − (|A| + |B|) is the sum over all |C|, where C is
an even component plus the sum over all |C| − 1 where C is an odd component,
and p(L\L0) is at most a 1

4 fraction of this, finishing the proof. ��
We note that both decompositions that we use to define the payoff p can

be computed efficiently. For the Edmonds–Gallai decomposition, this is a well-
known fact (see, for example, [22]). For the decomposition into well-spread sub-
graphs, this follows from the observation that deciding whether maxS

|S|
|N(S)| ≤ r

is equivalent to minS r|N(S)| − |S| ≥ 0, which amounts to minimizing the sub-
modular function f(S) = r|N(S)| − |S|; see, for example, [26] for a strongly
polynomial-time algorithm.

We now deal with the more general case where there are, in addition, minimal
winning coalitions of size 4 or larger. First recall how the payoff p that we
proposed in Corollary 1 works. For a bipartite graph G = (A ∪ B,E) that is
split into well-spread subgraphs Gi = (Ai ∪ Bi, Ei) with parameter λi, we let
p ≡ λi on Bi. So for λi < 1

4 , p may be infeasible, that is, we may encounter
winning coalitions W of size 4 or larger with p(W ) < 1. This problem can
easily be remedied by raising p a bit on each Bi and decreasing it accordingly
on Ai. Indeed, the standard (λ, 1 − λ) allocation rule proposed in Lemma 1 is
based on the simple fact that λ(1 − λ) ≤ 1

4 , which gives us some flexibility for
modification in the case where λ is small. More precisely, defining the payoff to be
p :≡ 1

4(1−λ) > 1
4 on B and 1−p < 3

4 on A for a bipartite graph (G = (A∪B,E),
well-spread with parameter λ, would work as well and thus solve the problem.
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Indeed, the unique independent set L that maximizes p(L) is L = B in this case,
which gives p(L) = p(B) = |B|/(4(1 − λ)) = 1

4n.
There is one thing that needs to be taken care of. Namely, in Proposition 1

we assumed that G = (A∪B,E) has no isolated vertices, an assumption that can
be made without loss of generality if we only have 2-element winning coalitions.
Now we may have isolated vertices that are part of winning coalitions of size 4
or larger. But this does not cause any problems either. We simply assign p := 1

4
to these isolated vertices to ensure that indeed all winning coalitions W have
p(W ) ≥ 1. Formally, this can also be seen as an extension of our decomposition:
if G = (A ∪ B,E) contains isolated vertices, then they are all contained in B
(once we assume that A can be completely matched into B). So the set of isolated
vertices can be seen as a “degenerate” well-spread final subgraph (Ak ∪ Bk, Ek)
with Ak = ∅ and parameter λk = 0. Our proposed payoff p ≡ 1

4(1−λk)
would

then indeed assign p = 1
4 to all isolated vertices.

It remains to observe that when we pass to general graphs, no further prob-
lems arise. Indeed, all that happens is that vertices in even and odd components
get payoffs p = 1

2 which certainly does no harm to the feasibility of p. Thus we
have proved the following result.

Corollary 2. Let (N, v) be a simple game with no minimal winning coalition of
size 3. Then α(N, v) ≤ 1

4n.

We end this section with the complementary case where all minimal winning
coalitions have size 3.

Proposition 2. Let (N, v) be a simple game with all minimal winning coalitions
of size 3. Then α(N, v) ≤ 1

4n.

Proof. We try p :≡ 1
3 , which is certainly feasible. If this yields max p(L) ≤ 1

4n,
then we are done. Otherwise, there exists a losing coalition L ⊆ N with p(L) =
1
3 |L| > 1

4n, or equivalently, |L| > 3
4n. In this case we use an alternative payoff

p̃ given by p̃ ≡ 1 on N\L and p̃ ≡ 0 on L. Since |N \ L| < 1
4n, this ensures

p̃(L̃) < 1
4n for any losing coalition L̃. On the other hand, p̃ is feasible, since a

winning coalition W cannot be completely contained in L, that is, there exists
a player i ∈ W with p̃i = 1 and hence p̃(W ) ≥ 1. ��

We note that Proposition 2 is a pure existence result. To compute p̃ it requires
to solve a maximum independent set problem in 3-uniform hypergraphs, which
is NP-hard. This can be seen from a reduction from the maximum independent
set problem in graphs, which is well known to be NP-hard (see [15]). Given a
graph G = (V,E), construct a 3-uniform hypergraph Ḡ as follows. Add n = |V |
new vertices labeled 1, . . . , n and extend each edge e = ij ∈ E to n edges
{i, j, 1}, . . . , {i, j, n} in Ḡ. It is readily seen that a maximum independent set
of vertices in Ḡ (that is, a set of vertices that does not contain any hyperedge)
consists of the n new vertices plus a maximum independent set in G.
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3 Minimal Winning Coalitions of Arbitrary Size

In this section we try to combine the ideas for the two complementary cases to
derive an upper bound α ≤ 2

7 for the general case. The payoffs p that we consider
will all satisfy p ≥ 1

4 so that only winning coalitions of size 2 and 3 are of interest.
The basic idea is to start with a bipartite graph (A∪B,E) representing the size 2
winning coalitions and a payoff satisfying all these. Standard payoffs that we use
satisfy p ≥ 1

4 on B and p ≥ 1
2 on A. Hence we have to worry only about 3-

element winning coalitions contained in B. We seek to satisfy these by raising
the payoff of some vertices in B without spending too much in total.

More precisely, consider a bipartite graph G = (A ∪ B,E) representing the
winning coalitions of size 2. As before, we assume that A can be completely
matched into B, so that our decomposition into well-spread subgraphs Gi =
(Ai ∪Bi, Ei) applies (with possibly the last subgraph Gk = (Ak ∪Bk, Ek) having
Ak = ∅ and Bk consisting of isolated points, as explained at the end of the
previous section). Recall the payoff λ̄i :≡ 1

4(1−λi)
on Bi and 1− λ̄i on Ai defined

for the proof of Corollary 2. We first consider the following payoff p̄ :≡ 1 − λ̄i

on Ai and p̄ :≡ λ̄i on Bi for λi ≥ 1
4 , so λ̄i ≥ 1

3 . For subgraphs with λi < 1
4

(including possibly a final λk = 0) we define p̄ ≡ 2
3 on Ai and p̄ ≡ 1

3 on Bi. Thus
it holds that p̄ ≥ 1

3 everywhere, in particular, p̄ is feasible with respect to all
winning coalitions of size at least 3.

Let L̄ be a losing coalition with maximum p̄(L). We define an alternative
payoff p̃ as follows: For λi ≥ 1

4 we set p̃ :≡ 1 − λ̄i on Ai, p̃ :≡ λ̄i on B ∩ L̄ and
p̃ :≡ 1

2 on Bi\L̄. For λi < 1
4 we set p̃ :≡ 3

4 on Ai, p̃ :≡ 1
4 on Bi ∩ L̄ and p̃ :≡ 1

2 on
Bi\L̄. Clearly, both p̄ and p̃ are feasible. We claim that a suitable combination
of these two yields the desired upper bound (proof omitted) yielding Theorem 2.

Lemma 2. For p := 3
7 p̄ + 4

7 p̃ we get α = maxL p(L) ≤ 2
7n.

Theorem 2. For every simple game (N, v), α(N, v) ≤ 2
7n.

4 Complete Simple Games

Intuitively, the class of complete simple games is “closer” to weighted voting
games than general simple games. The next result quantifies this expectation.

Theorem 3. A complete simple game (N, v) has α ≤ √
n ln n.

Proof. Let N = {1, . . . , n} be the set of players and assume without loss of
generality that 1 � 2 � · · · � n. Let k ∈ N be the largest number such that
{k, . . . , n} is winning. For i = 1, . . . , k, let si denote the smallest size of a winning
coalition in {i, . . . , n}. Define pi := 1/si for i = 1, . . . , k and pi := pk for i =
k + 1, . . . , n. Thus, obviously, p1 ≥ · · · ≥ pk = · · · = pn.

Consider a winning coalition W ⊆ N and let i be the first player in W (with
respect to �). If |W | ≤ √

n, then si ≤ |W | ≤ √
n and hence p(W ) ≥ pi = 1

si
≥

1√
n
. On the other hand, if |W | >

√
n, then p(W ) >

√
npk ≥ √

n 1
n = 1√

n
.
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For a losing coalition L ⊆ N , we conclude that |L ∩ {1, . . . , i}| ≤ si − 1
(otherwise L would dominate the winning coalition of size si in {i, . . . , n}). So
p(L) is bounded by max

∑k
i=1 xi

1
si

subject to
∑i

j=1 xj ≤ si − 1, i = 1, . . . , k.
The optimal solution of this maximization problem is x1 = s1 − 1, xi = si −
si−1 for 2 ≤ i ≤ k. Hence p(L) ≤ (s1 −1) 1

s1
+(s2 − s1) 1

s2
+ · · ·+(sk − sk−1) 1

sk
≤

1
2 + · · · + 1

sk
≤ lnn. Summarizing, we obtain p(L)/p(W ) ≤ √

n ln n. ��

In [12] it is conjectured that α = O(
√

n) holds for complete simple games. In
the same paper a lower bound of order

√
n is given, as well as specific subclasses

of complete simple games for which α = O(
√

n) can be proven.

5 Algorithmic Aspects

A fundamental question concerns the complexity of our original problem (1). For
general simple games this depends on how the game in question is given, and we
refer to Sect. 1 for a discussion. Here we concentrate on the graphic” case.

Proposition 3. Computing αG for bipartite graphs G can be done in polynomial
time.

Proof. Let P ⊆ R
n Be the set of feasible payoffs (satisfying p ≥ 0 and pi+pj ≥ 1

for ij ∈ E). For α ∈ R, let Pα := {p ∈ P | p(L) ≤ α for all independent L ⊆ N}.
Thus αG = min{α | Pα �= ∅}. The separation problem for Pα (for any given
α) is efficiently solvable. Given p ∈ R

n, we can check feasibility and whether
max{p(L) | L ⊆ N independent} ≤ α by solving a corresponding maximum
weight independent set problem in the bipartite graph G. Thus we can, for any
given α ∈ R, apply the ellipsoid method to either compute some p ∈ Pα or
conclude that Pα = ∅. Binary search then exhibits the minimum value for which
Pα is non-empty; binary search works indeed in polynomial time as the optimal
α has size polynomially bounded in n, which follows from observing that

α = min{a | pi+pj ≥ 1 ∀ij ∈ E, p(L)−a ≤ 0 ∀L ⊆ N independent, p ≥ 0} (3)

can be computed by solving a linear system of n constraints defining an optimal
basic solution of the above linear program. ��

The proof of Proposition 3 also applies to other classes of graphs, such as
claw-free graphs (see [6]) in which finding a weighted maximum independent set
is polynomial-time solvable. In general, the problem is NP-hard.

Proposition 4. Computing αG for arbitrary graphs G is NP-hard.

Proof. Let G′ = (N ′, E′) and G′′ = (N ′′, E′′) be two disjoint copies of a graph
G = (N,E) with independence number k. For each i′ ∈ N ′ and j′′ ∈ N ′′ add an
edge i′j′′ if and only if i = j or ij ∈ E and call the resulting graph G∗ = (N∗, E∗).
We claim that αG∗ = k/2 (thus computing αG∗ is as difficult as computing k).
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First note that the independent sets in G∗ are exactly the sets L∗ ⊆ N∗

that arise from an independent set L ⊆ N in G by splitting L into two com-
plementary sets L1 and L2 and defining L∗ := L′

1 ∪ L′′
2 . Hence, p ≡ 1

2 on N∗

yields max p(L∗) = k/2 where the maximum is taken over all independent sets
L∗ ⊆ N∗ in G∗. This shows that αG∗ ≤ k/2.

Conversely, let p∗ be any feasible payoff in G∗, that is, p∗ ≥ 0 and p∗
i +p∗

j ≥ 1
for all ij ∈ E∗. Let L ⊆ N be a maximum independent set of size k in G and
construct L∗ by including for each i ∈ L either i′ or i′′ in L∗, whichever has
p-value at least 1

2 . Then, by construction, L∗ is an independent set in G∗ with
p∗(L∗) ≥ k/2, showing that αG∗ ≥ k/2. ��

Summarizing, for graphic simple games, computing αG is as least as hard
as computing the size of a maximum independent in G. For our last result we
assume that a is a fixed integer, that is, a is not part of the input.

Proposition 5. For every fixed a > 0, it is possible to decide if αG ≤ a in
polynomial time for an arbitrary graph G = (N,E).

Proof. Let k = 2�a + ε� for some ε > 0. By brute-force, we can check in O(n2k)
time if N contains 2k vertices {u1, . . . , uk} ∪ {v1, . . . , vk} that induce k disjoint
copies of P2, that is, paths Pi = uivi of length 2 for i = 1, . . . , k with no
edges joining any two of these paths. If so, then the condition p(ui) + p(vi) ≥ 1
implies that one of ui, vi, say ui, must receive a payoff p(ui) ≥ 1

2 , and hence
U = {u1, . . . , uk} has p(U) ≥ k/2 > a. As U is an independent set, α(G) > a.

Now assume that G does not contain k disjoint copies of P2 as an induced
subgraph, that is, G is kP2-free. For every s ≥ 1, the number of maximal inde-
pendent sets in a sP2-free graphs is nO(s) due to a result of Balas and Yu [2].
Tsukiyama, Ide, Ariyoshi, and Shirakawa [30] show how to enumerate all maxi-
mal independent sets of a graph G on n vertices and m edges using time O(nm)
per independent set. Hence we can find all maximal independent sets of G and
thus solve, in polynomial time, the linear program (3). Then it remains to check
if the solution found satisfies α ≤ a. ��

6 Conclusions

After our paper appeared, Kanstantsin Pashkovich [1] found a proof of Conjec-
ture 1. Hence it remains to tighten the upper bound for complete simple games
to O(

√
n). In order to classify simple games, many more subclasses of simple

games have been identified in the literature. Besides the two open problems,
no optimal bounds for α are known for other subclasses of simple games, such
as strong, proper, or constant-sum games, that is, where v(S) + v(N\S) ≥ 1,
v(S) + v(N\S) ≤ 1, or v(S) + v(N\S) = 1 for all S ⊆ N , respectively.

Acknowledgments. The second and fourth author thank Péter Biró and Hajo
Broersma for fruitful discussions on the topic of the paper.
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Abstract. We study a generalization of hide and seek game of von
Neumann [14], where each player has one or more resources. We char-
acterize the value and Nash equilibria of such games in terms of their
unidimensional marginal distributions. We propose a O(n log(n)) time
algorithm for computing unidimensional marginal distributions of equi-
librium strategies and a quadratic time algorithm for computing mixed
strategies given the margins. The characterization allows us to establish
a number of interesting qualitative features of equilibria.

1 Introduction

The hide and seek game is defined as follows. There are two players, the hider
(H) and the seeker (S), and [n] = {1, . . . , n} of n ≥ 2 boxes (or cells). Each box
i has a value vi > 0 associated with it. The hider is endowed with h ≥ 1 objects
(hiding resources) that he hides in the boxes so that each box contains at most
one object. Not observing the choices of the hider, the seeker chooses s ≥ 1 of
the n boxes to check (i.e. the seeker is endowed with s seeking resources). After
the choices are made, the seeker pays the hider the value of each unchecked box
with a hidden object. We are interested in characterizing and computing mixed
strategy Nash equilibria (called equilibria for short) of the game. The hide and
seek game is a finite zero-sum games. This implies that the set of equilibrium
strategies and the set minimax strategies for each player coincide. In addition,
all equilibria are payoff equivalent and the non-negative equilibrium payoff is the
value of the game. We are also interested in characterizing the value the game.

The hide and seek game was defined by von Neumann in 1953 [14] and is
of interests since then as it constitutes an elegant and simple model of strategic
mismatch. Such a model finds natural security and military applications, but
it also applies to political campaigns, where a political party needs to avoid
campaigning in the areas of an incumbent, to entry games where blocking the
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entrant requires matching his design (c.f. [6]), and to auditing election results
in order to prevent results manipulation (c.f. [2] and the references there). An
interesting extension of this game is the hide and seek game on graphs, where
the hider chooses a node and the seeker, choosing a node, checks the node and its
neighbourhood. Equilibrium strategies in this game can be used to provide game
theoretic interpretation for the graph theoretic notions of fractional domination
and fractional packing (c.f. [8,15]).

2 The Model

There are two players, H and S (the hider and the seeker) who have a conflict
over the set [n] = {1, . . . , n} of boxes with values v = (v1, . . . , vn) such that
v1 ≥ . . . ≥ vn.1 The players are endowed with fixed numbers of resources: H has
h ≥ 1 hiding resources and player S has s ≥ 1 seeking resources. The players,
simultaneously and independently allocate their resources to the boxes, so that
each box receives at most one resource of a given type. A box is won by the
hider (and lost by the seeker) if he is the only one to allocate a resources there.
Since the cases where a player has n or more resources are trivial, we assume
that each player has between 1 and n − 1 resources, 1 ≤ s, h ≤ n − 1. The set
of strategies of a player with m resources is the set of all m element subsets
of [n],

(
[n]
m

)
.

Payoff to S from a strategy profile (X,Y ) ∈ (
[n]
s

) × (
[n]
h

)
is ΠS(X,Y ) =

−∑
j∈Y \X vj , and payoff to the hider from the same strategy profile is

ΠH(X,Y ) =
∑

j∈Y \X vj . We assume that both players maximise their expected
payoffs.

The description above defines a zero-sum game Γ (v, s, h). We are interested
in mixed strategy Nash equilibria (called equilibria for short) as well as the value
of the game, denoted by Val(v, s, h).

3 Contribution and Related Work

The contribution of our paper is threefold: firstly, we provide an analytical char-
acterization of equilibria and the value of hide and seek games, secondly, we
provide an algorithm for constructing probability distributions on fixed size sets
associated with the given marginal distribution and, thirdly, we provide an effi-
cient algorithm for computing these equilibria. We discuss the contribution and
the related literature below.

Analytical Characterization of Equilibria. The main contribution of the paper is
the characterization of equilibria of hide and seek games obtained in the main
theorem. The equilibria for the case of the game where h = s = 1 were already
obtained by von Neumann in [14]. In the case of more resources, the closest
1 Throughout the paper, given a positive integer m we will follow the usual practice

of using [m] to denote the set {1, . . . ,m}.
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results to ours were obtained by Korzhyk et al. in [13]. The authors study related,
but much more complex, games called security games. They show that a subclass
of these games can be reduced to zero-sum games similar to hide and seek games.
In the context of hide and seek games, these games could be described as follows.
Each box has two values: vi > 0 and wi ≥ 0 associated with it. After the choices
are made, apart from paying H the value vi for each unchecked box i with a
hidden object, S pays H the value wi of each checked box with a hidden object.
Clearly the hide and seek game is a special case of this game with wi = 0 for all
1 ≤ i ≤ n. The authors provide a complete characterization of unidimensional
marginal distributions of equilibrium strategies in the case where h = 1. However,
the formula for the marginals of equilibrium strategies of S is in terms of the
value of the game (which is not characterized analytically). The authors provide
also equilibria for the cases where both s ≥ 1 and h > 1 and the values (vi)i∈[n]

and (wi)i∈[n] are such that equilibrium mixed strategies of H in the game with
s seeking resources and one hiding resource are such the probabilities of hiding
the object in the boxes remain ≤1 after multiplying them by h. In the case of
hide and seek games, our results cover all the numbers of hiding and seeking
resources and we do not make any additional assumptions about the values of
the boxes, (vi)i∈[n]. In addition, we show uniqueness of unidimensional marginal
distributions associated with equilibrium strategies of the two players, barring
non-generic cases where multiplicity is possible. To obtain this result, we reduce
the calculation of the marginals to solving simple systems of linear equations.2

To make this reduction possible, we show (under certain necessary assumptions)
that any vector of unidimensional marginal distributions summing to some given
integer m ≥ 1 is associated with a probability distribution over m element
subsets of n with full support.

Computation of Equilibria from Unidimensional Marginal Distributions. We
provide an algorithm that, given a vector p = (pi)i∈N with pi ∈ [0, 1] and∑

i∈[n] pi = m constructs a distribution on the set of m element subsets of

[n],
(
[n]
m

)
, with unidimensional marginal distribution p and with support of size

at most n. The algorithm requires at most n iterations, each requiring O(n)
operations. Hence it computes the output distribution in time O(n2). The algo-
rithms for computing probability distributions from marginal distributions exist
in setups similar to ours. In the context of security games, Korzhyk et al. [11]
consider the problem of finding the probability distribution over possible allo-
cations of m heterogeneous resources to n targets from marginal distributions
which, for each pair (resource, target) provides the probability of the resource
being assigned to the target. The authors use Birkhoff-von Neumann theorem [4]
and Dulmage-Halperin algorithm [7] to provide an algorithm for computing the
required probability distributions in time O((n+m)4.5). The algorithm produces
distributions with supports of size O((n+m)2). This approach could be adopted

2 The system of equations can be easily used to obtain full characterization in the cases
with multiple equilibria. We decided to leave it out of the paper due to presentation
considerations.
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to compute the desired distributions in our setup (e.g. by naming the resources
and considering all the permutations of them). However, it is not clear how to
do it efficiently. Moreover, the computational cost of this approach is higher
compared to ours. Another, related, work Ahmadinejad et al., [1], considers the
problem of computing Nash equilibria in a very general class of conflicts with
multiple boxes containing, in particular, the Colonel Blotto game [5]. Their app-
roach involves computing the unidimensional marginal distributions for equilib-
rium strategies. To obtain the strategies from the marginals, the apply the classic
result of Grötschel et al., [9], that allows for computing the strategies with sup-
port of size at most n+1 in polynomial time. The algorithm to compute that has
to be extracted from the proof of the result in [9] and involves applying linear
programming. The algorithm proposed by us is direct, simple, and has lower
computational cost. Beyond the current paper, our algorithm can be applied
to compute equilibrium distributions from the margins in more general security
games, like those studied in [10,12].

Computation of Equilibrium Unidimensional Marginal Distributions. The ana-
lytical characterization or equilibrium marginal distributions basis for an elemen-
tary algorithm for computing these distributions in time O(nlog(n)). The closest
related algorithm is the one proposed by Korzhyk et al., [12] in the context of
security games with multiple attacking resources. That algorithm computes the
solution in time O(n2) and is not based on an analytical result. The authors do
not propose an algorithm for computing the equilibria from the marginals. The
algorithm proposed in [1], for general conflicts with multiple boxes, could also
be used to compute equilibria in hide and seek games. That algorithm, however,
is based on the ellipsoid method for solving linear programs with exponentially
many constraint. Thus its computational cost, although polynomial, is too inef-
ficient to be used in practice (c.f. the critique of this approach in [3]).

Very recently, a paper by Behnezhad et al. [2] consider the von Neumann’s
hide and seek game under the name of “auditing game”. The authors study
computation of strategies that guarantee securing the given level of utility with
given probability. The analytical results obtained in this paper could be helpful
in addressing that problem as well. In particular, the complete characterisation
we provide can be used for finding strategies with additional guarantees within
the set of equilibrium strategies.

Full version of the paper is available at: http://www.mimuw.edu.pl/
∼amosild/sagt20-full.pdf.
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Abstract. We consider the classic cake-cutting problem of producing
envy-free allocations, restricted to the case of four agents. The problem
asks for a partition of the cake to four agents, so that every agent finds
her piece at least as valuable as every other agent’s piece. The problem
has had an interesting history so far. Although the case of three agents is
solvable with less than 15 queries, for four agents no bounded procedure
was known until the recent breakthroughs of Aziz and Mackenzie [2,3].
The main drawback of these new algorithms, however, is that they are
quite complicated and with a very high query complexity. With four
agents, the number of queries required is close to 600. In this work we
provide an improved algorithm for four agents, which reduces the current
complexity by a factor of 3.4. Our algorithm builds on the approach of
[3] by incorporating new insights and simplifying several steps. Overall,
this yields an easier to grasp procedure with lower complexity.

1 Introduction

Producing an envy-free allocation of an infinitely divisible resource is a clas-
sic problem in fair division. As it is customary in the literature, the resource
is represented by the interval [0, 1], and each agent has a probability measure
encoding her preferences over subsets of [0, 1]. The goal is to divide the entire
interval among the agents so that no one envies the subset received by another
agent. We note that the partition does not need to consist of contiguous pieces;
the piece of an agent may be any finite collection of subintervals.

The problem has a long and intriguing history. It has been long known that
envy-free allocations exist for any number of agents, via non-constructive proofs
[8,16,18]. For algorithmic results, the standard approach is to assume access to
the valuation functions via evaluation and cut queries (see Sect. 2). Under this
model, we are interested in counting the number of queries needed for produc-
ing an envy-free allocation. For two agents, the famous cut-and-choose protocol
requires only two queries. For three agents, the procedure of Selfridge and Con-
way [6] guarantees an envy-free allocation after at most 14 queries. For four
c© Springer Nature Switzerland AG 2018
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agents and onwards, however, the picture changes drastically. The first finite,
yet unbounded, algorithm was proposed by [5]. This was followed up by other
more intuitive algorithms, which are also unbounded, e.g., [10,13]. Finding a
bounded algorithm was open for decades and positive results had been known
only for certain special cases, like piece-wise uniform or polynomial valuations
[4,7,9]. It was only recently that a major breakthrough was achieved by Aziz
and Mackenzie, presenting the first bounded algorithms, initially for four agents
[3], and later for an arbitrary number of agents [2].

Despite these significant advances, the algorithms of [2,3] are still of very
high complexity. For an arbitrary number of agents, n, the currently known
upper bound involves a tower of exponents of n, and even for the case of four
agents, the known algorithm requires close to 600 queries. On top of that, these
algorithms are rather complicated and their proof of correctness requires tedious
case analysis in certain steps. Hence, a clean-cut and more intuitive algorithm
is still missing.

Contribution: We focus on the case of four agents and present an improved algo-
rithm that reduces the query complexity roughly by a factor of 3.4 (requiring 61
cut queries and 110 evaluation queries). Our algorithm utilizes building blocks
that are similar to the ones used by [3], but by incorporating new insights and
simplifying several steps, we obtain a solution with significantly fewer queries.
The main differences between our work and [3] are highlighted at the end of this
section. Our algorithm works by maintaining a partial allocation along with a
leftover residue. Throughout its execution, it keeps updating the allocation and
reducing the residue, until certain structural properties are satisfied. These prop-
erties involve the notion of domination, where we say that an agent i dominates
another agent j, if allocating the whole remaining residue to j will not create
any envy for i. A crucial part of the algorithm is to get a partial allocation where
one agent is dominated by two others. Once we establish this, we then exhibit
how to produce a complete allocation of the cake without introducing any envy.
Overall, this results in an algorithm with markedly lower query complexity.

Further related work: We refer the reader to the book chapter [12] for a more
proper treatment of the related literature. Towards simplifying the algorithm of
Aziz and Mackenzie [3], the work of Segal-Halevi et al. [15] (see their Appendix
B) proposes a conceptually simpler framework, without, however, improving the
query complexity. Apart from the algorithmic results mentioned above, there
has also been a line of work on lower bounds. For envy-freeness, Stromquist [17]
showed that there is no finite protocol for producing envy-free allocations where
all the pieces are contiguous. Later on, Procaccia [11] established an Ω(n2) lower
bound for producing non-contiguous envy-free allocations. Apparently, there is
still a huge gap between the known lower and upper bounds for any n ≥ 4.

An Overview of the Algorithm. We start with a high level description of the
main ideas. As with most other algorithms, our algorithm maintains throughout
its execution a partial allocation of the cake, along with an unallocated residue.
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The goal is to keep updating the allocation and diminishing the residue, with the
invariant that the current partial allocation is always envy-free. Once the residue
is eliminated, we are left with a complete envy-free allocation. As mentioned ear-
lier, the notion of domination is pivotal in our approach. The algorithm creates
certain domination patterns between the agents, working in phases as follows:

Phase One. We find this first phase of particular importance, as it is also the
most computationally demanding one. Here the goal is to get a partial envy-free
allocation in which some agent is dominated by two other agents as in Fig. 1a.
In order to establish dominations among agents, we use as a subroutine the
so-called Core protocol. In the Core protocol one agent has the role of the
“cutter”, and the output is a new allocation with a strictly diminished residue.
The properties of Core have several interesting and crucial consequences. First,
if Core is executed twice with the same agent as the cutter, then this cutter
dominates at least one other agent in the resulting allocation. Moreover, if we
run Core two more times, we may not get any extra dominations right away but
we can still make a small correction so that the cutter dominates one more agent.
This is done by using a protocol, referred to as the Correction protocol, which
performs a careful redistribution. Finally, by running Core one more time with
a different cutter and the current residue, we show how further dominations arise
that lead to the desired structure of one agent being dominated by two others.
In total, phase one requires up to 6 calls to the Core protocol.

Phase Two. Suppose that at the end of phase one, agent A is dominated by
agents B and C. The goal in the second phase is to produce a partial envy-free
allocation where both A and D dominate both B and C. To achieve this goal,
we execute Core twice on the residue with D as the cutter. Then, if we still
do not have the required dominations, we use again the Correction protocol
to appropriately reallocate one of the last two partial allocations produced by
Core. This suffices to create the dominations shown in Fig. 1b.

Phase Three. Since both B and C are now dominated by A and D, we can simply
execute the cut-and-choose protocol for B and C on the remaining residue.

Similarities and Differences with the Aziz-Mackenzie Algorithm [3].
Our algorithm uses similar building blocks as the algorithm in [3] for four agents,
combined with new insights. Namely, our Core and Correction protocols on
a high level serve the same purpose as the core and the permutation protocols in
[3]. Conceptually, a crucial difference is the target structure of the domination
graph. The initial (and most query-demanding) step of [3] is to have every agent
dominate two other agents. Here, our goal in phase one is to have just one agent
dominated by two other agents. Once this is accomplished, it is possible to reach
a complete envy-free allocation much faster. Another important difference is the
implementation of the Core protocol itself. Our version is simpler regarding
both its statement and its analysis. It also differs in the sense that it takes as
input more information than in [3], such as the current allocation, and it is not
required to always output a partial envy-free allocation of the current residue.
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A

B C

D

(a)

A D

B C

(b)

Fig. 1. Here is an illustration of the domination graphs we want to achieve at the end
of the first (a) and the second (b) phase respectively. In both graphs additional edges
may be present but are not relevant.

This extra flexibility allows us to avoid the tedious case analysis stated in the
core protocol of [3] and, at the same time, further reduce the number of queries.

2 Preliminaries

Let N = {1, 2, 3, 4} be a set of four agents. The cake is represented as the interval
[0, 1]; a piece of the cake can be any finite union of disjoint intervals. Each agent
i ∈ N is associated with a valuation function vi defined on all finite unions of
intervals. We assume that the valuation functions satisfy the following standard
properties for all i ∈ N :

– Normalization: vi ([0, 1]) = 1.
– Additivity: for all disjoint X,X ′ ⊆ [0, 1]: vi (X ∪ X ′) = vi (X) + vi (X ′).
– Divisibility: for every [x, y] ⊆ [0, 1] and every λ ∈ [0, 1], there exists z ∈ [x, y]

such that vi ([x, z]) = λvi ([x, y]). Note that this implies that vi([x, x]) = 0,
for all x ∈ [0, 1].

– Nonnegativity: for every X ⊆ [0, 1] it holds that vi (X) ≥ 0.

By X = (X1,X2,X3,X4) we denote the allocation where agent i is given the
piece Xi.

Definition 1 (Envy-freeness). An allocation X = (X1,X2,X3,X4) is envy-
free, if vi (Xi) ≥ vi (Xj), for all i, j ∈ N , i.e., every agent prefers her piece to
any other agent’s piece.

We say that X is a partial allocation, if there is some cake that has not been
allocated yet, i.e.,

⋃4
i=1 Xi � [0, 1]. The unallocated cake is called the residue.

During the execution of the algorithm the residue diminishes, until eventually it
becomes the empty set. As we noted, an important notion is that of domination
or irrevocable advantage [6]. It will be insightful to think of a graph-theoretic
representation of our goals, via the domination graph of the current allocation.

Definition 2 (Domination and Domination Graph). Given a partial allo-
cation X = (X1,X2,X3,X4) and a residue R, we say that an agent i dominates
another agent j, if vi(Xi) ≥ vi(Xj ∪R). That is, i would not be envious of j even
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if j were allocated all of R. The domination graph with respect to X is a directed
graph where the nodes correspond to the agents and there exists a directed edge
(i, j) if and only if agent i dominates agent j.

Achieving certain patterns in the domination graph can make the allocation
of the remaining residue straightforward. For example, if there exists a node i
with in-degree 3, allocating all of the residue to agent i results in an envy-free
allocation. As another example, the protocol of [3] tries to get a domination
graph where every node has out-degree at least 2. In our algorithm, we also
enforce a certain structure on the domination graph.

The Robertson-Webb Model. The standard model in which we measure the
complexity of cake cutting algorithms is the one suggested by Robertson and
Webb [14] and formalized by Woeginger and Sgall [19]. In this model, two kinds
of queries are allowed:

– Cut queries: given an agent i, a point x ∈ [0, 1] and a value r, with r ≤
vi ([x, 1]), the query returns the smallest y ∈ [0, 1] such that vi ([x, y]) = r.

– Evaluation queries: given an agent i and an interval [x, y], return vi ([x, y]).

Virtually all known discrete protocols can be analyzed within this framework.
For example, the cut-and-choose protocol is implemented by making one cut
query for agent 1 with r = 1/2, starting from x = 0, followed by an evaluation
query on agent 2 for one of the pieces (which also reveals the value of the second
piece).

Conventions on Ties, Marks, Partial Pieces, and Residues. All algo-
rithms in this work ignore ties. However, assuming an appropriate tie-breaking
scheme, this is without loss of generality (also see the discussion in [2]).

We follow some conventions—also adopted in related work—when it comes
to handling trims and partial pieces. In various steps during the algorithm, one
agent cuts the residue into pieces, and the other agents are asked to place marks
on certain pieces. We always assume that marks are placed starting from the left
endpoint of a piece, and this operation creates a partial piece, contained between
the mark and the right endpoint. In particular, suppose we have a partition of
the residue into four contiguous pieces. Then, an agent may be asked to place
a mark on her most favorite piece so that the resulting partial piece has the
same value as her second favorite piece (see Fig. 2). The types of marks that the
algorithm needs are described in the following definition.

Definition 3. Given a partition of the residue into four pieces, we say that
an agent performs an x-mark, if she places a mark on each of her x − 1 most
valuable pieces so that the resulting partial pieces all have the same value as her
x-th favorite piece.

In the description of the algorithm we use 2-marks and 3-marks. Of course,
after all marks are placed, each connected piece may have multiple marks on it.
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2-mark

equal to the second piece

2 1 4 3

Fig. 2. The view of the residue for a non-cutter at the time she performs a 2-mark.

Whenever a connected piece p is only partially allocated, the part p′ of p that
is allocated is always the interval between the second rightmost mark and the
right endpoint of p. While at this point it is not clear whether a second mark on
a piece even exists, we show (see full version [1]) that marked pieces will have at
least two marks. Hence, if some agent i receives a partial piece p′, resulting from
an initial piece p, it is not necessarily true that p′ is defined by i’s own mark.

Note that in the above discussion the residue is seen as a single interval, while
in fact it may be a finite union of intervals. We keep this view throughout this
work as it is conceptually easier and allows for a cleaner presentation.1

3 The Algorithm

Our main result is the following theorem. All missing proofs can be found in the
full version of this work in [1].

Theorem 1. The Main Protocol returns an envy-free allocation and makes
at most 61 cut queries, and 110 evaluation queries.

We discuss first the main steps of our algorithm and provide the relevant
definitions and key properties.

Phase One. This is the most important part of the protocol, and computation-
ally the most demanding one. The goal in phase one is to get a partial envy-free
allocation, where some agent is dominated by two other agents, i.e., the underly-
ing domination graph has a node with in-degree at least 2, as depicted in Fig. 1.
In order to establish dominations among agents, we use a subroutine called
Core protocol (stated in Sect. 3.1). This protocol takes as input a specified
agent, called the cutter, the current partial allocation, and the current residue.
The output of Core is a partial (usually envy-free) allocation of the residue
with some additional properties described below. In the initial step of Core,
the cutter divides the current residue into four equal-valued pieces according to
her own valuation function. Throughout the protocol the rest of the agents—the
non-cutters—may mark these pieces, and at the end, agents may be allocated
either partial (marked) or complete pieces. Of course, if at any point Core
outputs an envy-free allocation of the whole cake, the algorithm terminates.

1 We elaborate further on this issue in our full version [1].
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For technical convenience, Core also takes as an input a subset of agents that
we choose to exclude from competition. This roughly means that the excluded
agents will choose their piece late in the Core protocol because they dominate
the other non-cutters. In most cases, this argument is just the empty set (and
when no such argument is specified we mean that it is ∅). The full description
of Core is given in Sect. 3.1 and for now, we treat it as a black box and assume
that it satisfies the following properties.

CoreProperty 1. The cutter and at least one more agent receive complete
pieces, each worth exactly 1/4 of the value of the current residue according to
the cutter’s valuation.

CoreProperty 2. The allocation output by any single execution of Core
when no agent is excluded from competition, is a (possibly partial) envy-free
allocation.

The above properties allow us to deduce an important fact: if Core is exe-
cuted at least twice with the same agent as the cutter, then this cutter dominates
at least one agent in the resulting allocation. In fact, we can be more specific
about the agent who gets dominated. The important observation here is that a
second run of Core makes the cutter dominate whoever received the so-called
insignificant piece in the first execution.

Definition 4. Let A be an allocation produced by a single run of Core. Among
the four pieces given to the agents, the partial piece that is least desirable to the
cutter is called the insignificant piece of A.

Hence, if we run Core twice, say with agent 1 as the cutter, we enforce
one edge in the domination graph. In order to proceed further and obtain a
node with in-degree two, we first attempt, as an intermediate step, to have a
domination graph where one node has out-degree equal to two. One may think
that the intermediate step can be achieved by running Core more times with
agent 1 as the cutter. The problem with this approach is that even if we further
execute Core any number of times, there is no guarantee that new dominations
will appear; the same agent may receive the insignificant piece in every iteration.

To fix this issue, it suffices to run Core 4 times with agent 1 as the cutter
and then make a small correction to one of the 4 partial allocations produced
by Core. In particular, denote by Ak = {pk1 , p

k
2 , p

k
3 , p

k
4}, with k = 1, ..., 4, the

suballocation output by the kth execution of Core within the for loop of line
1 of Main Protocol, and let Rk be the residue after the kth execution. Then
clearly for each agent i, pki ⊆ Rk−1, and the current allocation of the algorithm
after the 4 calls to Core is X = {p1, p2, p3, p4}, with pi = ∪4

k=1p
k
i . Among these

4 suballocations that X consists of, we identify one in which we can perform a
certain redistribution without introducing any envy. To do this, we exploit the
notion of gain, which is the difference between the value that an agent has for
her own piece compared to the pieces of agents she does not dominate.

Definition 5 (Gain). Let X = {p1, . . . , p4} be the current partial allocation
of the cake, and A = {p′

1, . . . , p
′
4} be a suballocation of X , i.e., p′

i ⊆ pi for
i ∈ N . Further, let Di be the set of agents that are dominated by i in X and
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Ni = N (Di∪{i}). Then the gain of i with respect to A, GA(i), is the difference
between vi(p′

i) and the maximum value of i for a piece in A given to any agent
in Ni, i.e., GA(i) = vi(p′

i) − maxj∈Ni
vi(p′

j).
2

Using Definition 5, we identify a suballocation among A1,A2,A3,A4, where
the gain of each agent is small compared to her combined gain from the other
three suballocations (line 4 of the algorithm). The existence of such an alloca-
tion is shown in the full version. Then, the redistribution is performed via the
Correction protocol which takes as input an allocation A, produced by Core,
and outputs an allocation A′ = π(A), where π is a permutation on N . In doing
so, special attention is paid to the insignificant piece of A. For now, we treat
Correction as a black box and ask that it satisfies the three properties below;
see Sect. 3.1 for its description.

Main Protocol(N)
Phase One

1 for count = 1 to 4 do
2 Run Core on the current residue with agent 1 as the cutter.

3 if the same agent got the insignificant piece in all 4 executions of Core then
4 Find A∗ ∈ {A1,A2,A3,A4} such that GA∗(i) ≤ ∑

A�=A∗ GA(i) for all

i ∈ N {1}.
5 Run Correction on A∗.

6 Run Core on the residue with agent 1 as the cutter.
7 if there is some agent E ∈ N {1} not dominated by agent 1 then
8 Run Core on the residue with agent E as the cutter, excluding agent 1

from competition (since agent 1 dominates the other non-cutters).

9 else
10 Run the Selfridge-Conway Protocol on the residue for agents 2, 3, and 4,

and terminate.

Now, if the algorithm has not terminated, some agent A is dominated by two
other agents B and C. Let D be the remaining agent.
Phase Two

11 for count = 1 to 2 do
12 Run Core on the current residue with agent D as the cutter, excluding

from competition any one from {B,C} who dominates two non-cutters.

13 if B and C are not both dominated by A and D then
14 Let F ∈ {B,C} be the agent who got the insignificant piece in the last two

calls of Core.
15 Run Correction on the suballocation (out of the last two) where GA(F )

was smaller.

At this point both A and D dominate both B and C.
Phase Three

16 Run Cut and Choose on the current residue for agents B and C.

2 Note that GA(i) is not defined when Ni = ∅. In fact, we never need it in such a case.
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CorrectionProperty 1 The insignificant piece of A is given to a different
agent in A′. In particular, it is given to an agent that has marked it in A.

CorrectionProperty 2 If a non-cutter was allocated her favorite unmarked
piece in A, she will again be allocated a piece of the same value in A′.

Assume there is no agent dominating everyone else, meaning that GA(i) is
defined for all i ∈ N . For a partial envy-free allocation like A, the gain of any
agent is nonnegative. However, this may not be true for A′, as it is not necessarily
envy-free. What we need is for (X A) ∪ A′ to be envy-free, and towards this
GA′(i) should not be too small for any i ∈ N .

CorrectionProperty 3 GA′(i) ≥ −GA(i) for all agents i.
By Correction Property 1, the insignificant piece has changed hands after line

5. This allows us to make one extra call to Core in order to enforce one more
domination (line 6). Hence, the intermediate step is completed and we know that
agent 1 dominates at least 2 other agents. If she dominates all three of them, we
can run any of the known procedures for 3 agents on the residue, and be done
with only a few queries. The interesting remaining case is to assume that agent
1 currently dominates exactly two other agents.

At this point there are various ways to proceed. E.g., we could repeat the
whole process so far, but with agents 2 and 3 as cutters, and get at least 6
edges in the domination graph. This would ensure a node with in-degree two,
but it requires several calls to Core. Instead, and quite remarkably, we show
that it suffices to run Core only one more time, with the agent who is not
dominated by agent 1 as the cutter. In the full version of this paper we prove
that this makes the cutter dominate one of the agents that are dominated by
agent 1. Hence, phase one is now complete, as we have one agent with in-degree
two.

Remark 1. The intermediate step of getting a node with out-degree two has also
been utilized in [3]. The goal there however was to make every agent dominate
two other agents, whereas we only needed this to hold for one agent.

Phase Two. Suppose phase two starts with a partial envy-free allocation where
some agent, say A, is dominated by agents B and C (Fig. 1a). Our next goal is
to produce a partial envy-free allocation where both A and D dominate both
B and C (Fig. 1b). To achieve this goal, we execute Core twice with D as the
cutter, i.e., with the agent not involved in the dominations of phase one. Again,
we need to argue about the behavior of Core under the existing dominations,
and we ask for the following property.
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CoreProperty 3 Assume we run Core with D as the cutter, and suppose
agent A is dominated by the other two non-cutters, B and C, neither of whom
dominates the other. Then, (1) A gets her favorite of the four complete pieces
without making any marks, (2) at least three complete pieces are allocated, and
(3) if a non-cutter, say B, gets a partial piece, then the remaining non-cutter,
C, is indifferent between her piece and B’s piece.

Using this property, we can show that after one call to Core (1st execution
of line 12), agents A and D will both dominate either B or C. However, we
need domination over both B and C. The second call to Core (2nd execution of
line 12) ensures that we can again resort to the Correction protocol. If, after
the two calls to Core, only one of B and C, say B, is dominated by both A
and D, then running Correction on one of the two core allocations from this
phase—the one where the gain of B is smaller—resolves the issue, and makes A
and D dominate both B and C.

Phase Three. Since both agents B and C are dominated by A and D,
we just execute the cut-and-choose protocol for B and C, where B cuts the
residue in two equal pieces and C chooses her favorite piece. This completes our
algorithm.

3.1 Core and Correction

Here we provide the description of the Core and Correction protocols. The
main results within this subsection are the following.

Theorem 2. The Core protocol satisfies Core Properties 1, 2 and 3, and
makes at most 9 cut queries and 15 evaluation queries.

Theorem 3. The Correction protocol satisfies Correction Properties 1, 2
and 3, and makes no queries.
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Core (k,R,X , E)
1 Agent k cuts the current residue R in four equal-valued pieces (according to

her).
2 Let S = N ({k} ∪ E) be the set of agents who may compete for pieces.
3 if there exists j ∈ S who has no competition in S for her favorite piece then
4 j is allocated her favorite piece and is removed from S.

5 if every agent in S has a different favorite piece then
6 Everyone gets her favorite piece and the algorithm terminates.

7 for every agent i ∈ S do
8 if (1) i has no competition for her second favorite piece p, or
9 (2) i has exactly one competitor j ∈ S for p, j also considers p as her

second favorite, and i,j each have exactly one competitor for their favorite
piece then

10 i makes a 2-mark.

11 else
12 i makes a 3-mark.

13 Allocate the pieces according to a rightmost rule:
14 if an agent has the rightmost mark in two pieces then
15 Out of the two partial pieces, considered until the second rightmost mark

(which always exists), she is allocated the one she prefers.
16 The other partial piece is given to the agent who made the second rightmost

mark on it.

17 else
18 Each partial piece is allocated—until the second rightmost mark—to the

agent who made the rightmost mark on that piece.

19 if any non-cutters were not given a piece yet then
20 Giving priority to any remaining agents in S (but in an otherwise arbitrary

order), they choose their favorite unallocated complete piece.

21 The cutter is given the remaining unallocated complete piece.

The Core protocol is used for allocating part of the current residue every
time it is called. Core takes as input an agent, specified as the cutter, the
current residue, and the current partial allocation. It first asks the cutter to
divide the residue into four equally valued contiguous pieces. The cutter is going
to be the last one to receive one of these four pieces. Regarding the remaining
three agents, each of them will either be immediately allocated her favorite
piece or will be asked to place a mark on certain pieces, based on the relative
rankings of the non-cutters for the pieces, and on possible domination relations
that have already been established. Marks essentially provide limits on how to
partially allocate pieces that are desired by many agents, so that they can be
given without introducing envy. There are two possible types of marks that can
be placed; 2-marks and 3-marks. The type of mark that the agents will be asked
to place depends mainly on the conflicts that arise for the favorite and second
favorite pieces of each agent.
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Definition 6. During an execution of Core, let P be a set of pieces and S be
a subset of non-cutters. We say that an agent i ∈ S has competition for a piece
p ∈ P , if (1) i is not dominated by everyone in S, and (2) there exists j ∈ S
such that p is j’s favorite or second favorite piece in P . We call j a competitor
of i for p.

Definition 6 helps us identify whether we need to perform a 2-mark or 3-mark
on the available pieces. Furthermore, in some cases where we know that cer-
tain domination patterns appear, it is convenient to prevent some agents from
competing for any piece (in particular, when some agent dominates the other
non-cutters).

The Correction protocol takes as input an allocation A, produced by
Core, and outputs an allocation A′ = π(A), where π is a permutation on N , so
that the envy-freeness of the overall partial allocation and certain dominations
are preserved. Its description is shown below and its analysis is provided in the
full version. Note that we refer to the cutter in allocation A as D.

Correction(A)
1 Let A, B be the agents having the two marks on the insignificant piece, and

suppose A was given this piece in allocation A.
2 The insignificant piece is allocated to B.
3 if there is no other partial piece then
4 Agents choose their favorite piece in the order C, A, D.

5 else
6 Find the rightmost mark not made by B on the other partial piece. Let

E ∈ {A,C} be the agent who made it.
7 Agent E is allocated the partial piece.
8 The last non-cutter chooses her favorite among the two complete pieces.
9 The cutter is allocated the remaining (complete) piece.
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Abstract. Motivated by cloud computing, we study a market-based
approach for job scheduling on multiple machines where users have hard
deadlines and prefer earlier completion times. In our model, completing a
job provides a benefit equal to its present value, i.e., the value discounted
to the time when the job finishes. Users submit job requirements to the
cloud provider who non-preemptively schedules jobs to maximize the
social welfare, i.e., the sum of present values of completed jobs. Using a
simple and fast greedy algorithm, we obtain a 1+s/(s−1) approximation
to the optimal schedule, where s > 1 is the minimum ratio of a job’s
deadline to processing time. Building on our approximation algorithm,
we construct a pricing rule to incentivize users to truthfully report all
job requirements.

1 Introduction

Cloud computing’s explosive growth over the past decade is attributable to its
flexible computing resources and the economy of scale provided by large data
centers. This framework allows users to rent computing resources on demand,
avoiding the need for costly infrastructure investment. Typically, pricing is pay-
as-you-go where users pay per unit time. While simple, this pricing scheme
does not reflect current market conditions, i.e., user demand versus the cloud
provider’s capacity, nor does it account for important job requirements such as
deadlines.

We investigate an alternative market based approach for the fair allocation
of reusable resources by introducing a new scheduling problem, Present Value
Scheduling (PVS). Abstractly, the problem is to non-preemptively schedule jobs
with hard deadlines on m identical machines. Each job Ji = (vi, ti, di) is defined
by a processing time ti, a deadline di, and a value vi if completed immediately.
Users prefer earlier completion times, leading job values to decay over time as
determined by the discount factor 0 < β < 1 shared by all jobs. Then, completing
job Ji at time τ ∈ [ti, di] provides a benefit of viβ

τ . Note that this is the job’s
present value, the standard economic model for the time value of money.

Users submit job requests to the cloud provider who determines an allocation
of resources based on the jobs’ requirements with the objective of maximizing
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social welfare, i.e. the sum of present values of completed jobs. The inherently
difficult scheduling problem is further complicated as users may misreport any
job parameter (vi, ti, di) in an effort to increase their utility, defined as present
value minus payment. We aim to construct scheduling and pricing rules to incen-
tivize truthful reporting of all job information.

Our Contribution. This paper addresses a fundamental issue in mechanism
design, non-preemptive job scheduling for social welfare maximization. Our
model, PVS, includes the natural preference for early completion times by dis-
counting the value of job to the time when it finishes. In other words, we consider
maximizing the present value of completed jobs.

PVS is a special case of interval scheduling with arbitrary values, i.e., a job’s
value is an arbitrary function of time. Theoretical work in this area centers
on constant factor approximations as the allocation (scheduling) problem is NP-
hard. However, most existing algorithms do not ensure truthfulness. While there
is a black-box method to construct truthful mechanisms from these approxima-
tions, the conversion comes at high computational cost. Fortunately, PVS pro-
vides sufficient structure to achieve a deterministic truthful mechanism through
simple and efficient allocation and pricing rules.

First we provide a 1 + s/(s − 1) approximation to PVS for any discount
factor 0 < β < 1, where s = mini di/ti > 1. Our algorithm greedily schedules
jobs in decreasing order of weights wi = viβ

ti/(1 − βti) on the machine which
gives the earliest completion time, as long as jobs complete by their deadlines.
Our method achieves significantly faster run time compared to other applicable
approximations which do not require truthfulness, an important consideration
for large scale problems encountered in practice. The 1 + s/(s − 1) bound is
essentially tight for β ≈ 1 and s � 1. However, it is conservative for β � 1 or
s ≈ 1. Second, we show a few key properties of our greedy approximation algo-
rithm that allow an extension of Myerson’s lemma [12] to PVS. As a result, we
obtain a deterministic mechanism which is truthful with respect to all parame-
ters (vi, ti, di).

1.1 Related Work

We provide a survey of related work in interval scheduling and mechanism design,
taking care to highlight competing approaches to design truthful mechanisms
for PVS.

Interval Scheduling. The allocation problem’s theoretical foundations lie in
interval scheduling. Essentially the discrete version of machine scheduling, each
job is defined by explicitly listing all available scheduling times (intervals), with
each interval potentially providing a different value. In other words, jobs’ values
are arbitrary functions of time. Nearly all versions of the problem are NP-hard,
confining theoretical work to constant factor approximations. We focus on the
best known approximations applicable to PVS and note that none of the follow-
ing works require truthfulness.
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Bar-Noy et al. [3] presents a 2 approximation based on LP rounding. Their
algorithm starts by finding the optimal fractional allocation to the natural LP
relaxation of the problem. The fractional solution is rounded into a set of polyno-
mially many integer valued (feasible) solutions using a graph coloring argument,
the largest of which yields at least 1/2 the optimal schedule’s value. Bar-Noy
et al. [2] uses the local ratio technique to derive a combinatorial 2 approximation
in a generalization of interval scheduling where each job has a width. Indepen-
dently, Berman and DasGupta [4] obtained a similar algorithm which achieves
better runtime by specializing to the standard interval scheduling problem.

Mechanism Design. There is extensive literature on scheduling in the context
of mechanism design, starting with the seminal work of Nisan and Ronen [13].
However, the majority of existing literature focuses on makespan minimization,
e.g., see [9,11]. One particularly interesting and relevant approach for PVS is the
black-box method of Lavi and Swamy [10] which converts approximation algo-
rithms for set packing problems to truthful randomized mechanisms with the
same approximation ratio. The procedure starts by applying a fractional VCG
mechanism to the natural LP relaxation of the problem. Using the approximation
algorithm as a separation oracle, the rescaled fractional allocation is decomposed
into a convex combination of integer valued allocations. These integer solutions
provide a truthful in expectation randomized mechanism with the same perfor-
mance guarantees as the initial approximation algorithm. Although applicable
to the previously mentioned interval scheduling approximations, and therefore
PVS, the technique raises practical concerns for computational efficiency. First,
one must solve an LP with a large number of variables and constraints multi-
ple times for the fractional VCG mechanism. Then, decomposing the fractional
allocation requires multiple calls to the approximation algorithm.

Recent work in the related field of batch computing in cloud systems offers
an alternative to the black-box method. Batch computing generalizes interval
scheduling by allowing jobs to run on multiple machines in parallel, up to a given
threshold. Drawing on the LP rounding approximation of [3] and the black-box
method of [10], Jain et al. [6] construct a truthful in expectation mechanism
which approaches a 2 approximation as the number of machines goes to infin-
ity. Requiring only one solution to the natural LP relaxation, their mechanism
addresses some of the computational efficiency issues of the black-box approach,
and it also allows job values to be arbitrary non-increasing functions of time.

In the preemptive version of batch computing, Jain et al. [7] develop a deter-
ministic truthful mechanism with near optimal performance as the number of
machines goes to infinity under a slackness condition on jobs, i.e., a lower bound
on the ratio of a job’s deadline to its processing time di/ti. From the perspec-
tive of PVS, this paper is of interest as the allocation rule is akin to our own.
Their approximation greedily schedules jobs in decreasing order of value density
vi/ti, the natural analog of our weights wi when the discount factor β = 1.
Azar et al. [1] extend this mechanism to the online setting. We note both works
assume job values are constant over time.
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2 Definitions and Notation

PVS Model. In PVS a set of n jobs, J = {J1, . . . ,Jn}, compete for processing
time on m identical machines. Each job Ji is defined by the tuple (vi, ti, di)
where: vi is the job’s valuation, ti is the job’s processing time, and di is the job’s
deadline. Note that under the identical machines assumption, a job’s processing
time is the same on all machines. We assume integer valued processing times
and deadlines, though techniques generalize naturally to positive real values.
The value of completing a job decays over time, determined by the discount
factor 0 < β < 1 shared by all jobs. Specifically, the value of completing job Ji

at time τ ∈ [ti, di] is viβ
τ .

A schedule for machine j is an ordered subset of jobs: Sj = {Jk1 , . . . ,Jka
}

⊆ J , to be completed in the given order, i.e., Jk1 is completed first, then Jk2 and
so on. The value of a schedule on machine j is the sum of values of completed jobs.
That is, if Sj = {Jk1 , . . . ,Jka

}, then job Jki
completes at time τki

=
∑i

b=1 tkb

and the value of the schedule Sj is: V (Sj) =
∑a

i=1 vki
βτki . A full schedule

consists of a schedule for each machine: S = {S1, . . . , Sm}. We will simply say
schedule when the distinction between full and machine specific schedules is
clear. A schedule is feasible if each job is contained in no more than one machine
schedule: Si ∩ Sj = ∅, ∀i, j. In words, each job is processed at most once across
all machines. The social welfare maximizing schedule S∗ is the feasible schedule
with maximum value: V (S∗) ≥ V (S) for all feasible S. We will often refer to the
social welfare maximizing schedule simply as the optimal schedule. We call the
problem of finding the optimal schedule the allocation problem. We say that a
schedule S is an α approximation (to optimal schedule) if V (S) ≥ V (S∗)/α.

Mechanisms. A mechanism M is an algorithm to produce an allocation (sched-
ule) and a set of payments pi. Each job in a schedule Ji ∈ S is charged a pay-
ment pi, earning utility ui(Ji,J−i) = viβ

τi − pi, where τi > 0 is time when
Ji completes. Note pi = 0 for all Ji ∈ J \ S. Further, we assume agents
receive no benefit for partially completing their job, or completing their job
after their deadline. Jobs seek to maximize utility. The true parameters of a job
Ji = (vi, ti, di) are private information and a job may misreport any or all of the
values J ′

i = (v′
i, t

′
i, d

′
i) to gain higher utility. A mechanism is truthful if accurately

reporting all job parameters is a dominant strategy: ui(Ji,J−i) ≥ ui(J ′
i ,J−i),

∀J ′
i . In words, truthfully reporting job parameters maximizes utility. We say a

mechanism is social welfare maximizing if the scheduling algorithm returns the
social welfare maximizing schedule S∗, and an α approximation if it returns an
α approximation.

3 Approximation for PVS

Due to space restrictions, we do not provide all proofs. Complete, detailed proofs
can be found in the full version of this paper. Our first goal is solving the PVS
allocation problem, i.e., maximizing the present value of completed jobs. In the
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Algorithm 1. Greedy Scheduling Algorithm (GS)
Input : Job parameters (vi, ti, di) for each job Ji

Output: Schedule S of jobs

1 Define: wi = viβti

1−βti

2 Sort and relabel jobs in descending order of wi

3 Sj ← ∅, j = 1, . . . , m (schedule on machine j)
4 τj ← 0, j = 1, . . . , m (total processing time of machine j)
5 k = 1 (machine offering fastest completion time)
6 for i = 1 to n do
7 if τk + ti ≤ di then
8 Sk ← (Sk, Ji); τk ← τk + ti; k ∈ arg minj τj

full version of this paper, we show that this problem is strongly NP-hard. For
this reason, we design a greedy algorithm which achieves a 1+s/(s−1) approxi-
mation to the optimal schedule, where s = mini di/ti > 1. Before presenting our
algorithm, it is instructive to consider a simpler scheduling problem on single
machine without deadlines. This special case admits an exact solution.

Proposition 1. Define the weight of job Ji as:

wi =
viβ

ti

1 − βti
. (1)

If there is a single machine, and there are no deadlines, then placing jobs in
decreasing order of wi maximizes the social welfare.

This result follows from a simple interchange argument. Proposition 1 pro-
vides the basis for a natural greedy approximation: schedule jobs in decreasing
order of weights wi = viβ

ti/(1−βti) on the machine providing the earliest com-
pletion time, as long as jobs complete by their deadlines. A formal algorithm is
shown in Greedy Scheduling Algorithm (GS). Despite its simplicity, GS provides
performance guarantees for any discount factor 0 < β < 1, under an assumption
on the minimum slackness of any job s = mini di/ti > 1.

Theorem 1. Assume the minimum slackness of any job s = mini di/ti > 1,
then GS provides an approximation of 1+s/(s−1) to the PVS allocation problem.

Remark 1. Intuitively, the assumption s > 1 means all agents are willing to
wait at least a small amount of time proportional to the length of their job. For
some applications, it is plausible that s ≈ 1 making the performance guarantee
vacuous. However, this bound is conservative for s ≈ 1. In the full version of this
paper, we show the actual approximation factor approaches (2− β)/(1 − β) as s
goes to 1. Meaning GS gives a constant factor approximation for all β < 1. For
practical application, we assume that cloud providers can use historical data to
estimate s for their platform and assess our mechanism’s guarantee from there.
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3.1 Analysis of GS

The analysis of GS relies on dual fitting, an approach for proving approximation
guarantees on greedy algorithms [16]. At a high level, we consider an LP relax-
ation of PVS and its dual. For any dual feasible variables λ, define cost(λ) as the
value of the dual problem evaluated at λ. Abusing notation, let GS be the value
of the greedy schedule. Suppose we can show αGS ≥ cost(λ) for some α ≥ 1,
then weak duality implies GS is an α approximation to the optimal schedule.
Under standard terminology, we say the algorithm GS is charged α to pay for
the dual variables λ.

LP Relaxation of PVS and its Dual. We begin with the natural LP relax-
ation of PVS and its dual. Let Ii(t) = {s : s ≤ di, t ≤ s ≤ t + ti − 1} be the set
of feasible finishing times for job Ji that overlap the time interval [t− 1, t), then
an Integer Programming formulation of PVS is:

max
x

n∑

i=1

∑

t∈[ti,di]

viβ
txi,t (P)

subject to:
1
m

∑

i:di≥t

∑

s∈Ii(t)

xi,s ≤ 1 t = 1, 2, . . . , T (C1)

∑

t∈[ti,di]

xi,t ≤ 1 i = 1, 2, . . . , n (C2)

xi,t ∈ {0, 1} ∀i, t,

where T = maxi di, is the last deadline. Here, the variables xi,t indicate that
job Ji finishes at time t ∈ [ti, di]. The constraints (C1) require that at most m
jobs are scheduled at any point in time, and the constraints (C2) require that
each job is scheduled at most once. We obtain the natural LP relaxation with
xi,t ≥ 0. Note that the constraints xi,t ≤ 1 are redundant due to (C2).

The dual problem has a simple form. There is one dual variable γi for each
job, and there is one dual variable λt for each time slot t = 1, 2, . . . , T . Note that
we define time slots in terms of their right endpoints, so that λt corresponds to
the time interval (t − 1, t]. The dual problem is:

min
λ,γ

n∑

i=1

γi +
T∑

t=1

λt (D)

subject to: γi +
1
m

t∑

s=t−ti+1

λs ≥ viβ
t ∀i, ∀t ∈ [ti, di] (C3)

γi ≥ 0, ∀i, λt ≥ 0, ∀t

Note that, for each job Ji there is exactly one constraint for each possible
finishing time t ∈ [ti, di].
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Approximation Guarantee. First we show how to construct dual feasible γ
and λ to satisfy (C3) for jobs used by GS. For each time slot t = 1, . . . , T , there
are at most m jobs processing in the greedy schedule, say Jk1 , . . . ,Jkm

. These
jobs have weights wk1 , . . . , wkm

. We set:

λt =
m∑

j=1

wkj
(1 − β)βt−1. (2)

Suppose GS finishes job Ji at time τi, then we set:

γi = viβ
τi (3)

and γi = 0 otherwise.

Lemma 1. The dual variables γ and λ ensure dual constraints (C3) are satisfied
for each job Ji used in GS.

Proof (Sketch). We consider the three cases:

Case 1: (C3) for t ≥ τi. From (3): γi + 1
m

t∑

l=t−ti+1

λl ≥ γi ≥ viβ
t .

Case 2: (C3) for t ≤ τi − ti. GS schedules jobs in decreasing order of weight on
the machine providing the earliest completion time. Since Ji starts processing
at time slot τi − ti ≥ t, GS must be processing m jobs with higher weight than
wi for all times l ≤ t. By (2):

γi +
1

m

t∑

l=t−ti+1

λl ≥ 1

m

t∑

l=t−ti+1

λl ≥
t∑

l=t−ti+1

wi(1 − β)βl−1 = βt−tiwi(1 − βti) = viβ
t.

The last equality follows from: wi(1−βti) = viβ
ti , which is easily seen from (1).

Case 3: (C3) for τi − ti < t < τi. This case is handled with a technique similar
to Case 2. �

We still need to satisfy (C3) for jobs not used in GS. This is easy if GS always
uses jobs with higher weight up to the unused job’s deadline. That is, suppose
job Jj is not used in GS, and for all t ≤ dj GS uses a job Ji with wi ≥ wj ,
then all of Jj ’s dual constraints are satisfied. The argument is essentially the
same as Case 2 of Lemma 1. If this is not true, then there is some smallest time
u < dj so that for all time slots t ∈ [u + 1, dj ] GS uses a job with lower weight
on some machine. We call Jj a missed job. Covering dual constraints for missed
jobs is the most challenging part of proof. For clarity, we present the remaining
argument for a single machine. We show how to generalize the result to multiple
machines in the full version of this paper.

Let Jj be a missed job. Note that dj − tj is the last time we can start
processing Jj and have it finish before its deadline. Let Jk be the job used by
GS during this time slot, and τk be the time it completes. Since GS schedules jobs
in decreasing order of weight, wk ≥ wj and u > τk ≥ dj − tj +1. We say that Jj
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is missed at time τk. In our approach, we will go through each job Jk in GS and
cover dual constraints for any missed jobs at τk by increasing λt’s. Let w(t) be
the weight of job GS uses at time t. To cover all of Jj ’s dual constraints, we need
to increase λt’s by: λ̂t = (wj −w(t))(1−β)βt−1, for all times slots t ∈ [u+1, dj ].
This follows from (2), since λt + λ̂t = w(t)(1 − β)βt−1 + (wj − w(t))(1 − β)βt−1

so that:

u∑

t=dj−tj+1

λt +

dj∑

t=u+1

(
λt + λ̂t

)
=

u∑

t=dj−tj+1

wk(1 − β)βt−1 +

dj∑

t=u+1

wj(1 − β)βt−1 ≥ vjβdj .

We pay for the λ̂t’s using a portion of the value of GS up to time τk. In fact,
we will show that an extra 1/(s− 1) copies of the greedy schedule are enough to
pay for the increased cost in dual variables for all missed jobs.

Let Q(τk) be the pool of resources available to cover the additional costs
λ̂t’s needed to satisfy dual constraints for any missed jobs at τk. Formally, we
set Q(τ1) = v1β

τ1/(s − 1), the discounted value of the first job used by the
greedy schedule scaled by 1/(s − 1). We use Q(τ1) to pay C(τ1) =

∑dj

t=u+1 λ̂t,
the cost of covering (C3) for all missed jobs at τ1. Suppose J2 is the second job
used by GS, then the available resources to pay for missed jobs at time τ2 is:
Q(τ2) = Q(τ1)−C(τ1)+ v2β

τ2/(s− 1). In words, the available resources at time
τ2 are the resources remaining after covering all missed jobs up to time τ1 plus
the discounted value of the next job used in GS. Define Q(τk) similarly for all
times τk when GS completes job Jk. The following lemma provides a key result.

Lemma 2. Assume s = mini di/ti > 1, and let Jj be a missed job at time τk.
If Q(τk) satisfies:

Q(τk)
1 − βτk

≥ wj

s − 1
, (4)

then Q(τk) is enough value to pay for the λ̂t’s required to cover Jj’s dual con-
straints. In addition, if the next job used by the greedy schedule Jk+1 completes
after dj, then:

Q(τk+1)
1 − βτk+1

≥ wk+1

s − 1
. (5)

Lemma 2 is essentially a technical result, a proof is provided in the full paper.

Proof (Theorem 1). Lemma 1 shows that setting λ and γ according to (2) and
(3) respectively satisfies all dual constraints for jobs used in the greedy schedule.
Clearly, this costs two copies of GS.

Lemma 2 implies that 1/(s − 1) extra copies of GS are enough to cover dual
constraints of all missed jobs. We start with J1 the first job of GS. Let Jj be
the missed job at τ1 with longest processing time. We may assume that Jj also
has the highest weight of all missed jobs at time τ1 since this means Jj is the
missed job with the highest value. Therefore, satisfying (C3) for Jj will satisfy
(C3) for all other missed jobs at τ1. Since GS schedules jobs in decreasing order
of weight wj ≤ w1. By (1) and Q(τ1) = v1β

t1/(s − 1), condition (4) of Lemma 2
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is satisfied. This means Q(τ1) is enough to pay for the increased cost of dual
variables needed to satisfy (C3) for all jobs missed at time τ1.

We only pay for a portion of required increase in dual variables now and
defer the remaining payment until time τ2, when the second job of GS com-
pletes. Specifically, at τ1 we only pay for the portion of wj which exceeds w2, i.e.
λ̂t = (wj − w2)(1 − β)βt−1 for t = τ1 + 1, . . . , dj . Effectively, this artificially
extends the deadline of J2 to dj , allowing application of the second condition
(5) of Lemma 2 to yield Q(τ2)/(1 − βτ2) ≥ w2/(s − 1). However, artificially
extending the deadline of J2 also increases the value of GS. To account for this,
we add a fictitious missed job Ĵj at time τ2 with weight w2, processing time
tj , and deadline dj . It is easily seen that this matches the value added to GS.
Further, all missed jobs at τ2, including the newly added fictitious job, have
weight less than w2 and (4) is satisfied again at τ2. As a result, Q(τ2) is enough
value to cover the cost of all missed jobs at τ2. Repeating the above argument
for each job used in the greedy schedule we see that our 1/(s − 1) extra copies
of GS are enough to pay for the dual constraints of all missed jobs. In total we
require 2 + 1/(s − 1) = 1 + s/(s − 1) copies of GS to construct dual feasible λ
and γ. �

The above proof extends easily from a single machine to m identically
machines. First we use wm(t) = m−1

∑m
i=1 w(t) in place of w(t) in Lemma 2.

Then, we proceed through the jobs of GS in increasing order of completion time,
covering missed jobs as we go. The full version of the paper provides all details.

Remark 2. The 1+s/(s−1) performance guarantee is essentially tight for β ≈ 1
and s ≥ 2. However, the bound is conservative for β � 1 or if s ≈ 1. This is
due to the somewhat loose analysis in Lemma 2. More careful treatment reveals
C(β, s) = βs−1(1 − β)/(1 − βs−1) copies of GS are sufficient to cover all missed
jobs, giving the performance guarantee of 1 + (1 − βs)/(1 − βs−1), showing the
algorithms dependence on β. We state the conservative bound since we assume
most applications require β close to 1. Indeed, β > 0.9 is common in economics
and finance literature.

4 Truthful Mechanism

Our 1 + s/(s − 1) approximation to the allocation problem is only half of the
mechanism design problem. As rational agents, job owners may lie about any or
all of their job’s parameters (vi, ti, di) to increase utility. We seek a pricing rule
to ensure truthful reporting is a dominate strategy. The task is well understood
in single parameter domains where the celebrated Myerson’s lemma [12] pro-
vides the unique payment rule for any monotone allocation rule. Multi-parameter
domains, as our own problem, present a challenge. VCG payments [14] create
a truthful mechanisms when the allocation problem can be solved exactly, but
many problems of interest require an approximation algorithm. It is known that
generalizations of monotonicity are necessary and sufficient in these situations,
see [5,8,15], but the conditions are difficult to check. Instead, we show a few
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simple properties of the GS allocation rule allow us to construct a pricing rule
which yields a truthful mechanism. We note that this is an extension of a result
first obtained by Jain et al. in [7].

Properties of GS Allocation. We begin by introducing some notation used
throughout this section. In PVS, each agent i reports a bid bi = (vi, ri) of their
job’s value vi and requirements ri = (ti, di). Given the set of bids b = (b1, . . . , bn),
the cloud provider determines a completion time τi for i’s job. We say i receives
the allocation Ai(b) = βτi and note that i receives a value of viAi(b) = viβ

τi .
Assume bi = (vi, ri) are the agent’s true valuation and job requirements,

but they may misreport any of these values. If the agent submits a false bid
b′
i = (v′

i, r
′
i), the actual allocation they receive may be different from Ai(b′

i, b−i)
depending on their true requirements. For example, if an agent reports t′i > ti
and is scheduled for the time slot [0, t′i), then their actual allocation is the inter-
val [0, ti) as their job only requires ti units of processing time. Define Ai(b|r)
as the actual allocation received by agent i assuming the requirements r. Con-
tinuing the earlier example with t′i > ti, then Ai(b′

i, b−i|ri) = [0, ti). We assume
Ai(b′

i, b−i|r′) = Ai(b′
i, b−i). Finally, we note that the true benefit received from

bidding b′
i is viAi(b′

i, b−i|ri) and the utility received is:

ui(b′) = viAi(b′|ri) − pi(b′). (6)

We show how a few simple properties of the allocation Ai allow us to con-
struct a pricing rule pi(bi, b−i) which yields a truthful mechanism. For nota-
tional convenience, we drop the b−i argument and write Ai(v, r|r′) instead of
Ai(bi, b−i|r′) or pi(v, r) instead of pi(bi, b−i).

Definition 1: An allocation rule A is rational if for all agents i, all bids b−i, all
requirements r, r′: Ai(v, r′|r) > 0 =⇒ Ai(v, r′|r′) > 0.

Definition 2: An allocation rule A is value monotonic if for all agents i, all
bids b−i, all requirements r, r′, and all valuations v < v′:

Ai(v, r′|r) ≤ Ai(v′, r′|r). (7)

Definition 3: An allocation rule A is requirement monotonic if for all agents
i, all bids b−i, all requirements r, r′ the following property holds: if there exists
a v such that Ai(v, r′|r) > 0 then:

Ai(v, r′|r′) ≤ Ai(v, r′|r) and Ai(v′, r′|r′) ≤ Ai(v′, r|r),∀v′. (8)

Intuitively these definitions have the following meanings: Rationality says if
an allocation satisfies an alternative set of job requirements r, then it must also
satisfy the requested requirements r′. Value monotonicity asks that the alloca-
tion is non-decreasing in the valuation v after fixing a set of job requirements.
Finally, requirement monotonicity says if an allocation meets an alternate set
of requirements r, then these requirements must be easier to satisfy and will



110 J. Garg and P. McGlaughlin

always receive an allocation at least as good as the original request r′. Before
establishing that the GS algorithm satisfies these properties, we show how they
contribute to a truthful mechanism.

Proposition 2. Let A be a non-negative, rational, value monotonic and require-
ment monotonic allocation rule, then mechanism M(A, p) using the pricing rule:

pi(v, r) = vAi(v, r|r) −
v∫

0

Ai(x, r|r)dx (9)

is truthful and individually rational.

Note that the form of the payment rule is the same as that of Myerson’s
lemma, the important distinction being that jobs have additional requirements
which must be satisfied, e.g., complete before their deadline. This result is an
extension of [7] in which allocations are binary functions, i.e., jobs have con-
stant value and are either completed or not. In PVS, the allocation is piece-wise
constant. This means pricing rule (9) reduces to: the sum over (change in allo-
cation) * (value where the allocation changes). The derivation is similar to the
familiar single parameter case of Myerson’s lemma. For more details, see the full
version of the paper.

PVS Mechanism. Before showing GS satisfies the assumptions of Proposi-
tion 2, we impose a few natural constraints on what agents may misreport. It
is important to note that these are not additional assumptions, rather certain
types of misreporting are dominated by truthfulness. Therefore, a rational job
owner would not misreport values in these ways. We assume bi = (vi, ti, di) are
Ji’s true valuation and requirements, and b′

i = (v′
i, t

′
i, d

′
i) are alternative values.

First, agents may only misreport longer processing times t′i ≥ ti. This holds
since agents receive no benefit from partially completed jobs. As such, a job
owner reporting t′i < ti gains no benefit from any allocation but is charged a
non-negative price, implying ui(b′

i, b−i) ≤ 0. Therefore, no rational job owner
would report t′i < t. Second, we assume agents may only under report their
deadlines d′

i ≤ di. This case is similar to the first, completing a job after the
deadline provides no benefit but requires a non-negative payment creating the
possibility for negative utility. We now show that GS satisfies the conditions of
Proposition 2.

Proposition 3. The GS allocation is rational, price monotonic, and require-
ment monotonic.

These properties follow easily from the fact that GS greedily schedules jobs
in decreasing order of weight: wi = viβ

ti/(1 − βti), which is increasing in vi and
decreasing in ti. Full details are provided in the full paper. Proposition 3 shows
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GS satisfies the assumptions of Proposition 2, providing a truthful mechanism
when using pricing rule (9). Combining this with Theorem1 we obtain:

Corollary 1. Assuming s = mini di/ti > 1, the mechanism consisting of the GS
allocation rule and the pricing rule (9) gives a truthful 1+s/(1−s) approximation
to the social welfare maximizing schedule.

5 Conclusion

In this paper, we propose a new scheduling problem, PVS, where jobs have hard
deadlines and their values decay over time. Our simple and fast greedy scheduling
algorithm, GS, provides reasonable performance guarantees under the relatively
mild assumption that users are willing to wait for at least a short period of
time, i.e. s > 1. Further, we exploit the greedy nature of GS to extend the
celebrated Myerson’s Lemma to a special multi-parameter domains where users
report processing time and deadline in addition to their job value. From this, we
obtain a mechanism for PVS which truthful with respect to all job parameters.

Our model does suffer from some over simplifications. Most notably, all users
must have the same discount factor β. Allowing user specific discount factor βi is
more realistic. Further, βi should be private information so that users report bids
bi = (vi, ti, di, βi). This presents interesting and challenging problems in both
the design of an approximation algorithm and a truthful mechanism. We leave
this to future work. Another avenue for future work is the design of a truthful
revenue maximizing mechanism.
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Abstract. We investigate revenue-maximizing mechanisms in settings
where bidders’ utility functions are characterized by convex costs. Such
costs arise, for instance, in procurement auctions for energy, and when
bidders borrow money at non-linear interest rates. We provide a 1/16e
approximation guarantee for a prior-free randomized mechanism when
bidders’ values are drawn from MHR distributions, and their costs are
polynomial. Additionally, we propose two heuristics that allocate propor-
tionally, using either bidders’ values or virtual values. Perhaps surpris-
ingly, in the convex cost setting, it is preferable to allocate to multiple
relatively high bidders, rather than only to bidders with the highest (vir-
tual) value, as is optimal in the traditional quasi-linear utility setting.

Keywords: Mechanism design · Optimal auction · Prior-free

1 Introduction

In the field of mechanism design, a central planner attempts to implement a
socially-optimal outcome for the mechanism’s participants, without knowing
their preferences, which are assumed to be private information. While certain
problems in this space have been solved elegantly, solutions are sometimes too
complex for widespread practical implementation. Consequently, over the past
decade, researchers have been exploring the trade off between simplicity and
optimality in mechanism design. A recent line of work has addressed whether
simple mechanisms can achieve approximately optimal performance in single-
dimensional environments [3,11,12,14,16]. Often, simplicity requirements take
the form of prior-freeness, meaning the mechanism should not depend on any
distributional knowledge about participants’ private information [21,22]. Such
oblivious designs lead to more robust guarantees, as they do not heavily depend
on modeling assumptions, or on data collection to learn about the participants’
private information.

All of the aforementioned work on simple, optimal auctions assumes that
bidders’ utilities are quasi-linear with respect to payments, i.e., ui = vixi − pi,
where vi > 0 is i’s private value, xi is his allocation, and pi is his payment to
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the auctioneer.1 In this paper, we investigate the problem of simple, optimal
auction design, assuming utilities of the form ui = vixi − ci(pi). Here, ci(·)
can be understood to represent bidder i’s value of money, which is naturally
modelled as a convex function for risk-seeking bidders, or a concave function, for
risk-averse bidders. Analogously, −ci(·) can be understood to represent bidder
i’s cost of money, which is naturally modelled as a concave function for risk-
seeking bidders, or a convex function, for risk-averse bidders. These costs can
be hallucinated to hedge against any uncertainty a bidder might have about
its private information, or about whether the auctioneer will indeed allocate as
promised. These costs can also be real; they can model additional payments
made to anyone other than the auctioneer: e.g., a bank, if interest is owed on
the payment pi.

Our original motivation for this study stemmed from a reverse auction design
problem in the realm of renewable energy markets. Consider a procurement
auction in which a government with a fixed budget is offering subsidies (in euros,
say) to power companies in exchange for a supply of renewable energy (in watts,
say). Suppose the power companies’ utility functions take this form: ui = xi −
ci(pi)/vi, where xi is some fraction of the total budget in euros, and pi is some
deliverable amount of power in watts.2 The value vi which is measured in watts
per euro, is a private conversion (i.e., scaling) factor used to convert power from
watts to euros. The assumption that ci(·) is convex reflects the fact that energy
production costs may not be linear; on the contrary, it may be the case that as
more energy is produced, additional units become more expensive to produce
due to a scarcity of raw materials.3

Another problem which also fits into our framework is the problem of allo-
cating time, rather than money—for example, a media network allocating adver-
tising time to retailers, or a cloud service provider allocating computation time.
In this application, an agent’s utility is calculated by converting its allocation,
in time, into dollars via its private value (measured in dollars per time unit),
and then subtracting the cost of production: ui = vixi − ci(pi). Here again, pro-
duction costs can be convex; for example, the agent might have to borrow funds
to enable production, and in so doing, might be subject to a non-linear (and
publicly disclosed) interest rate.

Whether allocating money or time, we assume the auctioneer seeks an opti-
mal auction: i.e., one that maximizes its total expected “revenue”. In the energy
problem, the auctioneer’s (i.e., the government’s) objective is to maximize the
amount of power produced, subject to its budget constraint. In the advertising
and cloud service problems, the auctioneer seeks to maximize the revenue it can
earn by selling access to its resources (i.e., time).

1 A notable exception is [8], who study prior-free auctions for risk-averse agents, which
are modelled by a very specific form of capped quasi-linear utilities.

2 Multiplying ui by vi yields a familiar utility function, that of the forward setting,
with utility measured in units of power, rather than money: viui = ui = vixi−ci(pi).

3 For example, it is more expensive to convert bitumen into synthetic crude oil than
it is to drill and pump conventional crude oil.
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The departure from quasi-linear utilities presents both technical and quali-
tative differences from the standard mechanism design setting. Technically, the
optimal mechanism does not appear to have an intuitive, closed-form charac-
terization, but rather is the outcome of a mathematical program. Beyond this
difficulty, the Myerson characterization [14], in which the optimal auction in a
symmetric environment with regular distributions allocates to bidders with the
highest values above some reserve, is no longer valid. As our next example shows,
a mechanism that allocates only to the highest-value bidders cannot achieve a
constant-factor approximation.

Example 1. We show that, if we insist on allocating to only bidders of the highest
value, the resulting mechanism can be very suboptimal, with a suboptimality
ratio that decays to zero as the number of bidders n approaches infinity, at a
rate of 1/n1/4.

Let ci(pi) = p2i for each bidder i, and consider the following distribution of
values: the value of each bidder is either 1 with probability log(n)√

n
, or 1 − ε with

probability 1 − log(n)√
n

.
As the number of bidders grows large, then with very high probability, there

will be approximately
√

n bidders with value 1 and n − √
n bidders with value

1− ε. So the allocation of a highest-bidders-win auction is approximately: 1/
√

n
for a bidder with value 1, and 0 for a bidder with value 1 − ε. It follows that
the payment of a bidder with value 1 is at most

√
xv =

√
x(1) ≈ 1/n1/4 (see

Sect. 2.3), while the payment of a bidder with value 1 − ε is approximately 0.
Thus, the expected payment of a single bidder is approximately

(
1√
n

) (
1

n1/4

)
,

and the total expected revenue is n times this quantity, which is n1/4.
On the other hand, if we instead allocate to all bidders uniformly at random

(as long as they bid at least 1 − ε), then each bidder’s payment is
√

xv =√
1
n (1 − ε), leading to a total expected revenue of

√
n(1 − ε). As ε → 0, the

ratio of the revenue of this latter mechanism to the former’s is O(n1/4).

This finding is not specific to this pathological example. Experimentally, we
find that for many value distributions, natural mechanisms that allocate only
to bidders with the highest value can perform very poorly in the convex cost
setting, in spite of performing well in quasi-linear settings.

Contributions. In this work, we design a prior-free mechanism that achieves a
constant factor worst-case approximation ratio relative to the optimal, for the
convex cost setting. We also design two heuristic mechanisms for this setting that
allocate to multiple relatively high bidders, which in our experiments perform
near optimally for a wide variety of distributions over values. Our main theoret-
ical results hold when cost functions take the form ci(pi) = pd

i , for d ≥ 2, and
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when the distribution over values satisfies the monotone hazard rate condition.
In this specific setting, our theoretical results can be summarized as follows:

– We characterize an upper bound on the revenue of the optimal mechanism
by finding a closed-form solution to a convex program that upper bounds the
optimal revenue.

– We show that a mechanism which sets a reserve price by drawing randomly
from the distribution of values, and then allocating uniformly to all bidders
above this reserve, is a constant-factor approximation to the optimal mech-
anism. This result implies a prior-free mechanism that is a constant-factor
approximation of the optimal: randomly pick one bidder, and then allocate
uniformly to all bidders whose values lie above that of this price-setting bid-
der. This idea is stylistically similar to that of Bulow and Klemperer, who
remove one bidder from the Vickrey auction to achieve an approximation
guarantee relative to the revenue-maximizing auction [3]. However, as we
argued in Example 1, allocating only to the highest bidders can be very sub-
optimal. Hence, our mechanism allocates uniformly at random to all bidders
that surpass the reserve. This simple modification is crucial to obtaining a
constant-factor approximation in the convex cost setting.

Related Work. [20] showed that auctions in which the highest bidder wins and
pays the second-highest bid incentivize bidders to bid truthfully. [14] showed
that in the single-parameter setting, with the usual quasi-linear utility function
involving linear payments, total expected revenue is maximized by a Vickrey
auction with reserve prices. Our setting is not captured by Myerson’s classic
characterization because costs in our model are not equivalent to payments.

[3], [12], and [16] study simple prior-free mechanisms. The results in [3] show
that running a simple second-price auction is an (n − 1)/n approximation in
symmetric settings with quasi-linear utilities. [12] extend this analysis to obtain
similar results in asymmetric settings. Bulow and Klemperer’s result can also be
phrased as obtaining a constant-factor approximation by running a second-price
auction with a reserve drawn from the distribution of values. Our constant-factor
prior-free result stems from this intuition.

In prior work [10], we also study convex costs, albeit in a contest (i.e. indirect)
setting, for which we obtain interim guarantees. Here, we use the same convex
costs, but we focus on direct mechanisms and obtain ex-post guarantees (i.e., we
require that constraints hold for all possible type profiles).

The technical difficulties that arise in our setting are similar in spirit to
the ones faced by [15] when designing optimal auctions for budget-constrained
bidders. If ci(pi) = pk

i for some k � 0, then ui = vixi − pk
i quickly approaches

−∞ if pi > (vixi)
1/k. Thus, we can interpret a utility function with convex costs

as a continuous approximation of that of a budget-limited agent whose utility is
−∞ whenever her payment exceeds her budget.

Our model also has strong connections with the literature on optimal auc-
tions for risk-averse buyers (see [13]), since a concave utility function can be
interpreted as a form of risk aversion.
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Translating a reverse auction into a direct auction by multiplying utility by
the private parameter vi was previously proposed in the literature on optimal
contests (see, for example, [5,7]).

Procuring services subject to a budget constraint is also the subject of the
literature on budget-feasible mechanisms initiated by [19]. However, in this lit-
erature, the service of each seller is fixed and the utility of the buyer is a combi-
natorial function of the set of sellers the buyer picks. In our setting, each seller
can produce a different level of service by incurring a different cost, so the buyer
picks not only a set of sellers, but a level of service that each seller should provide
as well. This renders the two models incomparable.

Settings where bidders’ utilities decrease at least as quickly as payments
increase have been studied by [17], in the context of strategy-proof environments.

For a recent survey on optimal mechanism design with non-linear preferences
(mostly budget constraints), we refer the reader to Chap. 8 of [11]. In principle,
some formulations of our problem can be solved using Border’s characterization
[2] of interim feasible outcomes and an ellipsoid-style algorithm with a separation
oracle. Even more generally, we can apply the algorithmic approach of [4] for
computing the optimal mechanism, which again is based on an ellipsoid-style
algorithm. However, such mechanisms tend to be computationally expensive and
do not yield closed-form characterizations or interpretable mechanisms. Here,
we seek fast allocation heuristics with potential economic justification, such as
virtual-value-based maximization. Virtual-value-maximizing approximations to
optimal auction design were also studied recently by [1] in the context of multi-
dimensional mechanism design, and from a worst-case point of view.

2 Model and Preliminaries

There is one auctioneer/seller who would like to sell one unit-sized divisible
good, and there are n bidders that would like to buy as much of it as possible.
Each bidder i ∈ N = {1, . . . , n} has a private value for the good in its entirety.
Each value vi is drawn independently from an atomless distribution F , with
continuous probability density f that is strictly positive on the support, which
is the closed interval Ti = [0, v̄]. We write v = (v1, . . . , vn) ∈ T to denote a
sample vector of values, drawn from distribution Fn.

Given a vector of reports b = (b1, . . . , bn) ∈ R
n, with bi ∈ Ti, for all i ∈ N , a

mechanism consists of an allocation rule x(b) ∈ [0, 1]n together with a payment
rule p(b) ∈ R≥0, where bidder i’s payment to the seller is pi(b). For vectors such
as b , we use the notation b = (bi,b−i) to emphasize the distinction between
bidder i’s role in the auction, and all other bidders N \ {i}.

Let the utility of each bidder i be ui(bi,b−i) = vixi(bi,b−i)−ci (pi(bi,b−i)),
where ci : R≥0 → R≥0 is a convex cost function such that ci(0) = 0. For
readability, we often write ci(bi,b−i) instead of ci (pi(bi,b−i)). This is bidder
i’s cost, beyond his payment pi(b), the latter of which only includes payments
made to the auctioneer. Similar to the payment rule, we refer to c(b) ∈ R

n
≥0,

comprised of variables ci(b), as the cost rule.
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2.1 Constraints

Next, we formalize the constraints we impose on an optimal auction design.
Because we restrict our attention to incentive compatible auctions, where it is
optimal to bid truthfully, we write, for example, ci(vi,v−i) instead of ci(bi,b−i).

A mechanism is called incentive compatible (IC) if each bidder maximizes
her utility by reporting truthfully (i.e., bi = vi): ∀i ∈ N , ∀vi, wi ∈ Ti, and
∀v−i ∈ T−i, vixi(vi,v−i)− ci(vi,v−i) ≥ vixi(wi,v−i)− ci(wi,v−i). Individual
rationality (IR) ensures that bidders have non-negative utilities: ∀i ∈ N , ∀vi ∈
Ti, and ∀v−i ∈ T−i, vixi(vi,v−i) − ci(vi,v−i) ≥ 0. We say a mechanism is
ex-post feasible (XP) if it never overallocates: ∀v ∈ T,

∑n
i=1 xi(vi,v−i) ≤ 1.

Finally, we require that 0 ≤ xi(v) ≤ 1, ∀i ∈ N , ∀v ∈ T.
The goal of the auctioneer is to maximize total expected (ex-post) rev-

enue, which is equal to: Ev

[∑
i∈N pi(v)

]
.

2.2 Distributions and Properties

We introduce some useful notation and terminology with respect to properties
of the value distribution F . For any distribution F , let q(v) = 1 − F (v) be the
quantile function, and let v(q) = q−1(·) be the inverse quantile function. The
quantile of a value v is the probability that a random draw from distribution F
exceeds v. Observe that quantiles are distributed uniformly on [0, 1].

Define R(q) = v(q)q = v(q)(1 − F (v(q)). Since F is atomless with support
[0, v̄], R(0) = R(1) = 0. Adopting language from the traditional quasi-linear
setting, we continue to refer to the function R as the revenue curve, but note
that the function R should not be understood as revenue in the convex cost
setting.4 Finally, let q∗ ∈ arg maxq∈[0,1] R(q) be the quantile corresponding to
the optimal revenue. We will also denote by κ = v(1/2) the median of the
distribution, and by μ = Ev∼F [v], the mean.

We will be looking at two standard classes of distributions. The smaller class
is that of monotone hazard rate (MHR) distributions, which require that h(v) =
f(v)/(1 − F (v)) be monotone non-decreasing. The larger class is that of regular
distributions, which require that R(q) be a concave function, or equivalently,
that ϕ(q) ≡ R′(q) = v(q) − 1−F (v(q))

f(v(q)) , be monotone decreasing. Since ϕ(q) =
v(q) − 1

h(v(q)) , an MHR distribution is also regular.
We now state two lemmas describing bounds on revenue curves, depending

on the assumptions made on the distributions values are drawn from.

Lemma 1 ([6]). For any MHR distribution, R(q∗) ≥ μ
e .

Lemma 2 ([18]). For any regular distribution, R(q∗) ≤ κ.

4 In the convex cost setting, if we interpret v(q) as a posted cost, rather than a posted
price (i.e., payment) then R(q) can be wrongly interpreted as an expected cost
function.
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2.3 Allocation, Payments, and Revenue

Myerson showed that for a mechanism to satisfy IC, IR and XP, several con-
ditions needs to hold. We restate his result below, adapted to the convex cost
setting.

Theorem 1 ([14]). Assuming a convex cost function, a mechanism is IC and
IR if and only if ∀i ∈ N,∀vi ∈ Ti,∀v−i ∈ T−i, the following conditions hold:

1. The allocation rule is monotone: xi(vi,v−i) ≥ xi(wi,v−i),∀vi ≥ wi ∈ Ti,,
2. Costs satisfy the following condition: vixi(v) − ci(v) =

∫ vi

0
xi(z,v−i) dz,.

Myerson also showed that the total expected revenue of such a mechanism
can be described using virtual values, ϕi(vi) = vi − 1−Fi(vi)

fi(vi)
= R′(q(vi)). We

restate his findings here, adapted to the convex cost setting.

Theorem 2 ([14]). Assuming a convex cost function, the total expected cost of
an IC, IR, and XP mechanism,

∑
i∈N Ev [ci(vi,v−i)] is equal to

∑
i∈N Ev [ϕi(vi)

xi(vi,v−i)].

In the traditional quasi-linear setting, when the cost function is the identity
function, the fact that virtual surplus is equivalent to revenue tells us that in
order to maximize revenue the good should be allocated to bidders with the
highest non-negative virtual values. However, in the convex cost setting, revenue
is not pinned down by Myerson’s theorem; only cost is. Moreover, revenue does
not have any obvious interpretation using Myerson’s characterization of costs. As
an early work on this convex cost setting, we restrict our attention to polynomial
costs, where c = pd, for some d ≥ 1.

3 Upper Bound on Optimal Revenue

Although we cannot easily find an optimal mechanism in the convex cost setting,
or even calculate the optimal revenue, we can provide an upper bound on the
optimal revenue.

By IR, we have the following:
∑

i∈N Ev [pi(v)] ≤ ∑
i∈N Ev

[
c−1
i (vixi(v))

]
.

We call the quantity on the right hand side of this inequality, pseudo-surplus,
and give a closed-form solution for maximizing it presently.

Lemma 3. When, ∀i ∈ N , ci = pd
i , where d > 1, the allocations that maximize

pseudo-surplus are given by

xi(vi,v−i) = v
1

(d−1)
i /

∑

j∈N

v
1

(d−1)
j ,∀i ∈ N,∀v ∈ T. (1)

Proof. Compute the derivative of (vixi(vi,v−i))
1/d with respect to xi(vi,v−i).

By the equi-marginal principle [9], these derivatives must be equal for all bidders
i. Using this fact, and the ex-post feasibility condition, we arrive at the result.
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Let OPT be the maximum total expected revenue that could be generated by
any IC/IR/XP mechanism. The following lemma upper bounds OPT, regardless
of the distribution F .

Lemma 4. When, ∀i ∈ N , ci = pd
i , where d ≥ 2:

OPT ≤ n (μ/n)1/d
. (2)

Proof (Sketch). Starting with the optimal solution to pseudo-surplus given by
Lemma 3, we can upper-bound OPT: OPT ≤ Ev [(

∑
i∈N v

1/(d−1)
i )

d−1
d ]. Observe

that f(x) = x(d−1)/d is a concave function for any d > 1, and g(x) = x1/(d−1) is
a concave function for any d ≥ 2. By Jensen’s inequality, for a concave function
G, Ev [G(X)] ≤ G (Ev [X]). Applying this inequality using our observations of
f and g yields Eq. (2).

Finally, we upper bound OPT assuming values are drawn from an MHR
distribution.

Theorem 3. When, ∀i ∈ N , ci = pd
i , where d ≥ 2 and the value distribution F

is an MHR distribution:

OPT ≤ n (eκ/n)1/d
. (3)

Proof. Lemmas 1 and 2 tell us that: μ ≤ eR(q∗) ≤ eκ. This, combined with
Lemma 4, proves the theorem.

In the bounds given by Lemma 4 and Theorem 3, which only rely on n, d,
μ, e and κ, we observe that as d tends towards infinity, the upper bound on
OPT tends to n. This trend is to be expected: as the rate of growth of the cost
function increases, less and less can be extracted from the bidders.

4 Reserve Price Mechanisms

We now turn to the design of simple prior-free mechanisms for the convex pay-
ment setting. We begin our analysis by looking at a uniform-allocation reserve
price mechanism, i.e. a mechanism that allocates uniformly to all bidders whose
value vi is above some reserve price r, or equivalently, to bidders whose quan-
tile qi is below some quantile reserve q̂. This mechanism charges the Z winning
bidders the reserve price c−1

i (v(q̂)/Z). This payment rule makes the mechanism
IC and IR.

We then describe the performance of a mechanism that selects a quantile
reserve uniformly at random. Finally, we show how selecting a quantile reserve
uniformly at random corresponds to a prior-free mechanism where one bidder
is picked at random to be used as the reserve price setter. This leads to the
main result of this section: a constant-factor approximately optimal prior-free
mechanism.

We begin with the analysis of the revenue of a uniform-allocation reserve
price mechanism, with quantile reserve q̂.
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Lemma 5. Consider a convex cost setting with ci = pd
i , ∀i ∈ N , where d ≥ 1.

Let APX(q̂) be the expected revenue of a mechanism that allocates uniformly
across all bidders with quantile qi ≤ q̂ and charges each of these Z bidders ex-
post truthful payments (v(q̂)/Z)1/d. Then:

APX(q̂) ≥ n

(
v(q̂)

1 + (n − 1)q̂

)1/d

q̂. (4)

Proof. The expected revenue of the mechanism with reserve price v(q̂) is

APX(q̂) = Ev∼F

[
∑n

i=1

(
v(q̂)1vi≥v(q̂)∑n
j=1 1vj≥v(q̂)

)1/d
]

. The probability that vi ≥ v(q̂)

is 1 − F (v(q̂)) = q̂, and if there exists a winner, the denominator is at least
one, so

APX(q̂) =
n∑

i=1

Ev∼F

⎡

⎣

(
1

1 +
∑n−1

j=1 1vj≥v(q̂)

)1/d
⎤

⎦ v(q̂)1/dq̂.

The function h(x) = 1/(1 + x)1/d is convex for d ≥ 1. By Jensen’s inequality,
E[h(x)] ≥ h(E[x]), so we have

Ev∼F

⎡

⎣
(

1
1 +

∑n−1
j=1 1vj≥v(q̂)

)1/d
⎤

⎦ ≥
(

1
1 + (n − 1)q̂

)1/d

.

Substituting this lower bound into the sum gives Eq. (4).

Given the performance of a mechanism with quantile reserve q̂, we now
describe how well a mechanism does by selecting the quantile reserve uniformly
at random.

Lemma 6 (Random Reserve Price Mechanism). Consider a convex cost
setting with ci = pd

i , ∀i ∈ N , where d ≥ 1. Let APX be the expected revenue of a
mechanism which draws a quantile reserve q̂ uniformly at random in [0, 1], and
then allocates uniformly across all bidders with quantile qi ≤ q̂, and charges each
of these Z bidders ex-post truthful payments (v(q̂)/Z)1/d. Then:

APX ≥ 1
8
n1−1/dκ1/d. (5)

Proof. A lower bound on the total expected revenue of the mechanism can
be computed by integrating APX(q̂) with respect to quantile q̂: APX =∫ 1

0
APX(q̂) dq̂. Invoking Lemma 5, and since q̂ ∈ [0, 1], the quantity APX(q̂)

can be lower-bounded as follows:

APX(q̂) ≥ n1−1/dv(q̂)1/dq̂.

Thus we get:

APX ≥ n1− 1
d

∫ 1

0

v(q̂)q̂
v(q̂)1− 1

d

dq̂ ≥ n1− 1
d

∫ 1

1/2

R(q̂)
v(q̂)1− 1

d

dq̂.



122 A. Greenwald et al.

Since κ = v(1/2) ≥ v(q̂) for 1/2 ≤ q̂ ≤ 1, we have

APX ≥ n1− 1
d

κ1− 1
d

∫ 1

1/2

R(q̂) dq̂,

and because R(q̂) is concave,
∫ 1

1/2
R(q̂) dq̂ ≥ 1

2
1
2R(1/2) = κ/8, where the last

step follows from the proof of Lemma 2, giving us Eq. (5).

We are now ready to prove the main theorem of this section: a prior-free mech-
anism that is a constant-factor approximation of the optimal. Observe that to
draw a random quantile reserve, we do not need to know the distribution of
values, as the quantile of a randomly selected bidder is ex-ante equivalent to a
randomly drawn quantile reserve. That is, we can sacrifice a randomly selected
bidder by using his quantile as the reserve and run a random reserve price mech-
anism among the n − 1 bidders. Notice that this mechanism is prior-free. We
show that it is approximately optimal.

Theorem 4 (Prior-Free Mechanism). Consider a convex cost setting with
ci = pd

i , ∀i ∈ N , where d ≥ 2 and the value distribution is an MHR distribution.
Let APX be the expected revenue of the random price setter mechanism. The
random price setter mechanism achieves revenue APX which satisfies:

APX
OPT

>
1
8

(
n − 1

n

)1−1/d 1
e1/d

≥ 1
16e

. (6)

Proof. Observe that the revenue of the mechanism is equal to the revenue of
the random reserve price mechanism with n − 1 bidders. Thus, by applying
Lemma 6, we have APX ≥ 1

8 (n − 1)1−1/dκ1/d. By Theorem 3, we also have
OPT ≤ n1−1/d(eκ)1/d. Combining the two bounds, yields the theorem.

For d ≥ 2, the approximation ratio given by Eq. (6) is 1
8e1/d > .075 in the

limit, as n tends towards infinity, and 1
8 , as d tends towards infinity as well.

5 Heuristics and Experiments

Example 1 and preliminary experimental results (not reported in detail here,
due to space constraints) suggest that it is desirable to allocate to multiple
bidders in the convex cost setting. Thus, we propose two mechanisms, which can
potentially allocate to all bidders: 1. a mechanism that allocates proportionally
by positive values, and 2. a mechanism that allocates proportionally by positive
virtual values. Note that the first mechanism can allocate to any bidder whose
type is positive. The second mechanism is similar to that of the optimal revenue-
maximizing mechanism in the usual quasi-linear setting in that it avoids bidders
with negative virtual values, so certain types are never allocated.

We evaluated our mechanisms using polynomial costs c = pd, where
d ∈ {2, 3, 10, 20}. We saw that as d increases, the mechanism that allocates
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proportionally by value performed best. This can be explained as follows: as d
increases, the amount of revenue contributed by a bidder becomes vanishingly
small, so it becomes more favorable to extract payments from a larger set of
bidders, including those who may not have the highest values.

6 Conclusion

We investigated the single-dimensional mechanism design problem where bid-
der’s utility functions are not linear with respect to payments, but instead are
convex—specifically, polynomial with respect to payments. We discovered that
in contrast to the traditional quasi-linear setting, in our convex cost setting,
it is suboptimal to allocate only to the highest bidders. We also noted that
Myerson’s elegant machinery does not easily extend from the quasi-linear to
the convex cost setting. Nonetheless, we were able to provide an upper bound
on the value of the revenue-maximizing mechanism. We additionally developed
a prior-free mechanism with a constant-factor approximation guarantee. The
prior-free mechanism was also empirically evaluated using values drawn from
random MHR distributions, and we saw that the total expected revenue gener-
ated by this mechanism can, on average, exceed the guarantee we provide. We
then proposed and evaluated two mechanisms that we provide no guarantees for,
which allocate proportionally to values and virtual values, and see that they do
well empirically as well, with performance exceeding that of our prior-free mech-
anism. In future work, we hope to construct lower bounds on these proportional
allocation mechanisms.
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Abstract. We consider social distance games, where a group of utility
maximizing players, connected over a network representing social prox-
imity, wish to form coalitions (or clusters) so that they are grouped
together with players that are at close distance. Given a cluster, the
utility of each player depends on its distance to the other players inside
the cluster and on the cluster size, and a player will deviate to another
cluster if this leads to higher utility. We are interested in Nash equilibria
of such games, where no player has an incentive to unilaterally deviate
to another cluster, and we present bounds on the price of stability both
for the normal utility function and for a slightly modified one.

1 Introduction

In many social contexts, people (or companies) frequently choose to interact and
collaborate with other people and economic entities, and form close personal
or business ties. This process, also called coalition formation, captures several
interesting settings, and is essentially ubiquitous, especially with the rise of social
networks. The criteria for selecting with whom to coalesce (or whom to avoid)
may range from personal preferences (e.g., which party to attend or whom to
invite for dinner) to financial motives (e.g., which company merge should be
encouraged), and give rise to complex dynamic interactions.

Consider, for example, a conference welcome reception where the attendants
typically tend to form small groups (or clusters) and discuss recent news of per-
sonal or scientific nature. The composition of these clusters rarely stays fixed
during the entire welcome reception as people may observe that another, per-
haps more appealing, cluster has formed and, hence, wish to join it. For each
attendant, the pleasure she derives by a particular cluster depends on how many
people in this cluster she knows directly (and, actually, likes) or may have com-
mon friends with, etc., as well as on the cluster size.

We are interested in stable states of this coalition formation process, i.e.,
when all cluster members are satisfied with the current configuration and no
one wishes to join a different cluster, and, in addition, in comparing a stable
state to the optimal clustering. We consider a model where the utility obtained
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by a cluster depends on average inverse social distance to the cluster members;
informally, we assume that people tend to prefer being in clusters with friends, or
friends of friends, than with strangers. The class of strategic games that captures
this process is that of social distance games.

Related Work. Social distance games were introduced by Brânzei and Lar-
son [9] who proved that finding the optimal clustering is NP-hard and designed
a 2-approximation algorithm with respect to the social welfare. In addition, they
studied stability using the notion of the core. The work that is most related to
ours is by Balliu et al. [4] who considered the price of stability in social dis-
tance games and presented lower bounds of 6/5 for general graphs, 169/160 for
bipartite graphs, as well as an upper bound of (

√
2 + 1)/2 for graphs for girth

5. Moreover, they proved that social distance games do not admit a potential
function, as best response dynamics may cycle, while computing the social wel-
fare maximizing Nash stable clustering is also NP-hard. In another paper, Balliu
et al. [5] considered the price of Pareto optimality in social distance games and
presented asymptotically tight bounds.

Similar questions have been also studied for the related class of hedonic
games introduced by Drèze and Greenberg [10] (see [3] for a recent survey),
and, in particular, for simple, symmetric fractional hedonic games. Aziz et al. [2]
introduced fractional hedonic games, where players have utility over players,
and, given a clustering, the utility of each player is defined as the sum of utility
it obtains from each player in its cluster divided by the cluster size. In simple
symmetric fractional hedonic games, the utility obtained from a single player
can be either 0 or 1 and the utility function is symmetric. Olsen [16], among
other results, suggested an alternate utility function for fractional hedonic games,
where the utility function of player i does not take i into account when averaging
over the cluster size.

Bilò et al. [6,7] considered the price of anarchy and stability in fractional
hedonic games, and, among other results, proved that the price of stability in
simple symmetric fractional hedonic games is at least 2 for general graphs, at
most 4 for triangle-free graphs, and presented almost tight bounds for the case
of bipartite graphs. Kaklamanis et al. [15] also considered the price of stability
in simple, symmetric fractional hedonic games and presented an improved lower
bound of 1 +

√
6/2 ≈ 2.224 for general graphs as well as upper bounds of 1

for graphs of girth 5 and for general graphs under the utility function defined
by Olsen. Further notions of stability in fractional hedonic games have been
investigated by Brandl et al. [8].

Apart from social distance games and simple, symmetric fractional hedo-
nic games, Peters and Elkind [18] investigated the computational complexity of
stability-related questions in hedonic games, while Peters [17] studied the com-
putational complexity of questions related to dichotomous hedonic games, where
each player either approves or disapproves a given coalition. Feldman et al. [12]
considered the non-cooperative version of hedonic clustering games, where they
characterize Nash equilibria and provide upper and lower bounds on the price
of anarchy and price of stability, Hoefer et al. [14] studied hedonic games and
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characterized the structures bases on which dynamic coalition formation can
stabilize quickly, while Hoefer and Jiamjitrak [13] considered proportional allo-
cation for profit sharing in hedonic games.

Our Contribution. We consider Nash stable clusterings and focus on the price
of stability. We improve upon the lower bound of 6/5 from [4] and present a lower
bound of 2 for general graphs. The construction we use in the proof admits an
optimal clustering consisting of clusters of diameter 1, while in the only Nash
stable clustering almost all nodes are at distance 2 from each other. We also
consider games played on trees and we prove that the price of stability is 1.
Our final result concerns modified social distance games, where the utility is
computed with respect to the cluster size minus 1, and we show that, under this
utility function, the price of stability of social distance games is again 1.

Roadmap. The remainder of the paper is structured as follows. We begin, in
Sect. 2, by formally introducing the class of social distance games and presenting
the necessary definitions. Then, in Sect. 3, we present the results on the price of
stability and we conclude with open problems in Sect. 4.

2 Preliminaries

A social distance game is a strategic game played on a graph G = (V,E) by a set
N of n utility maximizing players; each node in V (G) corresponds to a strategic
player. A clustering of the game consists of a set C = {C1, C2, . . . } of clusters
such that ∪iCi = N , and Ci ∩Cj = ∅ for any pair i �= j, i.e., each player belongs
to exactly one cluster. We let C(u) denote the cluster that player u belongs to.

The utility of player i is given by

ui(C(i)) =
1

|C(i)|
∑

j∈C(i)\{i}

1
dC(i)(i, j)

,

where dC(i)(i, j) is the distance of players i and j in the subgraph defined by
cluster C(i). In case i and j are disconnected in cluster C(i), then dC(i)(i, j) = ∞.

The social welfare SW(C) of clustering C is defined as the sum of the player
utilities, i.e., SW (C) =

∑
i ui(C(i)), and we denote by C∗ the clustering that

maximizes the social welfare. Similarly, we define the utility of cluster C as
u(C) =

∑
i:C(i)=C ui(C).

Since each player is utility maximizing, given a clustering C, player i may
deviate from its current cluster C(i) in C and join another cluster C ′, if it holds
that ui(C(i)) < ui(C ′∪i). A player i is Nash stable if there is no cluster C ′ �= C(i)
such that i’s utility improves by deviating to C ′, while a cluster is Nash stable if
all players in the cluster are Nash stable. A clustering is a Nash stable clustering
if all clusters are Nash stable.

The price of stability PoS (introduced in [1]) denotes the best-case perfor-
mance deterioration arising from the requirement that the resulting clustering is
Nash stable. Given a graph G, the corresponding social distance game ΓG and
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its set of Nash stable clusterings Cs, the price of stability for the game ΓG is
formally defined as PoS(ΓG) = minC∈Cs

SW(C∗)
SW(C) . Similarly, the price of stability

for the class of social distance games is defined as PoS = supG PoS(ΓG).
We also consider a variant of social distance games, called modified social

distance games in accordance to similar nomenclature for the case of fractional
hedonic games (e.g., see [11] for the case of modified fractional hedonic games),
where the single difference is that the utility of each player i is now defined as

u′
i(C(i)) =

{ 1
|C(i)|−1

∑
j∈C(i)\{i}

1
dC(i)(i,j)

, if |C(i)| > 1;
0, otherwise.

3 Price of Stability of Social Distance Games

This section contains our results on the price of stability of social distance games.
We begin by presenting an improved lower bound for the general case of arbitrary
graphs, and then we consider the setting where players form a tree; in this case,
we show that there exists an optimal clustering that is stable, i.e., the price
of stability is 1. Finally, we conclude with the case of modified social distance
games where, again, we prove that the price of stability is 1, by arguing about
the structure of an optimal clustering.

3.1 A Lower Bound for General Graphs

We begin with a technical lemma; in any stable clustering, any two players with
the same closed neighborhood must belong to the same cluster.

Lemma 1. For any two players x, y such that (x, y) ∈ E(G), if N(x) ∪ x =
N(y) ∪ y, then, in any stable clustering, x and y are in the same cluster, i.e.,
C(x) = C(y).

We are now ready to prove the main result of this section. In our construction,
the only Nash stable clustering is the grand coalition, while the optimal clustering
consists of cliques.

Theorem 1. The price of stability of social distance games is at least 2 − ε
for ε > 0.

Proof. Let α be a positive integer. Consider the following graph G that is also
presented in Fig. 1. There exist two sets S, S′ of α nodes each, where each node
i ∈ S is connected only to the corresponding node i′ ∈ S′. There also exist α/2
cliques Kj , 1 ≤ j ≤ α/2, each of size α. Any node in clique K1 is connected
to all nodes in S′ ∪ (

⋃
i≥2 Ki). Therefore, the total number of nodes in G is

α2/2 + 2α.
We first argue about the social welfare in the optimal clustering and then

we argue that the grand coalition is the only Nash stable clustering. Consider
the clustering C where each player i ∈ S is paired with the neighboring player
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K1

K2

Kα/2

K3

...

α nodesα nodes

S S′

...
...

α nodes

α nodes

α nodes

α nodes

Fig. 1. The graph G used in the proof of the lower bound. Each bubble corresponds
to a clique and each dashed line represents edges adjacent to all clique nodes.

i′ ∈ S′, cliques K1 and K2 form a cluster, while each clique Kj , for 3 ≤ j ≤ α/2
forms a cluster. The social welfare of this clustering is

SW(C) = α + (2α − 1) + (α/2 − 2)(α − 1)

= α2/2 + α/2 + 1,

where the first term in the first equality is due to the α clusters containing the
players in S ∪ S′, the second term is due to the cluster K1 ∪ K2, while the last
term is due to the remaining (α/2 − 2) clusters, each containing a single clique
of size α. Clearly, for the optimal clustering C∗ it holds that SW(C∗) ≥ SW(C),
hence, it holds that

SW(C∗) ≥ α2/2 + α/2 + 1. (1)

Consider now the clustering C′ where all players form a single cluster, i.e.,
the grand coalition. Its social welfare is

SW(C′) =
α(1 + α

2 + α2/2−1
3 + α−1

4 ) + α(α + 1 + α2/2−1
2 + α−1

3 )
α2/2 + 2α

+
α(α2/2 + α − 1 + α

2 ) + (α2/2 − α)(2α − 1 + α2/2−α
2 + α

3 )
α2/2 + 2α

=
α(2α2 + 9α + 5)/12 + α(3α2 + 16α + 2)/12 + α(α2 + 3α − 2)/2

α2/2 + 2α

+
(α2/2 − α)(3α2 + 22α − 12)/12

α2/2 + 2α

=
α(3α3 + 38α2 + 30α + 14)/24

α2/2 + 2α

=
3α3 + 38α2 + 30α + 14

12α + 48
, (2)
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where, in the first equality, the first term is due to the α players in S, the second
term is due to the α players in S′, the third term is due to the α players in clique
K1, while the last term is due to the (α2/2−α) players in the remaining cliques.

In the following, we show that C′ is the only Nash stable clustering. First,
observe that in any stable clustering, any player i ∈ S must be in the same
cluster as its neighbor i′ ∈ S′. If this is not the case, then ui(C(i)) = 0 as
there is no path inside C(i) connecting i to any other player in C(i), while by
joining cluster C(i′) the utility of player i would be strictly positive. Then, due
to Lemma 1, observe that, in any stable clustering, all players in a clique Kj ,
where 1 ≤ j ≤ α/2, must belong in the same cluster, as by the construction of
graph G, any pair of players in Kj has the same closed neighborhood.

We continue by showing that any player in S′ belongs to the same cluster as
the players in clique K1. Assume otherwise and consider such a player i′ ∈ S′. By
the discussion above, i′ is in the same cluster as its neighboring player i ∈ S and,
by our assumption that i′ is not in the same cluster as clique K1, i′ has no path
inside C(i′) connecting it to any other player in C(i′), hence ui′(C(i′)) ≤ 1/2.
Consider the cluster C that contains the players of clique K1 and let us assume
that C contains also κ players of S′ (but different than i′), where 0 ≤ κ < α and
the players of λ additional cliques Kj>1, where 0 ≤ λ < α/2; by the discussion
above, C also contains κ players of S. Then, the utility of player i′ when joining
cluster C is

ui(C ∪ i′) =
α + (κ + λα)/2 + κ/3

(λ + 1)α + 2κ + 1
,

which is strictly greater than 1/2 for any κ < α.
So far we have established that, in any Nash stable clustering, the players

of S, S′, and K1 are necessarily in the same cluster, while the players of any
clique Kj>1 are also together in a cluster; note that we have not yet ruled out
the possibility that different cliques belong to different clusters. We conclude the
argument that the grand coalition is the only Nash stable clustering by showing
that if there exists a clique Kj′>1 that is not in the same cluster as the clique
K1, then any player in K1 has an incentive to deviate and join the same cluster
as the players of Kj′

. Indeed, in this case, the utility of any player k in K1 is
maximized whenever C(k) contains, apart from players in S∪S′ ∪K1, all players
except those in Kj′

and, hence, it holds that

uk(C(k)) ≤ (α/2 − 2)α + 2α − 1 + α
2

(α/2 − 2)α + 3α

=
α2 + α − 2
α2 + 2α

=
α − 1

α
,

where the first term in the inequality is due to the distance to the other cliques,
the last term is due to the distance to players in S while the remaining terms
are due to the distance to players in S′ and the remaining players of K1. By
deviating to cluster Cj′ containing at least the players of clique Kj′

, player
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k would obtain utility uk(Cj′ ∪ k) ≥ α
α+1 ,1 i.e., strictly greater utility than

uk(C(k)). This concludes the argument that the grand coalition is the only
Nash stable clustering.

By combining inequalities (1) and (2), we conclude that the price of stability
for graph G is

PoS(G) =
SW(C∗)
SW(C′)

≥ α2/2 + α/2 + 1
(3α3 + 38α2 + 30α + 14)/(12α + 48)

=
6α3 + 30α2 + 36α + 48
3α3 + 38α2 + 30α + 14

≥ 2 − ε,

as α tends to infinity, where ε is an arbitrarily small positive number. �

3.2 The Case of Trees

We consider the case where the graph G is a tree and prove that an optimal
clustering is stable. We call a clustering compact if it consists only of stars and
paths of 4 nodes and we first argue that there exists a compact optimal clustering.
We begin by showing that at least one optimal clustering is compact.

Lemma 2. In social distance games on trees, there exists an optimal clustering
where each cluster is either a path of 4 nodes or a star.

We now argue that, starting from an unstable compact clustering, we can
obtain another compact clustering with at least the same social welfare and
fewer paths of 4 nodes.

Lemma 3. A compact clustering C is either stable or it can be turned into
another compact clustering C′, where SW(C) ≤ SW(C′) and the number of paths
of 4 nodes is strictly less in C′ than in C.
Proof. Consider a compact clustering C. We argue about the stability of C and
we will show that when C is unstable, then we can obtain another compact
clustering C′ satisfying the lemma.

In star clusters, each player that is a leaf has utility 1/2 and by joining a
path of 4 nodes would obtain utility 5/12, if its neighbor is a path endpoint, or
utility 7/15 if its neighbor is not a path endpoint. Similarly, by joining a star, it
would obtain utility of 1/2, so no leaf player has any incentive to deviate. Each
player that is a center in a star cluster has utility at least 1/2 and, as in the case
of leaf nodes, has no incentive to deviate.

In paths of 4 nodes, each player that is not a path endpoint has utility 5/8
and would obtain strictly less utility by any deviation. A player that is a path

1 uk(Cj′ ∪ k) obtains its minimum value when Cj′ contains a single clique, i.e., Kj′
.
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endpoint obtains utility 11/24 and has no incentive to deviate by connecting to
an endpoint of another path of 4 nodes, or to a leaf in a star cluster of at least
3 players. When such a player has an incentive to connect as a leaf to a center
of a star cluster, then by allowing this deviation we obtain another compact
clustering with strictly greater social welfare and a reduced number of paths of
4 nodes, as the original path has now become a star with 3 players. When a
player that is a path endpoint wishes to deviate and connect to a non-endpoint
node in a path of 4 nodes, then we can rearrange these two clusters, that are
both paths of 4 nodes, into three star clusters of size 2, 3, and 3 with the same
social welfare; again, we obtain a compact clustering that satisfies the lemma. �

By combining Lemmas 2 and 3 we obtain the following theorem, as there
exists an optimal clustering C∗ that is compact and, in case it is unstable, we
can obtain another compact optimal clustering with strictly less paths of nodes
4; clearly, this process will eventually halt at a stable compact optimal clustering.

Theorem 2. The price of stability of social distance games on trees is 1.

3.3 Modified Social Distance Games

This section contains our results for the setting of modified social distance games.
In our proofs, we exploit the following technical lemma that argues about the
social welfare in a clustering that consists only of stars.

Lemma 4. Any clustering where m star clusters span a set of n nodes has total
utility m + n/2.

Proof. Consider the m star clusters C1, C2, . . . , Cm and let ni, 1 ≤ i ≤ m,
denote the number of nodes in cluster Ci. For a given cluster Ci, the cluster
center has utility 1 while each of the remaining ni − 1 nodes has utility (1 +
(ni − 2)/2)/(ni − 1) = ni/(2ni − 2). By summing over all players in Ci, we
obtain that u(Ci) = 1 + ni/2. The lemma follows by summing over all m star
clusters and since

∑
i ni = n. �

We first show that there exists an optimal clustering where each cluster is a
triangle, a star or a single disconnected node; we begin by an optimal clustering
that may not exhibit these properties and we show how to transform it into
another optimal clustering that satisfies them.

Lemma 5. There exists an optimal clustering C∗ where each cluster C with
|C| ≥ 4 is a star.

Proof. Consider an optimal clustering C∗ and a cluster C with m ≥ 4 nodes
that is not a star. Let D be a decomposition of cluster C into a collection of
disjoint sets {T, P, I} where T contains x disjoint cliques of size 3, i.e., triangles,
P contains y disjoint cliques of size 2, i.e., pairs, and I contains z isolated nodes,
so that z is the minimum among all such decompositions. Clearly, m = 3x+2y+z.
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We now argue about the structure inside cluster C. First, observe that there
cannot be an edge connecting a node belonging to set T in D to a node belonging
to set I in D, or two nodes belonging to set I in D, as then another decomposition
D′ exists with strictly less isolated nodes than D. Furthermore, each isolated
node in D may be directly connected to at most one node of each pair in D as
otherwise we could form a triangle and reduce the number of isolated nodes. In
addition, for each pair in D, at most one node may be directly connected to any
isolated node, as otherwise we could “break” the pair, connect its endpoints to
the isolated nodes and again reduce the number of isolated nodes. Let P ′ be
the set of the y′ ≤ y pairs in D where exactly one endpoint has at least one
isolated node as neighbor, while, for the remaining y − y′ pairs, no endpoint has
an isolated node as neighbor. Furthermore, for any pair where one endpoint is
directly connected to an isolated node, the other endpoint cannot be connected
to a triangle node, as then we could again reduce the number of isolated nodes
by rearranging the triangle, the pair, and the isolated node. Finally, any isolated
node i is directly connected to at least one node (which, by the discussion above,
must be a pair node), as otherwise the cluster C \ {i} has strictly greater utility
than C, contradicting the optimality of C∗.

By the last observation about isolated nodes, it follows that we can decom-
pose cluster C into smaller clusters such that each triangle in T forms a cluster,
while there are also y star clusters that contain the nodes in P as well as the
isolated nodes, i.e., 2y + z nodes in total. By Lemma 4, we have that the total
utility u(D) of the new set of clusters is

u(D) = 3x + 2y + z/2. (3)

Let us now argue about the utility of cluster C. We upperbound the utility
of each player i in C according to its type in the decomposition D. If i is in a
triangle,

ui(C) ≤ 3x + y′ + 2(y − y′) − 1 + (y′ + z)/2
3x + 2y + z − 1

=
3x + 2y − y′/2 + z/2 − 1

3x + 2y + z − 1
, (4)

since, by the discussion above, i can be directly connected to at most the nodes
in triangles, one endpoint for each of y′ pairs, both endpoints for the remaining
(y − y′) pairs, while it can have distance at least 2 from the remaining y′ + z
nodes.

If i is an isolated node, then

ui(C) ≤ y′ + (y′ + 2(y − y′) + 3x + z − 1)/2
3x + 2y + z − 1

=
3x/2 + y + y′/2 + z/2 − 1/2

3x + 2y + z − 1
, (5)

since it can be directly connected to at most y′ nodes and has distance at least
2 to all remaining nodes.
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If i is a node in the y′ pairs and has isolated nodes as neighbors, then the
utility is

ui(C) ≤ 3x + 2y + z − 1
3x + 2y + z − 1

, (6)

as it may be directly connected to all remaining nodes, while if i is an endpoint
in one of the y′ pairs and does not have isolated nodes as neighbors, then the
utility is

ui(C) ≤ 2y − 1 + (3x + z)/2
3x + 2y + z − 1

, (7)

since i can be directly connected only to the remaining nodes belonging to pairs
in D.

Finally, if i is part of the y −y′ pairs where no endpoint has an isolated node
as neighbor, then the utility is

ui(C) ≤ 3x + 2y − 1 + z/2
3x + 2y + z − 1

, (8)

as it may be directly connected to all remaining nodes apart from those that are
isolated in D.

The total utility of cluster C can be bounded from above by using inequalities
(4)–(8) as

u(C) =
∑

i∈C

ui(C)

=
∑

i∈T

ui(C) +
∑

i∈P ′
ui(C) +

∑

i∈P\P ′
ui(C) +

∑

i∈I

ui(C)

≤ 3x(3x+ 2y − y′/2 + z/2 − 1) + y′(3x+ 2y + z − 1 + 2y − 1 + (3x+ z)/2)

3x+ 2y + z − 1

+
2(y − y′)(3x+ 2y − 1 + z/2) + z(3x/2 + y + y′/2 + z/2 − 1/2)

3x+ 2y + z − 1

=
9x2 + 4y2 + z2/2 + 12xy − 3xy′ + 3xz + 2yz + y′z − 3x − 2y − z/2

3x+ 2y + z − 1
. (9)

The proof follows as, by combining (3) and (9), we obtain u(D) ≥ u(C), since
(3x+2y + z/2)(3x+2y + z − 1) ≥ 9x2 +4y2 + z2/2+12xy − 3xy′ +3xz +2yz +
y′z−3x−2y−z/2 for any y′ ≤ y, i.e., we can decompose cluster C into triangles
and stars without losing social welfare; clearly, we can repeatedly perform this
process until all clusters are as desired. �

We are now ready to prove the main result of this section, i.e., that there
exists a stable optimal clustering.

Theorem 3. The price of stability of modified social distance games is 1.
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Proof. Consider an optimal clustering C∗ that exhibits the properties of
Lemma 5. Clearly, if C∗ is stable, the theorem follows, so we assume that C∗

is unstable and we show how to modify it in order to obtain a stable optimal
clustering.

First, observe that any player that is in a triangle cluster and any player that
is a root in a star cluster is satisfied since its utility is 1. Therefore, the players
that may wish to deviate from C∗ are those that are either in singleton clusters, or
leaves in a star. We now argue that players in singleton clusters are disconnected
in graph G and, hence, obtain utility equal to 0 in any clustering; so, they have
no incentive to deviate and can be ignored, without loss of generality. Indeed,
if i is connected by an edge (i, j) ∈ E(G) to another player j in a singleton
cluster, then we can merge the two singleton clusters C∗(i) and C∗(j) to a single
cluster and strictly increase the social welfare; a contradiction since C∗ is an
optimal clustering. A similar reasoning applies if player i is connected by an
edge (i, k) ∈ E(G) to a player k that is in a triangle cluster or that is a leaf
in a star cluster, as then we can replace C∗(i) and C∗(k) by C∗(i) ∪ {k} and
C∗(k)\{k} and obtain strictly greater social welfare. Finally, if i is connected to a
player � that is root in a star cluster, we can merge clusters C∗(i) and C∗(�) and
obtain strictly greater social welfare as u(C∗(i)) = 0, u(C∗(�)) = 1 + |C∗(�)|/2,
while u(C∗(�) ∪ {i}) = 1 + (|C∗(�)| + 1)/2.

We now consider the players that are leaves in star clusters. As in the case of
singleton clusters, a leaf player i cannot be connected by an edge to a triangle
cluster or to another leaf player, as again we would obtain strictly greater welfare
by letting player i and its neighbor form a new cluster. Hence, i can only deviate
by becoming a leaf to another star cluster. By Lemma 4, the social welfare of
any set of disjoint star clusters spanning a given set of nodes does not depend
on how these stars are actually formed, and, hence, any such deviation does not
change the social welfare. Observe that such a deviating move of player i from
the star C∗(i) to another star C, requires that |C∗(i)| > |C| + 1. Therefore,
by considering the lexicographic order π of all star clusters in the clustering C∗

based on the number of nodes, from the minimum to the maximum, we observe
that any deviating move that leads to a clustering C′ satisfies π(C∗) < π(C′) and,
hence, this process is guaranteed to end as we can apply this reasoning to any
subsequent deviation. This concludes the proof of the theorem. �

4 Conclusions

We have presented new bounds on the price of stability of social distance games.
The most important open question concerns the upper bound for general graphs,
where no better bound than the trivial O(n/ log n) is known. Similarly, no better
bounds are known even for the case of bipartite graphs; we remark that for the
class of simple, symmetric fractional hedonic games, the price of stability for
bipartite graphs is a very small constant [7]. We also conjecture that the price
of stability is 1 even for graphs of girth at least 5, i.e., the upper bound in [4] is
not tight.
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Abstract. Schelling’s segregation model is a landmark model in socio-
logy. It shows the counter-intuitive phenomenon that residential segre-
gation between individuals of different groups can emerge even when all
involved individuals are tolerant. Although the model is widely studied,
no pure game-theoretic version where rational agents strategically choose
their location exists. We close this gap by introducing and analyzing gen-
eralized game-theoretic models of Schelling segregation, where the agents
can also have individual location preferences.

For our models we investigate the convergence behavior and the effi-
ciency of their equilibria. In particular, we prove guaranteed convergence
to an equilibrium in the version which is closest to Schelling’s original
model. Moreover, we provide tight bounds on the Price of Anarchy.

1 Introduction

Segregation is a well-known sociological phenomenon which is intensely moni-
tored and investigated by sociologists and economists. It essentially means that
a community of people which is mixed along e.g. ethical, racial, linguistic or
religious dimensions tends to segregate over time such that almost homogeneous
sub-communities emerge. The most famous example of this phenomenon is res-
idential segregation along racial lines in many urban areas in the US.1

To explain the emergence of residential segregation Schelling [19] proposed
in a seminal paper a very simple and elegant agent-based model. In Schelling’s
model two types of agents, say type A and type B agents, are placed on a
line or a grid which models some residential area. Each agent is aware of its
neighboring agents and is content with her current residential position if at
least a τ fraction of agents in her neighborhood is of the same type, for some
0 ≤ τ ≤ 1. If this condition is not met, then the agent becomes discontent with
her current position and exchanges positions with a randomly chosen discontent
agent of the other type or the agent jumps to a randomly chosen empty spot.2

Schelling showed with simple experiments using coins, graph paper and random
numbers that even with τ ≤ 1

2 , i.e., with tolerant agents, the society of agents

1 See the racial dot map [8] for an impressive visualization.
2 A playful interactive demonstration can be found in [13].

c© Springer Nature Switzerland AG 2018
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will eventually segregate into almost homogeneous communities. This surprising
observation caught the attention of many economists, physicists, demographers
and computer scientists who studied related random models and verified exper-
imentally that tolerant local neighborhood preferences can nonetheless induce
global segregation in social and residential networks, see e.g. [1,4,11,14].

To the best of our knowledge, all agent-based models of segregation are essen-
tially random processes where discontent agents choose their new location at
random. In this paper we depart from this assumption by introducing and ana-
lyzing a game-theoretic version of Schelling’s model where agents strategically
choose their location. Empirically, our model yields outcomes which are very
similar to Schelling’s original model - see Fig. 1 for an example.

random inital placement stable placement in the u-SSG stable placement in the cf-SSG stable placement in the SSG
(common favorite node: center) (favorite nodes chosen u.a.r)

Fig. 1. Sample equilibria of our model showing significant segregation. Here |A| =
|B| = 5000, nodes of type A are blue, type B nodes are green and τ = 1

2
. (Color figure

online)

Moreover, our model generalizes Schelling’s model since we allow agents to have
preferences over the available locations. Hence, we introduce and explore the
influence of such individual location preferences.

1.1 Related Work

There is a huge body of work on Schelling’s model and variations thereof, see
e.g. [4,5,10,17,18,20–23]. Most related work is purely empirical and provides
simulation results. We focus here on the surprisingly small amount of related
work, which rigorously proves properties of (variants of) Schelling’s model.

Young [23] was the first to rigorously analyze a variant of the one-dimensional
segregation model by using techniques from evolutionary game theory. He con-
sidered the specific dynamics where a pair of agents is chosen at random and they
swap places with a suitably chosen probability. Then he analyzes the induced
Markov chain and proves that under certain conditions total segregation will be
with high probability a stochastically stable state. Later Zhang [24,25] proved
similar results in 2-dimensional models.

The first rigorous analysis of the original Schelling model was achieved by
Brandt et al. [7] for the case where agents with tolerance parameter τ = 1

2
are located on a ring and agents can only swap positions. They prove that the
process converges with high probability to a state where the average size of
monochromatic neighborhoods is polynomial in w, where w is the window-size
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for determining the neighborhood. Interestingly, Barmpalias et al. [2] have proven
a drastically different behavior for 0.3531 < τ < 1

2 where the size of monochro-
matic neighborhoods is exponential in w. Later, Barmpalias et al. [3] analyzed a
2-dimensional variant where both agent types have different tolerance parame-
ters and agents may change their type if they are discontent. Finally, Immorlica
et al. [15] considered the random Schelling dynamics on a 2-dimensional toroidal
grid with τ = 1

2 − ε, for some small ε > 0. Their main result is a proof that the
average size of monochromatic neighborhoods is exponential in w.

Not much work has been done on the game theory side. To the best of our
knowledge only the model by Zhang [25] is game-theoretic and closely related
to Schelling’s model. In this game agents are placed on a toroidal grid and are
endowed with a noisy single peaked utility function which depends on the ratio
of the numbers of the two agent types in any local neighborhood. The highest
utility is attained in perfectly balanced neighborhoods and agents slightly prefer
being in the majority over being in the minority. In contrast to our model,
Zhang’s model [25] assumes transferable utilities and it can happen that after a
randomly chosen swap one or both agents are worse off. Moreover Zhang’s model
does not incorporate the threshold behavior at τ . However, despite the different
model Zhang [25] uses a similar potential function as we do in this paper.

We note that hedonic games [6,12] are also remotely related to Schelling’s
model, but there the utility of an agent only depends on her chosen coalition.
In Schelling’s model the neighborhood of an agent could be considered as her
coalition, but then not all agents in a coalition derive the same utility from it.

1.2 Model and Notation

We consider a network G = (V,E), where V is the set of nodes and E is the set
of edges, which is connected, unweighted and undirected. If in G every node has
the same degree, i.e., the same number of incident edges, then we call G regular.
The distance dG(u, v) between two nodes u, v ∈ V in network G is the number
of edges on a shortest path between u and v. The diameter of G is the length of
the longest shortest path between any pair of nodes and is denoted by D(G). For
a given node u ∈ V let Nw(u) be the set of nodes v �= u which are in distance
at most w from node u. We call Nw(u) the w-neighborhood of u and w ≥ 1 is
the window size. We will omit w whenever a statement holds for all w ≥ 1.

Agents of two different types are located on the nodes of network G. There
are two disjoint sets of agents A and B, with |A|, |B| ≥ 2 and we say that all
agents a ∈ A are of type A and agents b ∈ B are of type B. In each state of our
game, there is an injective mapping pG : {A∪B} → V between agents and nodes
which we call a placement. In any placement pG a node of G can be occupied
by exactly one agent either from A or from B or the node can be empty. Let
pG be any placement and let x, y, with x ∈ A and y ∈ B, be agents which are
neighbors under placement pG. In this case, we call x, y a colored pair.

For any agent x ∈ A ∪ B, pG(x) = u, we define N+
w (pG(x)) ⊆ Nw(pG(x)), as

the set of other nodes v in the w-neighborhood of node u, with u �= v, which are
occupied by the same type of agents as agent x and N−

w (pG(u)) ⊆ Nw(pG(u)) is
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the corresponding set of other nodes which are occupied by agents of the other
type. Note that pG(x) /∈ N+

w (pG(x)). If |N+
w (pG(x))| + |N−

w (pG(x))| = 0, then
agent x has no neighboring agents and we say that agent x is isolated.

Let τ ∈ [0, 1] be the tolerance parameter. Similar to Schelling’s model we
say that an un-isolated agent x is happy or content with placement pG if at
least a τ -fraction of the agents which occupy the nodes in her w-neighborhood
under pG are of the same type as her. I.e., an un-isolated agent x is happy if

|N+
w (pG(x))|

|N+
w (pG(x))|+|N−

w (pG(x))| ≥ τ, otherwise x is unhappy or discontent with placement
pG. Moreover, we will assume that isolated agents are always unhappy. We call
the ratio |N+

w (pG(x))|
|N+

w (pG(x))|+|N−
w (pG(x))| the local happiness ratio of agent x. Besides

having preferences about the neighborhood structure, every agent may have a
favorite node favx ∈ V in the network G.

The cost function of our agents is based on two main assumptions:

(1) An agent’s high priority goal is to find a location where she is happy.
(2) An agent’s low priority goal is to find a location which is as close as possible

to her favorite location.

Thus, a happy agent x strives for locations where she is happy, but as close
as possible to favx. If an agent x is unhappy, she will try to improve her local
happiness ratio. If this is not possible then she will select a location which has
maximum possible local happiness ratio and which is closest to favx.

We incorporate these assumptions as follows in our cost function: The cost
of an un-isolated agent x with placement pG in network G is the vector

costx(pG) =
(

max
(

0, τ − |N+
w (pG(x))|

|N+
w (pG(x))| + |N−

w (pG(x))|
)

, dG(favx, pG(x)) + 1
)

and for an isolated agent x the cost is costx(pG) = (τ, dG(favx, pG(x)) + 1).
Thus, an agent x is happy with placement pG, if and only if costx(pG) = (0, ·).

Note that we use dG()+1 instead of dG() as second component of the cost vector
for technical reasons. This has no influence on the behavior of the agents.

We choose the lexicographic order ≤lex
3 for comparing cost vectors. Agents

want to minimize their cost vector lexicographically, i.e., it is more important
for an agent to be happy than to be close to her favorite node.

The social cost cost(pG) of a placement pG in network G is the vector con-
sisting of the number of unhappy players and the sum of all distance terms:

cost(pG) =(
| {x ∈ A ∪ B | costx(pG) = (α, ·), α �= 0} |,

∑
x∈A∪B

(dG(favx, pG(x)) + 1)

)
.

The strategy space of an agent is the set of all nodes of G. A strategy vector
is feasible if all of its entries are pairwise disjoint. Clearly, there is a bijection
3 (α, β) <lex (γ, δ), if α < γ or α = γ and β < δ. (α, β) =lex (γ, δ), if α = γ and

β = δ. (α, β) >lex (γ, δ), if α > γ or α = γ and β > δ.
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between feasible strategy vectors and placements pG and we will use them inter-
changeably. For the possible strategy changes of an agent there are two versions,
which yield the Swap Schelling Game and the Jump Schelling Game.

The Swap Schelling Game: In the Swap Schelling Game (SSG) only pairs
of agents can jointly change their strategies by swapping locations. Two agents
x and y agree to swap their nodes if both agents strictly decrease their cost by
swapping. A placement pG is stable if no pair of agents can both improve their
cost via swapping. Hence, stable placements correspond to 2-coalitional pure
Nash equilibria. Since locations can only be swapped, we will assume throughout
the paper that there are no empty nodes in G, that is, pG is also surjective.

The Jump Schelling Game: In the Jump Schelling game (JSG) an agent can
change her strategy to any currently empty node, which constitutes a “jump” to
that node. An agent will jump to another empty node, if this strictly decreases
her cost. Here a stable placement pG corresponds to a pure Nash equilibrium.

Different Variants: Besides assuming that every agents has some individual
favorite position, we will consider two additional variants of the SSG and the
JSG, depending on the favorite nodes of the agents. If the agents do not have
a favorite node, then we call these versions uniform (u-SSG or u-JSG) and we
simply ignore the second entry in the cost vector. Note that the uniform versions
are very close to Schelling’s original model. If all agents have the same favorite
node, then we call these games common favorites (cf-SSG or cf-JSG). Observe
that this variant is especially interesting since it models the case where some
particular location is intrinsically more attractive than others to all agents, e.g.
it could be the most popular location in a city.

Dynamic Properties: We will use ordinal potential functions. Such a function
Φ maps placements to real numbers with the property that Φ(p′

G) < Φ(pG) if
and only if p′

G is the placement which results from an improving move by a
(pair of) agent(s) under placement pG. If an ordinal potential function for some
special case of the game exists, then this implies that this special case has the
finite improvement property (FIP), which states that any sequence of improving
moves must be finite. Having the FIP is equivalent to the game being a potential
game [16]. Such games have many attractive properties like guaranteed existence
of pure equilibria and often a fast convergence to such a stable state. Moreover, a
potential function is useful for analyzing the quality of equilibria. In contrast, if
an infinite sequence of improving moves, usually called improving response cycle
(IRC), exists then there cannot exist an ordinal potential function.

1.3 Our Contribution

We introduce the first agent-based model for Schelling segregation where the
agents strategically choose their locations. For this, we consider a generaliza-
tion of Schelling’s model where agents besides having preferences over their
local neighborhood structure also have preferences of the possible locations.
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Table 1. Convergence results. “�”: potential game for any w and G. “reg.”: potential
game for any w and regular networks G. “ring”: potential game on a ring. IRC: an
improving response cycle exists, i.e., not a potential game.

u-SSG cf-SSG SSG u-JSG cf-JSG & JSG

τ < 1
2

� (Theorem 1) reg.
(Theorem 3)

ring, w = 1
(Theorem 5)

ring, w = 1
(Theorem 6)

IRC:
1
3

< τ < 1
2

(Theorem 7)

τ = 1
2

� (Theorem 1) reg.
(Theorem 3)

reg.
(Theorem 4)

ring, w = 1
(Theorem 6)

IRC
(Theorem 7)

τ > 1
2

reg.
(Theorem 2)

reg.
(Theorem 3)

reg.
(Theorem 4)

ring, w = 1
(Theorem 6)

IRC: 1
2

< τ ≤
2
3
(Theorem 7)

This introduces the important aspect of individual location differentiation which
has a significant influence on residential decisions in real life.

Our main contribution is a thorough investigation of the convergence prop-
erties of many variants of our model. See Table 1 for details. In particular, we
prove guaranteed convergence to an equilibrium for u-SSG, which essentially is
Schelling’s model, if tolerant agents are restricted to location swaps or if the
underlying network is regular. In contrast, previous work [2,3,7,15] has estab-
lished, that the process converges with high probability. Moreover, also the (cf)-
SSG behaves nicely on regular networks. In contrast to this, we show that loca-
tion preferences have a severe impact in the (cf-)JSG, since improving response
cycles exist, which imply that there cannot exist a potential function.

Furthermore, we investigate basic properties of stable placements and their
efficiency in the (u-)SSG. In particular, we prove tight bounds on a variant of
the Price of Anarchy for the (u-)SSG.

Due to space constraints all omitted details can be found in [9].

2 Dynamic Properties

We analyze the convergence behavior of the Schelling game. Our main goal is to
investigate under which conditions an ordinal potential function Φ exists.

2.1 Dynamic Properties of the Swap Schelling Game

We prove for various special cases of the SSG that they are actually potential
games. For this we analyze the change in the potential function value for a
suitably chosen potential function Φ for an arbitrary location swap of two agents
x and y. Such a swap changes the current placement pG only in the locations of
agents x and y and yields a new placement p′

G.

Theorem 1. If τ ≤ 1
2 then the u-SSG is a potential game for any w ≥ 1.
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Proof. We prove the theorem by showing that Φ(pG) = 1
2

∑
x∈A∪B |N−(pG(x))|

is an ordinal potential function. Note that Φ is the number of colored pairs.
First of all, notice that a swap between two agents x ∈ A and y ∈ B will only
executed when both agents are unhappy and of different types, since a swap
between agents of the same type cannot be an improvement for at least one of
the involved agents. Furthermore a happy agent has no possibility to improve,
so there is no incentive to. An agent will decrease her cost if and only if she is
unhappy and reduces the ratio of neighbors with different type by swapping. It
holds that

|N+(pG(x))|
|N+(pG(x))| + |N−(pG(x))| < τ and

|N+(pG(y))|
|N+(pG(y))| + |N−(pG(y))| < τ.

Hence,

|N−(pG(x))|
|N+(pG(x))| + |N−(pG(x))| > 1 − τ and

|N−(pG(y))|
|N+(pG(y))| + |N−(pG(y))| > 1 − τ.

Since τ ≤ 1
2 it follows that |N+(pG(x))| < τ · (|N+(pG(x))| + |N−(pG(x))|) ≤

(1− τ) · (|N+(pG(x))|+ |N−(pG(x))|) < |N−(pG(x))| and analogously we get for
agent y that |N+(pG(y))| < |N−(pG(y))|. Thus,

|N+(pG(x))| + |N+(pG(y))| < |N−(pG(x))| + |N−(pG(y))|
= |N−(p′

G(y))| + |N−(p′
G(x))| < |N−(pG(x))| + |N−(pG(y))|.

This implies that for the change in the potential function value that Φ(pG) −
Φ(p′

G) = (|N−(pG(x))| + |N−(pG(y))|) − (|N−(p′
G(y))| + |N−(p′

G(x))|) > 0. 	

Remark 1. The function Φ(pG) = 1

2

∑
x∈A∪B |N−(pG(x))| is not a potential

function for the (cf-)SSG. See Fig. 2 in [9].

Theorem 2. For any w ≥ 1 the u-SSG on regular networks is a potential game.

Proof. We prove the theorem by showing that Φ(pG) = 1
2

∑
x∈A∪B |N−(pG(x))|

is an ordinal potential function. Analogously to Theorem 1 there is no incentive
for an agent x ∈ A to swap with another agent y ∈ A who has the same type or
to swap if x is happy. Since we consider the u-SSG on regular networks, we have

∀x ∈ A ∪ B : |N(pG(x))| = |N+(pG(x))| + |N−(pG(x))| = k.

So an agent x ∈ A will only swap when she is unhappy with another agent
y ∈ B of different type. Since the swap is an improvement, it is valid that
|N+(pG(x))|

k <
|N+(p′

G(x))|
k and |N+(pG(y))|

k <
|N+(p′

G(y))|
k . Observe that all agents

x′, y′ who were in N+(pG(x′)), N+(pG(y′)) before the swap are after the swap
in N−(p′

G(y′)), N−(p′
G(x′)), respectively. The same holds the other way around.

Hence, we have that |N−(p′
G(y))| = |N+(pG(x))| < |N+(p′

G(x))| = |N−(pG(y))|
and |N−(p′

G(x))| = |N+(pG(y))| < |N+(p′
G(y))| = |N−(pG(x))|.

Since a swap between two agents x and y just affects colored pairs where x
or y are involved, we have that Φ(pG) − Φ(p′

G) = |N−(pG(x))| + |N−(pG(y))| −
(|N−(p′

G(x))| + |N−(p′
G(y))|) > 0. 	
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Remark 2. The function Φ(pG) = 1
2

∑
x∈A∪B |N−(pG(x))| is not a potential

function for the u-SSG on non-regular networks. See Fig. 3 in [9].

Theorem 3. For any w ≥ 1 the cf-SSG is a potential game on regular networks.

Proof (Sketch). Like in Theorem 2 we prove the statement by showing that
Φ(pG) = 1

2

∑
x∈A∪B |N−(pG(x))| is an ordinal potential function. When the

involved agents are both happy or both unhappy the proof is very similar
to the proof of Theorem 2. If one agent x is happy and the other one y

unhappy, it holds that |N+(pG(y))|
k <

|N+(p′
G(y))|
k , which leads to |N−(p′

G(x))| <
|N−(pG(x))| and |N−(p′

G(y))| < |N−(pG(y))|. 	

Theorem 4. For any w ≥ 1 and any τ ≥ 1

2 the SSG is a potential game on
regular networks.

Proof (Sketch). We show that a function Φ decreases lexicographically for every
improving swap, which implies that Φ is an ordinal potential function. For this
let Φ(pG) =

(
1
2

∑
x∈A∪B |N−(pG(x))|, ∑

x∈A∪B dG(favx, pG(x))
)
.

Analogous to the proof of Theorem 2, the first entry of Φ decreases if the
swap improves the local happiness ratio of the involved agents.

Hence we just have to consider the case when two agents x and y swap only
to decrease their distances from favx and favy, respectively. It holds that in this
case the first entry of Φ doesn’t change and the agents just swap when both
decreases their distance cost, which reduces the second entry of Φ. 	

Theorem 5. If τ < 1

2 and w = 1 then the SSG on a ring is a potential game.

Proof (Sketch). We use an argument similar to the one in the proof of Theorem 4
with Φ(pG) =

(
1
2

∑
x∈A∪B |N−(pG(x))|, ∑

x∈A∪B dG(favx, pG(x))
)
.

Beyond that we need to consider two happy agents who swap to get closer
to their favorite node. We show that after such a swap, the number of colored
pairs stays the same. This implies that Φ decreases lexicographically by such a
swap, since the first entry stays the same but the second entry decreases. 	


2.2 Dynamic Properties of the Jump Schelling Game

Now we consider the JSG. Remember that in the JSG we assume that agents
can only decrease their cost by jumping to empty nodes. Such a jump of an agent
x changes the current placement pG only in the location of agent x. We prove
for the ring network that the u-JSG is a potential game. Furthermore we show
that the cf-JSG and JSG are not potential games for different ranges of τ .

Theorem 6. If w = 1 and the underlying graph is ring network then, the u-JSG
is a potential game.
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Proof (Sketch). For any ring network G = (V,E) we define the weight we of any
edge e = (u, v) ∈ E as follows:

we =

⎧⎪⎨
⎪⎩

1, if u and v have agents of different type
1
3 , if either u or v is empty
0, otherwise.

We use the function Φ(pG) =
∑

e∈E we and prove that if any agent makes an
improving jump to some other node in the ring then Φ decreases. 	

Theorem 7. There cannot exist an ordinal potential function for the cf-JSG
and the JSG for 1

3 < τ ≤ 2
3 .

Proof (Sketch). We prove this statement by giving two examples of an improving
response cycle for the cf-JSG on a grid. Since the cf-JSG is a special case of the
JSG the statement holds for both variants. The improving response cycle for
1
3 < τ ≤ 1

2 can be found in Fig. 2. The improving response cycle for 1
2 < τ ≤ 2

3
can be found in Fig. 3. 	
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Fig. 2. An improving response cycle for the cf-JSG for τ ∈ ( 1
3
, 1
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]. Agents of type A

are blue, type B agents are green. The common favorite node is purple. (Color figure
online)
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3 Efficiency of Stable Placements

In this section we investigate the properties of stable placements. In particular,
we investigate their (in-)efficiency.

We start with proving that stable placements exist for many of our versions.

Theorem 8. Stable placements exist for the u-SSG, the cf-SSG and the u-JSG.

Now we move on to proving basic properties of stable placements.

Theorem 9. Let pNEG be a stable placement for the SSG on some graph G. The
following statements hold:

(a) If D(G) > 1 and τ ≤ 1
2 then for any pNEG , at most one type of agents can be

unhappy. Moreover, there exists a stable placement with unhappy agent(s).
(b) If τ > 1

2 there exist stable placements pNEG with unhappy agents of both types.
(c) For the SSG there is a graph G such that pNEG has a better total distance

cost than the socially optimal placement.
(d) For the SSG with τ > 1

2 − 1
2n , for n = |A| = |B|, there exists a graph G

such that there is no placement where at least one agent is happy.

Remember that the social cost cost(pG) of a placement pG is a vector. Hence we
cannot use the state-of-the-art notions for the Price of Anarchy or the Price of
Stability for investigating the efficiency of stable placements. For this, we first
introduce suitable measures.

Definition 1. The ratio of happiness RoH and the ratio of distance RoD of two
arbitrary placements pG and p̃G with Dist(p′′

G) =
∑

u∈A∪B dG(favu, p′′
G(u))+1 is

RoH(pG, p̃G) =
#of unhappy players in pG + 1
#of unhappy players in p̃G + 1

and RoD(pG, p̃G) =
Dist(pG)
Dist(p̃G)

.

Note that the RoH has the additional “+1” terms to handle the case where all
agents in placement p̃G are happy. Essentially the RoH compares the social cost
vectors of pG and p̃G by their first entry, and the RoD by their second entry.
The RoD(pG, p̃G) = 1 in the versions of u-SSG and u-JSG.

We now define our notion of PoA and PoS .

Definition 2. For a given underlying network G, let NE be the set of all possible
stable placements in G and poptG be the socially optimal placement. Then,

PoA = max
pG∈NE

{(RoH
(
pG, poptG

)
,RoD

(
pG, poptG

)
)},

PoS = min
pG∈NE

{(RoH
(
pG, poptG

)
,RoD

(
pG, poptG

)
)}.

Observation 1. For any G we have PoA ≤ (n+1,D(G)−1) and PoS ≥ (1, 1).

Theorem 10. For the u-SSG with τ ≤ 1
2 , there exists a network G and a stable

placement pNEG such that in the worst case RoH = max{|A|, |B|} + 1 and in the
best case RoH = 1.
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Proof. To prove the upper bound we already know from Theorem 9 that at
most one type of agents can be unhappy. Thus the maximum number of unhappy
agents in a placement is equal to the number of agents of the bigger group. When
the optimal placement poptG is stable the lower bound follows straightforwardly.

We show that the bounds are tight by an example. Consider Fig. 4a. The
green agents are happy since at least half of their neighbors are of their type.
The placement is stable, since they have no incentive to swap. All blue agents
are discontent. Notice that there are more blue agents than green ones. However,
there is a stable placement, which is shown in Fig. 4b where all agents are content.
The example can be easily extended to larger networks. 	


(a) RoH = max{|A|, |B|}+ 1 (b) RoH = 1

Fig. 4. Two different stable placements in which in (a) all blue agents are unhappy
whereas in (b) all agents are happy. (Color figure online)

From Theorem 10 the corollary below follows.

Corollary 1. In the u-SSG there exists a network G such that the PoA =
(max{|A|, |B|} + 1, 1) and the PoS = (1, 1).

Now we give a tight bound for the Price of Anarchy.

Theorem 11. The SSG has PoA ∈ (Θ(n), Θ(D(G))) for some network G.

Proof (Sketch). Consider the network G and the placement in Fig. 5(top) for
1
2w < τ < 1 − 1

2w . We assume that w ∈ Θ(1) and the number of agents of type

A is |A| = |B| + w + (w − 1)
⌈

|B|
2

⌉
+ w

⌊
|B|
2

⌋
. Let n = |A| + |B| be the total

number of agents. The favorite node of agent ai is pG(bi) and of agent bi it is
pG(ai), respectively, i = 1, . . . , |B|. All other agents are placed at their favorite
node. This placement is stable and has high cost. 	


b3b2b1a|B|+wa|B|a2a1
. . . . . . . . . . . . . . . . . .

b|B|b|B|−1

. . .
. . .

|B|+ w w w + 1 w w + 1 w

b2b1 a|B|+wb|B| a2a1
. . . . . . . . . . . . . . . . . .

a|B|a|B|−1

. . .
a3

Fig. 5. A stable placement (top) and the social optimum placement (bottom).



148 A. Chauhan et al.

Remark 3. The construction in the proof of Theorem 11 can be easily extended
to the JSG. Thus, also for the JSG PoA ∈ (Θ(n), Θ(D(G))) for some network G.

4 Conclusion and Open Questions

In this work we have introduced the first truly game-theoretic version of the well-
known Schelling segregation model. The selfish agents in our model strategically
choose their locations and take the structure of their local neighborhood as well
as their individual location preferences into account.

We have established that many variants of our model actually are potential
games, which implies the existence of pure (2-coalitional) Nash equilibria and
guaranteed convergence in the sequential version. However, we have also identi-
fied cases, e.g. the (cf)-JSG, which have improving response cycles. Moreover, we
have investigated the efficiency of stable placements in the (u-)SSG and proved
high tight bounds on the Price of Anarchy. This implies that the outcomes of
our game vary significantly in their social cost.

The most intriguing open problem is to settle the convergence behavior for
the SSG for τ < 1

2 and the u-JSG. We conjecture, that a potential function
exists. Moreover, it is open whether stable placements exist for the SSG and the
(cf-)JSG. We conjecture that a stable placement exists for all variants. Another
ambitious endeavor would be to prove bounds on the size of the monochromatic
regions similar to the works [2,3,7,15]. In particular, it would be interesting to
explore the impact of the location preferences on the induced stable placements.

References

1. Alba, R.D., Logan, J.R.: Minority proximity to whites in suburbs: an individual-
level analysis of segregation. Am. J. Sociol. 98(6), 1388–1427 (1993)

2. Barmpalias, G., Elwes, R., Lewis-Pye, A.: Digital morphogenesis via schelling seg-
regation. In: FOCS 2014, pp. 156–165 (2014)

3. Barmpalias, G., Elwes, R., Lewis-Pye, A.: Unperturbed schelling segregation in
two or three dimensions. J. Stat. Phys. 164(6), 1460–1487 (2016)

4. Benard, S., Willer, R.: A wealth and status-based model of residential segregation.
J. Math. Sociol. 31(2), 149–174 (2007)

5. Benenson, I., Hatna, E., Or, E.: From schelling to spatially explicit modeling of
urban ethnic and economic residential dynamics. Sociol. Methods Res. 37(4), 463–
497 (2009)

6. Bogomolnaia, A., Jackson, M.O.: The stability of hedonic coalition structures.
Games Econ. Behav. 38(2), 201–230 (2002)

7. Brandt, C., Immorlica, N., Kamath, G., Kleinberg, R.: An analysis of one-
dimensional schelling segregation. In: STOC 2012, pp. 789–804 (2012)

8. Cable, D.: The racial dot map. Weldon Cooper Center for Public Service, University
of Virginia (2013). https://demographics.coopercenter.org/Racial-Dot-Map/

9. Chauhan, A., Lenzner, P., Molitor, L.: Schelling segregation with strategic agents.
arXiv:1806.08713 (2018)

10. Clark, W.A.V.: Residential segregation in American cities: a review and interpre-
tation. Popul. Res. Policy Rev. 5(2), 95–127 (1986)

https://demographics.coopercenter.org/Racial-Dot-Map/
http://arxiv.org/abs/1806.08713


Schelling Segregation with Strategic Agents 149

11. Clark, W.A.V.: Geography, space, and science: perspectives from studies of migra-
tion and geographical sorting. Geogr. Anal. 40(3), 258–275 (2008)

12. Dreze, J.H., Greenberg, J.: Hedonic coalitions: optimality and stability. Econom.
J. Econom. Soc. 48(4), 987–1003 (1980)

13. Hart, V., Case, N.: Parable of the polygons (2016). http://ncase.me/polygons
14. Henry, A.D., Pra�lat, P., Zhang, C.-Q.: Emergence of segregation in evolving social

networks. PNAS 108(21), 8605–8610 (2011)
15. Immorlica, N., Kleinberg, R., Lucier, B., Zadomighaddam, M.: Exponential segre-

gation in a two-dimensional schelling model with tolerant individuals. In: SODA
2017, pp. 984–993 (2017)

16. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143
(1996)

17. Pancs, R., Vriend, N.J.: Schelling’s spatial proximity model of segregation revisited.
J. Public Econ. 91(1), 1–24 (2007)

18. Schelling, T.C.: Models of segregation. Am. Econ. Rev. 59(2), 488–493 (1969)
19. Schelling, T.C.: Dynamic models of segregation. J. Math. Sociol. 1(2), 143–186

(1971)
20. Schelling, T.C.: Micromotives and Macrobehavior. WW Norton & Company,

New York (2006)
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Abstract. As modern computing moves towards smaller devices and
powerful cloud platforms, more and more computation is being dele-
gated to powerful service providers. Interactive proofs are a widely-used
model to design efficient protocols for verifiable computation delegation.

Rational proofs are payment-based interactive proofs. The payments
are designed to incentivize the provers to give correct answers. If the
provers misreport the answer then they incur a payment loss of at least
1/u, where u is the utility gap of the protocol.

In this work, we tightly characterize the power of rational proofs that
are super efficient, that is, require only logarithmic time and commu-
nication for verification. We also characterize the power of single-round
rational protocols that require only logarithmic space and randomness for
verification. Our protocols have strong (that is, polynomial, logarithmic,
and even constant) utility gap. Finally, we show when and how ratio-
nal protocols can be converted to give the completeness and soundness
guarantees of classical interactive proofs.

1 Introduction

Most computation today is not done locally by a client, but instead is outsourced
to third-party service providers in exchange for money. Trading computation for
money brings up two problems—(a) how the client can guarantee correctness of
the outsourced computation (without redoing the computation), and (b) how to
design the payment scheme. The two problems are closely related: ideally, we
want the payment scheme to be such that it incentivizes service providers to
perform the computation correctly.
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Interactive proofs (IP) are the most well-studied and widely-used theoretical
framework to verify correctness of outsourced computation [7,10,11,17,18,22,28,
33]. In an IP, a weak client (or verifier) interacts with powerful service providers
(or provers) to determine the correctness of their claim. At the end, the verifier
probabilistically accepts or rejects the claim.1 Interactive proofs guarantee that,
roughly speaking, the verifier accepts a truthful claim with probability at least
2/3 (completeness) and no strategy of the provers can make the verifier accept
a false claim with probability more than 1/3 (soundness).2.

Rational proofs are payment-based interactive proofs for computation out-
sourcing which leverage the incentives of the service providers. In rational proofs,
the provers act rationally in the game-theoretic sense, that is, they want to max-
imize their payment. The payment is designed such that when the provers max-
imize their payment, they also end up giving the correct answer. The model of
rational proofs (RIP) was introduced by Azar and Micali in [2]. Since then, many
simple and efficient rational protocols have been designed [3,9,13,23,24,26,35].

While rational proofs provide strong theoretical guarantees, there are two
main barriers that separate them from what is often desired in practice. First,
many rational protocols require a polynomial-time verifier—but a “weak” client
is unlikely to be able to spend (say) quadratic time or linear extra space on
verification. Second, many of these protocols strongly rely on the rationality of
the provers. An honest prover may receive only a fraction of a cent more than
a dishonest prover, yet a rational prover is assumed to be incentivized by that
small amount. However, service providers may not always be perfectly rational.

The goal of this paper is to give protocols that overcome these barriers.

Utility Gap. The strength of the guarantee provided by rational proofs is cap-
tured by the notion of utility gap. The high level idea behind utility gap is that
provers who are not perfectly rational may not care about small losses in pay-
ments and may lazily give the incorrect answer. If a rational protocol has a utility
gap of u, then the provers who mislead the verifier to an incorrect answer are
guaranteed to lose at least 1/u. (This is under a normalized budget of 1; if the
budget is scaled up to B, such provers can be made to lose at least B/u.) Thus,
protocols with small utility gap are sound even against provers with bounded
rationality ; that is, provers who are only sensitive to large losses.

In this paper, we design efficient rational protocols with strong utility gap—
that is, polynomial, logarithmic, and even constant utility gap. In Section 5, we
show when and how a noticeable utility gap of a rational protocol can be utilized
to achieve the strong completeness and soundness guarantees of a classical proof.

Efficient Protocols. In this paper, we focus on designing rational protocols
with very small overheads in terms of verification time, space, communication
cost and number of rounds. In particular, we design constant-round rational

1 In classical interactive proofs there is no payment—simply acceptance or rejection.
2 More formally, given an input x and a language L, if x ∈ L, the verifier accepts with

probability at least 2/3 (completeness); if x /∈ L, then no strategy of the provers can
make the verifier accept with probability more than 1/3 (soundness).
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protocols where the verification time and communication cost are logarithmic in
the input size n. We also design single-round rational protocols that have only
logarithmic overhead on the verifier’s use of space and randomness.

1.1 Results and Contributions

In this section, we summarize our results and contributions.

Time-Efficient Rational Proofs. We study the effect of different communica-
tion costs and an additional prover on the power of rational proofs with a highly
time-efficient verifier. The utility gap of these protocols is polynomial.

– Constant Communication. We show that multiple provers do not add any
power when the communication complexity of the protocol is restricted to be
extremely small—a constant number of bits. That is, we show that the class
of languages that admit a multi-prover rational proof with a O(log n)-time
verifier and O(1) communication is exactly UniformTC0, which is the same as
the power of single-prover version under the same costs [3,23]. UniformTC0 is
the class of constant depth, polynomial size uniform threshold circuits, that
includes problems such as integer division and iterated multiplication [1,25].

– Logarithmic Communication. We show that any rational proof with poly-
nomial communication can be simulated by a rational proof with logarith-
mic communication that uses an additional prover. Using this property, we
improve the communication complexity of Azar and Micali’s [3] single-prover
rational protocol and show that the class of languages that admit a two-
prover rational proof with logarithmic communication is exactly the class of
languages decidable by a polynomial time machine that can make polyno-
mially many queries in parallel to an NP oracle, denoted PNP

|| .3 This is an
important class (e.g., see [8,30,34]) and includes optimization problems such
as maximum clique, longest paths, and variants of the traveling salesman
problem.

Space-Efficient Rational Proofs. We achieve even better utility gap guar-
antees when the verifier’s use of space and randomness is extremely small—
logarithmic, but its running time may be polynomial. In particular, we exactly
characterize the class of single-round rational proofs with γ(n) utility gap and
logarithmic space and randomness as the class of languages decidable by a
polynomial-time machine that makes O(γ(n)) queries to an NP oracle, denoted
P
NP[γ(n)]
|| . Even when γ(n) = O(1) this bounded-query class is still sufficiently

powerful and contains many of the optimization problems mentioned above.

Rational Proofs with Completeness and Soundness Guarantees.
Finally, we closely compare the two proof systems—rational and classical. We
construct a condition on the expected payments of rational proofs which, if
satisfied, turns them into a classical interactive proof with completeness and

3 For parallel oracle queries, both notations PNP
|| [34] and P||NP [3] are used in literature.
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soundness guarantees. We first show how to convert a payment-based protocol
for a language L to an accept-reject protocol (without payments) for L such that
the expected payment of the former is exactly the probability with which the
verifier accepts in the latter. We use this to prove that if the expected payments
of all inputs x ∈ L are noticeably far away from that of all inputs x /∈ L, the
rational protocol can be converted to a classical interactive protocol.

1.2 Additional Related Work

Azar and Micali [3] also characterize the classes UniformTC0 and PNP
|| . Their

characterization of PNP
|| requires polynomial communication, which we improve

to logarithmic using a second prover. We also note that all protocols in [3] have
a polynomial utility gap (under a constant budget).

Rational arguments, super-efficient rational proofs where the prover is
restricted to be polynomial time, were introduced by Guo et al. [23]. Rational
arguments for all languages in P were given in [24]. Campanelli and Rosario [9]
study sequentially composable rational proofs. Zhang and Blanton [35] design
protocols to outsource matrix multiplications to a rational cloud.

The model of multi-prover rational interactive proofs was introduced by Chen
et al. [13], where they study the power of the model in its full generality (that
is, polynomial-time verifier and polynomial communication). In this paper, we
restrict our focus on proofs with log-time verifiers and log-size communication.

Different variants of the rational-proof models have also been studied.
Chen et al. [14] consider rational proofs where the rational provers are non-
cooperative [14]. Inasawa and Kenji [27] consider rational proofs where the verifier
is also rational and wants to minimize the payment to the provers.

Interestingly, the log-space verifier studied in this paper also happens to be
a streaming algorithm, that is, the verifier does not need to look again at any
input or message bits out of order. Thus, our space-efficient rational proofs are
closely related to the work on streaming interactive proofs [11,17,18].

Refereed games is another multi-prover interactive-proof model that leads
to game-theoretic characterizations of various complexity classes (e.g. [12,20,21,
29,32]). The model of refereed games requires at least one honest prover.

2 Preliminaries

We begin by reviewing the model of rational proofs [2,13].
Let L be a language, x be an input string and n = |x|. An interactive protocol

is a pair (V, �P ), where V is the verifier and �P = (P1, . . . , Pp(n)) is the vector of
provers, and p(n) a polynomial in n. The goal of the verifier is to determine if
x ∈ L. In general, the verifier runs in time polynomial in n and uses polynomial
space as well. In Sect. 3, the verifier’s running time is O(log n). In Sect. 4, the
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verifiers may use polynomial time but are restricted to use O(log n) space and
randomness. The provers are computationally unbounded.4

The verifier can communicate with each prover privately, but no two provers
can communicate with each other. In a round, either each prover sends a message
to the verifier, or the verifier sends a message to each prover, and these two cases
alternate. Without loss of generality, provers send the first round of messages.
The first bit of the first round is the answer bit, denoted by c, and indicates
whether x ∈ L; that is, x ∈ L iff c = 1. We define the communication of the
protocol to be the maximum number of total bits transmitted (summed over all
provers and all rounds) during the protocol.

Let r be the random string used by V . Let �m be the vector of all messages
exchanged. At the end, the verifier computes the total payment to the provers,
given by a payment function R(x, r, �m). We restrict the verifier’s budget to be
constant, that is, R ∈ [0, 1] for convenience. We may use negative payments
to emphasize penalties but they can shifted to be non-negative. The protocol
(including the payment function R) is public knowledge.

The verifier outputs the answer bit c at the end of the protocol—thus the
verifier always agrees with the provers.

Each prover Pi can choose a strategy sij : {0, 1}∗ → {0, 1}∗ for each round j,
which maps the transcript he has seen up until the beginning of round j to the
message he sends in round j. Note that Pi does not send any message when j is
even; in this case sij can be treated as a constant function. Let si = (si1, . . . , sik)
be the strategy vector of Pi and s = (s1, . . . , sp(n)) be the strategy profile of the
provers. Given any input x, randomness r and strategy profile s, we may write the
vector �m of messages exchanged in the protocol more explicitly as (V, �P )(x, r, s).

The provers are cooperative and jointly act to maximize the total expected
payment. Thus, before the protocol starts, the provers pre-agree on a strategy
profile s that maximizes u(V,�P )(s;x) = Er[R(x, r, (V, �P )(x, r, s))]. When (V, �P )
and x are clear from the context, we write u(s) for u(V,�P )(s;x).

Definition 1 ([13]). For any language L, an interactive protocol (V, �P ) is a
rational interactive proof protocol for L if, for any x ∈ {0, 1}∗ and any strategy
profile s of the prover(s) such that u(s) = maxs′ u(s′), c = 1 if and only if x ∈ L.

Similar to classical proofs, single-prover rational interactive protocols, that
is, when �P = P , are denoted by RIP. Multi-prover interactive protocols, where
�P = (P1, . . . , Pp(n)) are denoted by MRIP. In this paper we study both single-
prover and multi-prover rational proof protocols.

We use poly(n) as a shorthand for a polynomial nk, for some constant k.

2.1 Utility Gap and Budget in Rational Proofs

In the above definitions, we assume that a prover is fully rational, and will give
the correct answer for any increase in expected payment, no matter how small.
4 While the model allows for extremely powerful provers, those considered in this

paper essentially only need to be powerful enough to determine if x ∈ L or x /∈ L.
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However, a prover may be lazy, and unwilling to give the correct answer unless
the correct answer increases its payment by some minimum amount.

The notion of utility gap captures the payment loss incurred by provers who
misreport the answer bit. We recall the formal definition below.

Definition 2 ([13]). Let L be a language with a rational proof protocol (V, �P )
and let γ(n) ≥ 0. We say that (V, �P ) has an γ(n)-utility gap if for any input x

with |x| = n, any strategy profile s of �P that maximizes the expected payment,
and any other strategy profile s′, where the answer bit c′ under s′ does not match
the answer bit c under s, i.e., c′ �= c, then u(s) − u(s′) > 1/γ(n).

Relationship Between Utility Gap and Budget. The budget is the total
expected payment that a verifier can give in a protocol.

Utility gap and budget are closely related. To study utility gaps consistently,
we maintain a fixed O(1) budget.5 This is because utility gap scales naturally
with the payment—a polynomial utility gap under a constant budget is the same
as a constant utility gap under a sufficiently-large polynomial budget.

2.2 Analyzing Computational Costs of Rational Proofs

Our primary focus in this paper is analyzing the various computational costs of
rational interactive proofs. The different parameters fall into two categories.

Verification Costs. A verifier has three main resources: running time, space
usage and its randomness.

In Sect. 3, we focus on time-efficient O(log n) time verifiers. Thus, their space
and randomness is also O(log n). We denote the class of languages that have
time-efficient RIP protocols, that is, protocols with a O(log n) time verifier as
RIPt. Multi-prover notation MRIPt is analogous. Similar to the literature on
“probabilistically checkable proofs of proximity” (PCPPs) [5,6,33], we assume
that the verifier has random access to the input string and the proof tape. Thus,
if the messages sent by the provers are of size C(n) bits, the verifier needs at
least O(log C(n)) time to index a random location of the transcript.

To achieve better utility gap, in Sect. 4, we restrict the verifier’s space usage
and randomness, instead of its running time and consider verifiers that use
O(log n) space and O(log n) randomness. We denote the class of languages that
have an RIP protocol with space- and randomness-efficient verifiers, that is,
verifiers with O(log n) space and O(log n) randomness as RIPs,r.

Protocol Costs. A rational interactive proof protocol has three main ingredi-
ents: communication cost, number of rounds of interaction and utility gap.6

5 In contrast, Azar and Micali [3] maintain a polynomial-size budget.
6 The number of provers is an additional parameter in MRIP protocols, but we ignore

this so as not to overload notation. All the MRIP protocols in this paper have two
provers and all the upper bounds work even with polynomially many provers.
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In Section 3, we study the effect of varying the communication complexity of
a protocol on its power when we have a logarithmic time verifier. The number
of rounds in all the protocols in the paper is O(1).

We denote the class of languages that have an RIP protocol with com-
munication cost C(n), number of rounds k(n) and utility gap γ(n) as
RIP[C(n), k(n), γ(n)]. The multi-prover version is defined similarly.

3 Verification in Logarithmic Time

In this section we consider time-efficient verifiers that run in time logarith-
mic in the input size. We show that for time-efficient verifiers, access to multi-
ple provers is fundamentally linked to the communication cost of the protocol:
any single-prover protocol with high communication costs can be reduced to
a communication-efficient multi-prover protocol. On the other hand, multiple
provers give no extra power for communication-efficient protocols.

Since the utility gap of all the protocols in this section is polynomial in n, we
drop it from the notation for simplicity. Thus, an RIP protocol with a O(log n)-
time verifier that has communication complexity C(n) and round complexity
k(n) is denoted as RIPt[C(n), k(n)].

We omit the proofs, which can be found in the full version [15].

Constant Communication. We first show that multiple provers do not
increase the power of a rational proof system when the communication complex-
ity of the protocol is very small, that is, only O(1) bits. Recall that with a single
prover, RIPt[O(log n), O(log n)] = RIPt[O(log n), O(1)] = UniformTC0 [3,23].

Theorem 1. MRIPt[O(1), O(1)] = UniformTC0.

Logarithmic and Polynomial Communication. We characterize the power
of MRIP protocols with O(log n)-time verification, when the communication
complexity of the protocol is logarithmic and polynomial in n.

Theorem 2. MRIPt[poly(n),poly(n)] = MRIPt[O(log(n)), O(1)] = P||
NP.

Azar and Micali [3] characterized the class PNP
|| in terms of single-prover

rational proofs with O(log n) verification and O(poly(n)) communication. In
particular, they proved that RIP[O(poly(n)), O(1)] = PNP

|| .
To prove Theorem 2, we first show that using two provers reduces the com-

munication complexity of the RIP protocol for PNP
|| exponentially. In fact, we

show prove a more general statement—any MRIP protocol (thus any RIP pro-
tocol as well) with a logarithmic time verifier and polynomial communication
can be simulated using two provers, five rounds and logarithmic communication.

Lemma 1. A MRIP protocol with p(n) procers, k(n) rounds, verification com-
plexity T (n), and communication complexity of C(n) can be simulated by an
MRIP protocol with 2 provers, 5 rounds, verification complexity O(T (n) +
log C(n)) and communication complexity O(T (n) + log C(n)).
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The main idea behind the proof of Lemma 1 is to use the first prover to obtain
the entire “effective transcript” of the original protocol. An effective transcript is
all the bits that, for a given randomness r, a log-time time verifier ever accesses
in the original protocol. The size of the effective transcript is at most T (n).
Then, the second prover is used to verify the correctness of this transcript.

Lemma 1 demonstrates the importance of two provers over one to save on
communication cost in rational proofs.

Corollary 1. RIPt[O(poly(n)), O(1)] = PNP
|| ⊆ MRIPt[O(poly(n)), O(poly(n)]

⊆ MRIPt[O(log n), O(1)].

To complete the proof Theorem 2, we show the following upper bound.

Lemma 2. MRIPt[O(log(n)), O(1)] ⊆ PNP
|| .

4 Verification in Logarithmic Space

The protocols in Section 3 have a polynomial utility gap. For a constant budget
this means that the provers who mislead the verifier to an incorrect answer lose
at least 1/poly(n) of their expected payment.

As utility gap is analogous to the soundness gap in classical proofs, which
is constant (independent of n), it is desirable to have rational protocols with
constant utility gap as well.

Constant utility gap is difficult to achieve when the verifier is O(log n) time
and cannot even read the entire input. This is true even for classical proofs with
a O(log n)-time verifier where the soundness conditioned is weakened to design
PCPPs [5,6,33]. In particular, the soundness guarantees of such proofs depend
on how far (usually in terms of hamming distance) the input string x is from
the language L. We note that all existing O(log n)-time rational proofs [3,23,24]
have polynomial utility gap (under a constant budget).

To design protocols with a strong utility gap such as logarithmic or constant,
in this section we consider verifier’s that use only O(log n) space and randomness.

Let γ(n) be a polynomial-time computable and polynomially bounded func-
tion, e.g., O(1), log n, or

√
n. We prove the characterization for utility gap γ(n).

Theorem 3. Let PNP[γ(n)]
|| be a polynomial-time Turing machine that can make

O(γ(n)) non-adaptive queries to an NP oracle. This class is equivalent to the
class of languages that have a one-round RIP protocol with a logspace verifier,
polynomial communication and γ(n)-utility gap. That is,

RIPr,s[poly(n), 1, γ(n)] = P
NP[γ(n)]
|| .

First, we give a space-efficient RIP for the class NP using the log-space inter-
active proof for the language given by Condon and Ladner [16] as a blackbox.

Lemma 3. NP ∈ RIPr,s[poly(n), 1, γ(n)].
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For the lower bound, we use a different but equivalent complexity class. Let
LNP[γ(n)]

|| be a logarithmic space machine that can make O(γ(n)) non-adaptive

queries to an NP oracle. Wagner [34] showed that LNP[γ(n)]
|| = P

NP[γ(n)]
|| .

Lemma 4. P
NP[γ(n)]
|| = LNP[γ(n)]

|| ⊆ RIPr,s[poly(n), 1, γ(n)].

The main idea of the proof is that the prover sends all messages (the overall
answer bit, the answer bit of all NP queries and their proofs) in one round. The
verifier checks all oracle queries simultaneously using the blackbox protocol [16]
and scales the payment appropriately; see full version [15] for the proof.

To complete the proof of Theorem 3 we prove the following upper bound.

Lemma 5. RIPr,s[poly(n), 1, γ(n)] ⊆ P
NP[γ(n)]
|| .

5 Relationship Between Classical and Rational Proofs

In this section, we show under what conditions does a rational interactive proof
reduces to a classical interactive proof. The results in this section are stated in
terms of the multi-prover model (that is, MRIP and MIP) which is more general,
and thus they also hold for the single prover model (that is, RIP and IP).

To compare the two proof models, we explore their differences. In rational
interactive proofs, the provers are allowed to claim c = 1 (that is, x ∈ L) or
c = 0 (that is, x /∈ L) based on their incentives.7 Furthermore, for a particular
input x of size n, if the provers’ claim c about x is incorrect, they lose at least
a 1/γ(n), where γ(n) is the utility gap.

On the other hand, in classical proofs, the provers are only allowed to prove
x ∈ L. Furthermore, given completeness and soundness parameters c and s
respectively, where 0 ≤ s < c ≤ 1, for any x ∈ L, there exists a strategy such
that V accepts with probability ≥ c and for any x /∈ L, for any strategy V rejects
with probability ≤ s. Thus, given L, the guarantees are independent of x.

In this section, we show when a rational proof reduces to a classical proof.
Intuitively, this happens when the utility gap guarantee of a rational protocol is
made to hold for all x and in particular, it is enforced to be the gap between the
expected payments for all x ∈ L and all x /∈ L.

We first show that without loss of generality we can restrict the payments of
the provers in a rational proof protocol to be either 1 or 0, where 1 corresponds
to “accept” and 0 to “reject” respectively.

Lemma 6. Any MRIP protocol (V, �P ) with payment R ∈ [0, 1] and utility gap
γ(n) can be simulated by a MRIP protocol (V ′, �P ) with payment R′ ∈ {0, 1} and
utility gap γ(n)/2. In particular, for any strategy s and any input x,

u(V,�P )(x; s) ≤ u(V ′, �P )(x; s) ≤ u(V,�P )(x; s) + γ(n)/2.

V ′ uses 1 + 	log2 γ(n)
 more random bits than V .
7 Thus it is not surprising that rational proofs are closed under complement.
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In the proof of Lemma 6, V ′ simulates V , but instead of giving a payment
R ∈ [0, 1], it gives a payment of 1 with probability R, and 0 otherwise. This
preserves the expected reward for each transcript (and thus for each strategy).

Given any rational protocol with zero-one payments, we note that it imme-
diately gives us an accept-reject protocol such that for a given x, the probability
that the verifier accepts is exactly the expected payment of the original protocol.
More formally let (V, �P ) be a rational protocol with R ∈ {0, 1} and utility gap
γ(n). Let (V ′, �P ′) be defined as follows: V ′ simulates V , ignores the answer bit
c, and if the payment in (V, �P ) is R = 1 then accept, else reject.

Thus, for a given input string x, the expected payment in (V, �P ) is equal to
the probability that V ′ accepts in (V ′, �P ′). That is,

u(V,�P )(x; s) = Er[R(x, r, (V, �P )(x, r, s))] =
∑

r

Pr(r | R(x, r, (V, �P )(x, r, s)) = 1)

=
∑

r

Pr(r | V ′accepts (V ′, �P ′)) = Pr(V ′ accepts (V ′, �P ′)). (1)

Furthermore, (V ′, �P ′) satisfies the following: for any x ∈ L, let s∗ denote the
optimal strategy of the provers �P , that is, s∗ maximizes their expected pay-
ment. Then for �P ′ following s∗, V ′ accepts with probability exactly c(x, n) =
u(V,�P )(x; s∗). Furthermore, we know from the utility gap condition that for
any x /∈ L, for any strategy s′, the probability that V ′ accepts is at most
u(V,�P )(x; s′) < u(V,�P )(x; s∗) − 1/γ(n), that is, the probability that V ′ accepts
is at most s(x, n) < c(x, n) − 1/γ(n). Similar guarantees hold for any x /∈ L.

However, if we want (V ′, �P ′) to be an interactive proof protocol in the clas-
sical sense, that is, with completeness and soundness guarantees that hold for
all x ∈ L and for all x /∈ L respectively, we need to impose restrictions on the
expected payment function of the rational protocol.

Theorem 4. Let (V, �P ) be an MRIP protocol for a language L such that

min
x∈L

u(V,�P )(x; s∗) > max
x/∈L

u(V,�P )(x; s∗) +
1

γ(n)
(2)

where x is any input of length n, s∗ is the strategy of the provers that maximizes
their expected payment in (V, �P ) and γ(n) is any function such that γ(n) > 1
and γ = O(poly(n)). Then, (V, �P ) can be simulated by a MIP protocol for L.

We prove this theorem in two parts. First, we show prove the following lemma
which proves Theorem 4 with weak completeness and soundness guarantees.

Lemma 7. Let (V, �P ) be an MRIP protocol for a language L that satisfies the
condition 2 in Theorem 4. Then, (V, �P ) can be simulated by MIP protocol with
completeness and soundness parameters c(n) and s(n) respectively such that
c(n) > s(n) + 1/2γ(n) and c(n), s(n) ≥ 0.
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We amplify the “gap” of an MIP by repeating the protocol sufficiently many
times and then using Chernoff bounds. The techniques are mostly standard,
although the parameters must be set carefully to deal with the case s(n) = 0.

Lemma 8. Given an MIP protocol for a language L, with completeness c(n) > 0
and soundness s(n) ≥ 0 such that c(n) > s(n) + 1/γ′(n) for some γ′(n) > 1 and
γ′ = O(poly(n)), can be converted to an MIP protocol for L with completeness
at least 1 − 1/poly(n) and soundness at most 1/poly(n).

Remark 1. The repetition of the MIP protocol to amplify its completeness and
soundness guarantee used in Lemma 8 is not efficient as it blows up the number
of rounds. There exist more efficient techniques to amplify IP guarantees by
parallel repetition that can be used instead; for example, see [4,19,31].
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Abstract. We consider mechanisms for markets that are two-sided and
have agents with multi-dimensional strategic spaces on at least one side.
The agents of the market are strategic and act to optimize their own
utilities, while the mechanism designer aims to optimize a social goal, i.e.,
the gain from trade. We focus on one example of this setting motivated
by a foreseeable privacy-aware future form of online advertising.

Recently, it has been suggested that markets of user information built
around information brokers could be introduced to the online advertising
ecosystem to overcome online privacy concerns. Such markets give users
control over which data gets shared in online advertising exchanges. We
describe a model for the above form of online advertising and design
two mechanisms for this model. The first is a deterministic mechanism
which is related to the vast literature on mechanism design through trade
reduction and allows agents with a multi-dimensional strategic space.
The second is a randomized mechanism that can handle a more general
version of the model. We provide theoretical analyses of our mechanisms
and study their performance using simulations based on real-world data.

Keywords: Mechanism design · Double-sided market
Multi-dimensional players · Online advertising market

1 Introduction

Billions of transactions are carried out via exchanges at every given day, and the
numbers continue to grow. The design of one-sided incentive compatible mecha-
nisms for exchanges is relatively well understood. However, incentive compatible
multi-sided mechanisms present a much more significant challenge as they intro-
duce more sophisticated requirements such as budget balance.
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We are interested in designing exchanges (mechanisms) for multi-sided mar-
kets with strategic agents. The agents of the market act to optimize their own
utilities, while the mechanism designer aims to optimize a social goal, i.e., the
gain from trade (the difference between the total value of the sold goods for
the buyers and the total costs of these goods for the sellers). The design of
such mechanisms raises a few interesting questions. For instance, whether the
mechanism can simultaneously maintain different desirable economic properties
such as: individual rationality (IR)—participants do not lose by participation,
incentive compatibility (IC)—agents are incentivized to report their true infor-
mation to the mechanism and weak budget balance (WBB)—the mechanism
does not end up with a loss or strong budget balance (SBB)—the mechanism
should not gain or lose any money. Moreover, can the mechanism maintain such
properties while only suffering a bounded loss compared to the optimal gain from
trade? Finally, can this be done when all the agents have a multi-dimensional
strategic space?1

The above questions can be studied in the context of many multi-sided mar-
kets. We focus on one such market motivated by recent privacy concerns in the
online advertising world. Online advertising currently supports some of the most
important Internet services, including: search, social media and user generated
content sites. However, the amount of information that companies collect about
users increasingly creates privacy concerns in society. Such concerns were actively
raised by EU regulators in recent years in efforts to find solutions to guarantee
users’ privacy. Recently privacy concerns have also reached the U.S. Senate and
Congress as a response to Facebook’s information leak to Cambridge Analytica.
It was evident in Facebook’s hearing before the U.S. Senate, particularly in Sen-
ator Schatz’s line of questioning [13], that Facebook is expected to develop tools
to enable end users to configure their privacy settings and that the notion of a
data fiduciary was put forward to apply pressure to Facebook in this area.

The market we study is motivated by a solution we suggest for the above
privacy issue. In this solution mediators serve as the interface between end-
users and the other agents in the online advertising market. Each user informs
her mediator of the attributes she is willing to reveal, and her cost, i.e., the
compensation she requires for every ad she views. The mediator then tries to
“sell” access to the user on the advertising market based only on the attributes
she agreed to reveal. If successful, the mediator pays her the appropriate cost
out of the amount he got from the sale.

As revealing more personal attributes is likely to result in a more profitable
sale, our solution incentivizes users to share their information with the advertis-
ing market while allowing them to retain control of the amount of information
they share. Notice that since our solution motivates users to participate in the
advertising market and to provide more precise information for targeting cam-
paigns, the efficiency of the advertising system and the digital economy as a
whole improves (in addition to answering the privacy concerns discussed above).

1 We often refer to agents with a multi-dimensional strategic space as multi-
dimensional agents.
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This benefit is in sharp contrast to other natural approaches for dealing with
privacy issues, such as cryptography based approaches, which reduce the amount
of information available to the advertisers but give them nothing in return.

The advertising market induced by the above solution has mediators on one
side and advertisers on the other side. Each mediator has a set of users associated
with him, and he strives to assign these users to advertisers using the market.
Each one of the users has a non-negative cost which she must be paid if she is
assigned to an advertiser. The mediators themselves have no cost of their own;
however, each of them has to pay his users their cost if they are assigned to
advertisers. Thus, a mediator’s utility is the amount paid to him minus the total
cost of his users who are assigned. Finally, each advertiser has a positive capacity
that determines the number of users she is interested in targeting. The advertiser
gains a non-negative value for each of the users assigned to her, as long as her
capacity is not exhausted. Thus, the advertiser’s utility is her value multiplied
by the number of users assigned to her (as long as this number does not exceed
her capacity) minus her total payment.

A mechanism for the above market knows the mediators and the advertisers,
but has no knowledge about their parameters or about the users. The mecha-
nism’s objective is to assign users to advertisers in a gain from trade maximizing
way. In addition, the mechanism also decides how much to charge (pay) each
advertiser (mediator). In order to achieve these goals, the mechanism receives
reports from the advertisers and mediators. Each advertiser reports her capacity
and value, and each mediator reports the number of his users and their costs.
The mediators and advertisers are strategic, and thus, free to send incorrect
reports. For example, a mediator may report any subset of his users and asso-
ciate an arbitrary cost with each user. We say that an advertiser is truthful if
she correctly reports her capacity and value. A mediator is considered truthful
if he reports his true number of users and the true costs of these users.

In this paper we present a simplified variant of our model, where the costs
of the users are known to their corresponding mediators, i.e., the users are non-
strategic. This captures the practical situation where users are individual people
(unlike the advertisers and mediators), and thus, their mode of interaction with
their mediator is likely to be too simple to allow them to create an automated
agent that dynamically updates their strategy, which is necessary if one wants
to use strategy in the super-fast online advertising ecosystem.

To better understand the design challenge raised by this market, we observe
that even if our setting is reduced to a single buyer-single seller exchange, it is well
known from [20] that maximizing gain from trade while maintaining IR and IC
perforce runs a deficit (is not WBB). A well known circumvention of [20]’s impos-
sibility is [19]’s trade reduction for a simple setting of double sided auctions. In
[19]’s setting, trade is conducted between multiple strategic sellers offering iden-
tical goods to multiple strategic buyers, where each seller is selling a single good
and each buyer is interested in buying a single good. [19]’s result relaxes the
requirement for optimal trade by means of a trade reduction. The trade reduc-
tion leads to an IR, IC and budget balance mechanism. Following [19]’s work,
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several other mechanisms were designed using the trade reduction technique, but
all these known mechanisms only allow agents with single-dimensional strategic
spaces (even in settings where agents can hold multiple items).2

1.1 Our Contribution

Given that existing trade reduction solutions do not apply in our setting, we
describe new double-sided mechanisms able to handle mediators and advertisers
with multi-dimensional strategic spaces. Our mechanisms guarantee desirable
economic properties and at the same time yield a gain from trade approximating
the optimal gain from trade. If truthfulness is a dominant strategy3 for each
advertiser and each mediator, regardless of other agents’ strategies, then the
mechanism is incentive compatible (IC). If no advertiser and no mediator can
have a negative utility by participating truthfully in the mechanism then it is
individually rational (IR). The mechanisms we construct are IC, IR and WBB.

We first study a special case of our setting where the advertisers’ capacities
are publicly known (but need not be all equal). The set of users of each mediator,
in contrast, remains unknown to the mechanism (i.e., the mechanism only learns
about it through the mediator’s report). For this case we present a deterministic
mechanism named “Price by Removal Mechanism” (PRM) that works as follows:
for every mediator find a threshold cost and remove users of the mediator whose
cost exceeds this threshold. Add a dummy advertiser with value that is the
maximum threshold cost computed for the mediators and a capacity equal to the
total number of users remaining. Assign the non-removed users to the advertisers
using a VCG auction [9,18,23] in which the users are the goods and the bidders
are the advertisers. Price the mediators according to their threshold cost and
price the advertisers according to the prices of the VCG auction.

The method used to calculate the threshold costs of the above mechanism
induces its properties. We prove that for appropriately chosen threshold costs the
above mechanism is IC, IR, WBB and provides a non-trivial approximation for
the optimal gain from trade. More formally, if τ is the size of the optimal trade
and γ is an upper bound known to the mechanism on the maximum capacity of
any agent (mediator or advertiser), then

Theorem 1. PRM is WBB, IR, IC and
(
1 − 5γ

τ

)
-competitive.

An online advertising system constructed based on PRM and beta tested with
real users and real advertising campaigns allowed us to collect real-world data
to study PRM’s practical performance empirically. Interestingly, our simulation
shows that although the practical performance of PRM is significantly better than
its theoretical one, both performances exhibit a similar dependence on γ/τ .

2 The sole exception for this is the work of Segal-Halevi et al. [21], which was done
independently in parallel to our work. However, [21] does not offer a solution for the
deterministic multi-dimensional strategic spaces case.

3 Here and throughout the paper, a reference to domination of strategies should be
understood as a reference to weak domination. We never refer to strong domination.
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PRM generalizes the trade reduction ideas used so far in the literature for
single-dimensional strategic agents, but is much more involved. Intuitively, PRM
differs from previous ideas by the following observation. A trading set is the
smallest set of agents that is required for trade to occur. In the existing literature
for single-dimensional strategic agents, a trade reduction mechanism makes a
binary decision regarding every trading set of the optimal trade, i.e., either the
trading set is removed as a whole, or it is kept. On the other hand, dealing with
multi-dimensional agents requires PRM to remove only parts of some trading sets.

Our deterministic mechanism PRM handles one type of multi-dimensional
agent (the mediators) and one type of single dimensional strategic space agent
(the advertisers). To further enrich our strategic space and allow advertisers
to also have multi-dimensional strategic spaces, we present next a randomized
mechanism termed “Threshold by Partition Mechanism” (TPM). TPM applies to
our general setting, i.e., we no longer assume that any capacity is known to the
mechanism. It works as follows: divide the set of mediators uniformly at random
into two sets (M1 and M2) and divide the set of advertisers uniformly at random,
as well, into two sets (A1 and A2). Then use the optimal trade for M2 and A2

to produce threshold cost and threshold value that allow WBB pricing and the
needed reduction in trade for M1 and A1. Analogously, use the optimal trade
for M1 and A1 to produce appropriate threshold cost and value for M2 and A2.

The above description of TPM is not complete since the use of threshold cost
and value from one pair (Mi, Ai) to reduce the trade in the other pair might
create an unbalanced reduction. To overcome this issue we create two random low
priority sets: one of advertisers and the other of mediators. Then, whenever the
reduction in trade is unbalanced, we restore balance by removing additional low
priority mediators or advertisers, which can be done with high probability. The
following theorem shows that the above mechanism is IC, IR, WBB and provides
a non-trivial approximation for the optimal gain from trade. The parameter α is
an upper bound, known to the mechanism, on the ratio between the maximum
capacity of any agent (mediator or advertiser) and the size of the optimal trade.4

Theorem 2. TPM is WBB, IR, IC and (1 − 28 3
√

α − 20e−2/ 3√α)-competitive.

We note that TPM is universally truthful, i.e., its IC property holds for every
given choice of the random coins of the mechanism. Observe also that the com-
petitive ratio of TPM approaches 1 when α approaches 0, i.e., when the market
is large enough to make the market power of all agents very low. Unfortunately,
when the market is not large enough to make α very small, the theoretical com-
petitive ratio guaranteed by Theorem2 is not so good, and might even be mean-
ingless. Nevertheless, our simulations suggest that in practice the performance
of TPM is quite good even for moderate size markets.

Both our mechanisms have a common drawback, namely their need to have
access to a good bound on the maximum market power of any agent (which is

4 The parameters γ and α both bound the maximum capacity of the agents, and they
are related by α = γ/τ . We chose to formulate Theorems 1 and 2 in terms of the
parameter that the mechanism corresponding to each theorem assumes access to.
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captured by the parameters γ and α). From a practical point of view we believe
this is a minor issue, as the mechanism can usually use the large quantity of
historical data available to it to estimate the necessary bound very well.

2 Related Work

From a motivational point of view, the most closely related literature to our work
consists of works that involve mediators and online advertising markets, such as
[1,14,22]. These works differ from ours in two crucial points. First, despite being
motivated by exchanges, the models studied by these works are actually auctions
(i.e., one-sided mechanisms). Second, our focus is on maximization of the gain
from trade, unlike the above works which focus on revenue maximization.

We now move our attention to the above mentioned literature on trade reduc-
tion. Mechanisms using trade reduction were described for various settings with
single dimensional agents [2,3,7,8,16,19]. Later [16] developed a single trade
reduction procedure applicable to a class of problems generalizing all the above
settings. Essentially this procedure works when the agents can be partitioned
into few equivalence classes. In our model each mediator might require its own
equivalence class (because a mediator with many users can always replace a
mediator with few users within a trading set, but the reverse is often not true).
Thus, [16]’s procedure does not yield a non-trivial guarantee for our setting.

Recent related research on maximizing gain from trade in two-sided markets
was published by [5,6,10,21]. [21] is the work most relevant to ours. As noted in
Sect. 1, our work was developed independently in parallel to [21]. Though both
works are based on some similar ideas, their results are incomparable. First,
[21] only presents a randomize mechanism, while we present also a deterministic
one; and second, in settings in which both our randomized mechanism and [21]’s
mechanism apply, each mechanism achieves a superior competitive ratio for a
different range of the parameters.

Last but not least, we note that any result for our objective function applies
also to social welfare maximization. Hence, our work is also related to works on
the maximization of this objective in multi-sided markets [4,11,12,17].

3 Notation and Basic Observations

We begin this section with a more formal presentation of our model. Our model
consists of a set P of users, a set M of mediators and a set A of advertisers.
Each user p ∈ P has a non-negative cost c(p) which she has to be paid if she
is assigned to an advertiser. The users are partitioned among the mediators,
and we denote by P (m) ⊆ P the set of users associated with mediator m ∈ M
(i.e., the sets {P (m) | m ∈ M} form a disjoint partition of P ). The utility of a
mediator m ∈ M is the amount he is paid minus the total cost he has to forward
to his assigned users; hence, if x(p) ∈ {0, 1} is an indicator for the event that
user p ∈ P (m) is assigned and t is the payment received by m, then the utility
of m is t − ∑

p∈P (m) x(p) · c(p). Finally, each advertiser a ∈ A has a positive
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capacity u(a), and she gains a non-negative value v(a) from every one of the
first u(a) users assigned to her; thus, if advertiser a is assigned n ≤ u(a) users
and has to pay t then her utility is n · v(a) − t.

A mechanism for our model accepts reports from the advertisers and medi-
ators, and based on these reports outputs an assignment of users to advertisers
(recall that the report of an advertiser a consists of her capacity u(a) and value
v(a), and the report of a mediator m consists of the number of his users |P (m)|
and the costs of these users). In addition, the mechanism also decides how much
to charge (pay) each advertiser (mediator). The objective of the mechanism is
to output an assignment of users to advertisers maximizing the gain from trade.

For ease of the presentation, it is useful to associate a set B(a) of u(a) slots
with each advertiser a ∈ A. We then think of the users as assigned to slots
instead of directly to advertisers. Formally, let B be the set of all slots (i.e.,
B =

⋃
a∈A B(a)), then an assignment is a set S ⊆ P ×B in which no user or slot

appears in more than one ordered pair. We say that an assignment S assigns a
user p to slot b if (p, b) ∈ S. Similarly, we say that an assignment S assigns user
p to advertiser a if there exists a slot b ∈ B(a) such that (p, b) ∈ S. It is also
useful to define values for the slots. For every slot b of advertiser a, we define
the value v(b) of b as equal to the value v(a) of a. Using this notation, the gain
from trade of an assignment S can be stated as GfT(S) =

∑
(p,b)∈S [v(b) − c(p)].

In addition to the above notation, we need also the following shorthands.
Given a set A′ ⊆ A of advertisers, we denote by B(A′) =

⋃
a∈A′ B(a) the set of

slots belonging to advertisers of A′. Similarly, given a set M ′ ⊆ M of mediators,
P (M ′) =

⋃
m∈M ′ P (m) is the set of users associated with mediators of M ′.

To make the presentation of our mechanisms simpler, we assume that the
values of slots and the costs of users are all unique. Clearly, this is unrealistic,
but it can be emulated using an appropriate tie-breaking rule.

3.1 Canonical Assignment

Given a set B′ ⊆ B of slots and a set P ′ ⊆ P of users, the canonical assignment
Sc(P ′, B′) is the assignment constructed as follows. First, we order the slots of
B′ in a decreasing value order b1, b2, . . . , b|B′| and the users of P ′ in an increasing
cost order p1, p2, . . . , p|P ′|. Then, for every 1 ≤ i ≤ min{|B′|, |P ′|}, Sc(B′, P ′)
assigns user pi to slot bi if and only if v(bi) > c(pi). The canonical assignment
is an important tool used frequently by the mechanisms we describe in the next
section. In some places we refer to the user or slot at location i of a canonical
solution Sc(P ′, B′), by which we mean user pi or slot bi, respectively.

The following lemma, whose proof is deferred to the full version of this
paper [15], shows that |Sc(P,B)| is the size of the optimal trade, and thus,
equal to the notion τ used in Sect. 1.1.

Lemma 1. Among all the possible assignments of users of P ′ to slots of B′, the
canonical assignment Sc(P ′, B′) maximizes GfT(Sc(P ′, B′)).
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4 Mechanisms

In this section we formally present our new mechanisms. Unfortunately, due to
space constraints, we defer the analysis of these mechanisms to the full version of
this paper [15]. Let us begin by presenting our deterministic mechanism “Price by
Removal Mechanism” (PRM). Recall that PRM assumes public knowledge of the
advertisers’ capacities (or that the advertisers are not strategic about them).
We also assume that PRM has access to a value γ ≥ 1 such that u(a) ≤ γ and
|P (m)| ≤ γ for every advertiser a ∈ A and mediator m ∈ M , respectively. In
other words, γ is an upper bound on how large can the capacity of an advertiser
or the number of users of a mediator be. Informally, γ can be understood as a
bound on the importance every single advertiser or mediator can have.

A description of PRM is given as Mechanism 1.1. Notice that both Mecha-
nism 1.1 and the other mechanism that we present in this paper often refer to
parameters of the model that are not known to the mechanism (such as values
of advertiser or the number of users of mediators). Whenever this happens, this
should be understood as referring to the reported values of these parameters.

Mechanism 1.1. Price by Removal Mechanism (PRM)

1. For every mediator m ∈ M , if the canonical assignment Sc(P \P (m), B) is of
size more than 4γ, denote by pm the user at location |Sc(P \ P (m), B)| − 4γ
of the canonical assignment Sc(P \ P (m), B), and let cm be the cost of pm.
Otherwise, set cm to −∞.

2. For every mediator m ∈ M , let P̂ (m) be the set of users of mediator m whose
cost is less than cm.

3. Assign the users of
⋃

m∈M P̂ (m) to the advertisers using a VCG auction.
More specifically, the users of

⋃
m∈M P̂ (m) are the items sold in the auction,

and the bidders are the advertisers of A plus a dummy advertiser ad whose
value and capacity are v(ad) = maxm∈M cm and u(ad) =

∑
m∈M |P̂ (m)|,

respectively. It is important that in case of a tie between v(ad) and the value
of a non-dummy advertiser, the VCG auction breaks the tie in favor of the
non-dummy advertiser.

4. Charge every non-dummy advertiser by the same amount she is charged (as
a bidder) by the VCG auction.

5. For every user p assigned by the auction, if m is p’s mediator, pay cm to m.a

aNote that m is WBB as he forwards to each of his assigned users her cost—
which is less than cm.

Let us now move to the formal presentation of our randomized mechanism
“Threshold by Partition Mechanism” (TPM). Unlike the deterministic mechanism
PRM, TPM need not assume public knowledge about the advertisers’ capacities, i.e.,
the advertisers now have multi-dimensional strategy spaces. On the other hand,
TPM assumes access to a value α ∈ [|Sc(P,B)|−1, 1] such that we are guaranteed
that u(a) ≤ α · |Sc(P,B)| and |P (m)| ≤ α · |Sc(P,B)| for every advertiser a and
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mediator m, respectively. In other words, α is an upper bound on how large can
the capacity of an advertiser or the number of users of a mediator be compared
to the size of the optimal assignment Sc(P,B). We remind the reader that α is
related to the value γ by the equation α = γ/|Sc(P,B)|, and thus, α, like γ, can
be informally understood as a bound on the importance of every single agent.
It is important to note also that α is well-defined only when |Sc(P,B)| > 0, and
thus, we assume this inequality is true throughout the rest of the section.

Mechanism 1.2. Threshold by Partition Mechanism (TPM)

1. Let ML be a set of mediators containing each mediator m ∈ M with proba-
bility min{17 3

√
α, 1}, independently. Similarly, AL is a set of advertisers con-

taining each advertiser a ∈ A with probability min{17 3
√

α, 1}, independently.
Intuitively, the subscript L in ML and AL stands for “low priority”.

2. Let σA be an arbitrary order over the advertisers that places the advertisers
of AL after all the other advertisers and is independent of the reports received
by the mechanism. Similarly, σM is an arbitrary order over the mediators that
places the mediators of ML after all the other mediators and is independent
of the reports received by the mechanism.

3. Partition the mediators of M into two sets M1 and M2 by adding each medi-
ator m ∈ M with probability 1/2, independently, to M1 and otherwise to
M2. Similarly, partition the advertisers of A into two sets A1 and A2 by
adding each advertiser a ∈ A with probability 1/2, independently, to A1 and
otherwise to A2. The rest of the algorithm explains how to assign users of
mediators from M1 to slots of advertisers from A1, and how to charge adver-
tisers of A1 and pay mediators of M1. Analogous steps, which we omit, should
be added for handling the advertisers of A2 and the mediators of M2.

4. Let p̂ and b̂ be the user and slot at location �(1−4 3
√

α)·|Sc(P (M2), B(A2))|	 of
the canonical solution Sc(P (M2), B(A2)). If (1−4 3

√
α)·|Sc(P (M2), B(A2))| ≤

0, then the previous definition of p̂ and b̂ cannot be used. Instead define p̂ as
a dummy user of cost −∞ and b̂ as a dummy slot of value ∞. Using p̂ and
b̂ define now two sets P̂ = {p ∈ P (M1) | c(p) < c(p̂)} and B̂ = {b ∈ B(A1) |
v(b) > v(b̂)}. It is important to note that P̂ and B̂ are empty whenever p̂

and b̂ are dummy user and slot, respectively.

5. While there are unassigned users in P̂ and unassigned slots in B̂ do:
• Let m be the earliest mediator in σM having unassigned users in P̂ .
• Let a be the earliest advertiser in σA having unassigned slots in B̂.
• Assign the unassigned user of P̂ ∩P (m) with the lowest cost to an arbitrary

unassigned slot of B̂ ∩ B(a), charge a payment of v(b̂) to advertiser a and
transfer a payment of c(p̂) to mediator m.a

bNote that m is paid c(p̂) for the assignment of each one of his users. Hence, m
is always WBB since the membership of p in P̂ implies c(p) < c(p̂).
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Intuitively, TPM’s analysis exploits concentration results showing that the
canonical assignments Sc(P (M1), B(A1)) and Sc(P (M2), B(A2)) are quite sim-
ilar. This similarity allows us to use information from Sc(P (M2), B(A2)) to set
the payments charged to advertisers of B(A1) and payed to mediators of P (M1),
and vice versa, while keeping a reasonable competitive ratio. The advantage of
setting the payments this way is that it reduces the control agents have on the
payments they have to pay or are paid, which helps the mechanism be IC.

5 Experiments

We have used simulations with real-world data to study the empirical perfor-
mance of our mechanisms. The data was collected by an online advertising system
constructed based on PRM and beta tested with real users and real advertising
campaigns as part of the above mentioned Horizon 2020 project.

We begin this section by describing the simulations we used to study the
performance of our deterministic mechanism (PRM). These simulations included
30 advertisers. Each one of these advertisers was associated with a different real
world campaign, and we used the cost-per-click data of the campaign for choosing
the value of its corresponding advertiser. The capacity of the advertisers was
chosen by a different method. Specifically, in each execution of the simulation
we picked a random upper bound between 1 and 65, and then picked for every
advertiser a uniformly random capacity between 1 and this upper bound. This
capacities generation method was chosen because it results in simulations with
diverse γ values. Our simulations also included 328 users based on the data fed
by 328 real users of the above mentioned online advertising system, which were
assigned at random to 30 mediators.

The results of 500 executions of our simulations are summarized in Fig. 1.
Interestingly, the empirical competitive ratio of PRM turned out to be larger than
its theoretical guarantee by roughly 0.2 for every given γ/τ ratio.

Fig. 1. Simulation results for PRM. The orange dots represent the theoretical perfor-
mance guarantee for the inputs on which the simulations were run: the y-axis value of
the dot is the competitive ratio and the x-axis value is the γ/τ ratio. Similarly, the
blue dots represent the performance of the mechanism in reality.
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The theoretical guarantee of TPM (Theorem 2) is meaningful only for very
small values of α, which usually arise only in very large markets. Nevertheless,
we conjectured that TPM should work well in practice for moderate size markets,
despite the failure of the theoretical analysis to show that. To test this conjecture,
we generated inputs of moderate size for TPM. Each one of these inputs consisted
of 20000 users, each based on a random one of the above mentioned 328 real
users. The generated users were than grouped into equal size groups (the size
was varied between simulations in order to produce different α values), and each
group of users was assigned to a different mediator. Similarly, each one of the
simulation advertisers was based on a random one out of the above mentioned
30 campaigns. The number of advertisers was also varied between simulations,
but the total capacity of all the advertisers was always made 20000.

The results of the simulations of TPM on the inputs generated by the above
technique are summarized in Fig. 2. As is evident from this figure, TPM achieves
in these simulations roughly 30% of the optimal trade even when α is as large as
roughly 10−2. Moreover, the empirical competitive ratio of TPM improves rapidly
for smaller values of α, reaching roughly 80% for α ≈ 10−3. Thus, our simulations
support our conjecture that TPM works well for moderate size markets, despite
the lack of a meaningful theoretical guarantee for this range of α values.

Fig. 2. The competitive ratio obtained in our TPM simulations as a function of α. The
values on the x-axis are α times 103, and the values on the y-axis are the competitive
ratios (obtained by averaging 500 independent executions of TPM).

To better understand the gap between the theoretical and empirical perfor-
mance of TPM, we ran experiments also for values of α for which the theoretical
guarantee of TPM is meaningful. Due to space constraints, we defer the presen-
tation of these simulations and their results to the journal version of this paper.
Nevertheless, we note that these simulations suggest the following crude rule of
thumb: the empirical performance of TPM for a given value of α is similar to its
theoretical performance for α values that are smaller by two orders of magnitude.
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Abstract. Peer assessment is a major method for evaluating the per-
formance of employee, accessing the contributions of individuals within
a group, making social decisions and many other scenarios. The idea
is to ask the individuals of the same group to assess the performance
of the others. Scores or rankings are then determined based on these
evaluations. However, peer assessment can be biased and manipulated,
especially when there is a conflict of interests. In this paper, we consider
the problem of eliciting the underlying ordering (i.e. ground truth) of
n strategic agents with respect to their performances, e.g., quality of
work, contributions, scores, etc. We first prove that there is no deter-
ministic mechanism which obtains the underlying ordering in dominant-
strategy implementation. Then, we propose a Two-Stage Mechanism in
which truth-telling is the unique strict Nash equilibrium yielding the
underlying ordering. Moreover, we prove that our two-stage mechanism
is asymptotically optimal, since it only needs n+1 queries and we prove
an Ω(n) lower bound on query complexity for any mechanism. Finally,
we conduct experiments on several scenarios to demonstrate that the
proposed two-stage mechanism is robust.

Keywords: Mechanism design · Peer assessment · Nash equilibrium

1 Introduction

Peer assessment is a commonly adopted solution for group evaluation without
an independent arbiter, e.g., MOOC student assignments scoring [16], research
proposal evaluation etc. Despite the pervasive success of peer assessment, there
remain issues and controversies, especially on validity and reliability of peer
review [21]. As the score of a participant is decided by the assessments given
by others, one may manipulate the outcome by providing dishonest feedback.
For example, students in a MOOC course usually conduct peer assessments by
grading others’ homeworks (e.g., percentile scores), and their scores are based
on the average of all submitted assessments on their homeworks. In such cases,
a student may be able to obtain a better ranking by giving worse evaluations of
other students.
c© Springer Nature Switzerland AG 2018
X. Deng (Ed.): SAGT 2018, LNCS 11059, pp. 176–188, 2018.
https://doi.org/10.1007/978-3-319-99660-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99660-8_16&domain=pdf


A Two-Stage Mechanism for Ordinal Peer Assessment 177

Not surprisingly, professionals also suffer from unreliable, or “lottery-
like” peer review results [30], e.g., irresponsible or derogatory comments appear
in academic proposals, and even double-blind review cannot guarantee fairness
[18]. In business or academic fields, it is almost inevitable that the reviews have
an undisclosed conflict of interests. Under these circumstances, the fairness of
peer assessments, even from experts, should be questioned [22,28].

The focus of this paper is to reveal the underlying ordering (ground truth) of
the strategic agents. This work is mainly motivated by the applications in which
the agents have a strong incentive to manipulate the system by not telling the
truth. For example, a direct application is to rank the contributions in a relatively
small team, where team members work collaboratively on a project and have a
common opinion of the ranking of each member’s contribution. Note that the
bonus of each employee is indeed assessed by his/her team members in some
companies. Thus the leader needs to know the ranking of all members. In this
paper, we propose a two-stage mechanism to reveal the ground truth.

Previous work on the problem related to peer assessment, in particular to
peer review, studied different setting in which their goal is to select a ‘reasonable’
aggregated ordering (or a subset) by partition-selection steps (see e.g., [2,10]).
For example, although the mechanism given in [2,3] is strategyproof, it is not
guaranteed to reveal the true underlying ordering even if all the agents share the
same opinion of the ordering. Basically their algorithm divides the agents into
disjoint clusters. Then the agents in one cluster give evaluations for the agents in
other clusters. With these evaluations, the algorithm gets a kind of value for each
cluster. Finally the top k agents are drawn from the clusters with proportion to
their values. Consider a simple example, where n = 4, k = 1 and all agents hold
the same ordering 〈1, 2, 3, 4〉. Their algorithm divides the agents into two clusters
(e.g., C1 = {1, 2} and C2 = {3, 4}), and then both clusters get the same value 0.5
according to the Borda score adopted in their algorithm. Finally, their allocation
algorithm selects an agent with the highest score in C1 with probability 0.5 and
selects an agent with the highest score in C2 with probability 0.5, i.e., there is a
0.5 probability to return the wrong agent 3.

1.1 Our Contributions

In this paper, we make the following technical contributions:

1. We prove that there is no deterministic mechanism which obtains the under-
lying ordering in a dominant-strategy implementation.

2. Although mechanisms can be designed in which Nash equilibria exist, they do
not guarantee to obtain the underlying ordering. Under a reasonable assump-
tion, we show that there is a mechanism in which truth-telling is the unique
strict Nash equilibrium and it leads to the underlying ordering, except that
there is an arbitrarily small probability of disorder between the last two
agents. Such a disorder is proved to be inevitable if a mechanism has a strict
Nash equilibrium leading to the underlying ordering.

3. We prove a lower bound of query complexity for any mechanism, which indi-
cates that our two-stage mechanism is asymptotically optimal.
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4. The experimental results on several scenarios demonstrate that our two-stage
mechanism is very robust.

1.2 Related Work

Extracting accurate grading results from non-strategic participants has been
studied in previous work, where grading errors are treated as noise or system-
atic bias. Wilson [31] eliminated rater bias and error by regression. Ross et
al. [27] calibrated rating bias by solving quadratic programming, while Piech
et al. [24] used Gibbs sampling and expectation-maximization to infer parame-
ters of assumed probabilistic grading models. In addition, ordinal methods have
also been considered to obtain more robust ranking results instead of cardinal
evaluations [19]. Raman and Joachims [25,26] used a maximum likelihood esti-
mator based on the classic Mallows model [20] and Bradley-Terry model [6].
Mi and Yeung [23] used the probabilistic graphical models to boost the grading
performance.

Although many mechanisms have been proposed to improve ranking accuracy
in peer assessment, there still remains a critical challenge when the agents are
strategic. Similar strategic cases have been studied in a variety of forms. Alon et
al. [1], Kurokawa et al. [17] and Aziz et al. [2] considered it as a social choice or
voting and designed strategyproof mechanisms. Jurca and Faltings [13,14] used
monetary incentives to guarantee that truthful reporting is a Nash equilibrium.
Gao et al. [11] also used rewards to incentivize truth-telling at equilibrium in
peer-prediction mechanisms. Carbonara et al. [8] used a Stackelberg audit game
[4,5], associating security games with punishment to incentivize honest report-
ing. Kahng et al. [15] designed an impartial rank aggregation rule which has a
small relative error with some other (nonimpartial) rank aggregation rules. Note
that this peer assessment problem is also related to crowdsourcing [7,9,32].

2 Model and Results

2.1 Model

The problem of ordinal peer assessment is formally defined as follows. Let
A = {1, 2, . . . , n} denote the set of strategic agents. Let ri denote the rank-
ing of agent i with respect to its performance (e.g. contribution, score, etc.).
W.l.o.g. assume that ri = i for all i ∈ A, i.e., the underlying ordering is
〈1, 2, . . . , n〉. The underlying ordering (ground truth) is a private common infor-
mation shared among these n agents. The problem is that a third party, who
is not aware of the underlying ordering, wants to obtain it via a mechanism by
adopting peer assessment. A mechanism will output an ordering (i.e., a permu-
tation) of A by asking some queries to the agents. We emphasize that our goal is
to reveal the exact underlying ordering, not a ‘reasonable’ aggregated ordering
(or a subset) as the previous work studied. Thus the strategic agents should
share the same underlying ordering, but they may report untruthful answers.
Now, we formally define the query operation and the mechanism as follows.
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Definition 1 (Query q). q(i, A′) : Ask agent i to report the best agent in A′,
where A′ ⊆ A.

Note that this defined query is sufficient to obtain the necessary information,
e.g., the pairwise comparison query is such a query when |A′| = 2.

Definition 2 (Mechanism M). M : (A,Q) �→ P, where A denotes the set
of all strategic agents, Q is the set of any sequence of queries asked by M and
P denotes the outcome of M which is the set of all permutations of A. M
outputs an ordering O ∈ P according to the sequence of queries Q ∈ Q and the
corresponding reported answers to Q.

Definition 3 (Deterministic/Randomized Mechanism). M is a deter-
ministic mechanism if it always outputs a deterministic ordering for a given
Q and its corresponding reported answers. M is a randomized mechanism if it
may output a randomized ordering according to a distribution over P.

Naturally, mechanisms using fewer queries are more efficient. Now, we
describe the actions of the agents. Every agent is self-interested, only caring
about its own ranking in the output ordering of M. We define the payoff of an
agent to be its (expected) ranking in the outcome of M (if M is randomized).
Their strategies are to report the answers for the queries asked by M. Note that
they may report untruthful answers.

Definition 4 (Strict NE). A strategy profile is a strict Nash equilibrium if
no agent can unilaterally switch to another strategy without reducing its payoff.

2.2 Main Results

Our goal is to reveal the ground truth, i.e., obtain the underlying ordering.
The first thing coming to mind is to design deterministic mechanisms in which
all agents have dominant strategies. A dominant strategy means that it always
achieves the best payoff no matter what the other agents do. Unfortunately, this
is impossible, as shown in the following theorem.

Theorem 1 (Impossibility Theorem). There is no deterministic mechanism
which obtains the underlying ordering in a dominant-strategy implementation.

Note that the Gibbard–Satterthwaite theorem [12,29] does not apply here
since the condition is not satisfied, e.g., the preference relation induced by the
utility function is not antisymmetric since two outcomes having ranked an agent
at the same position have no difference for the agent. Also note that our theorem
is different from [3] since they need randomization to guarantee the number of
selected agents is exact k. The proof of our impossibility theorem can be found
in the full version of this paper.

According to Theorem1, the deterministic dominant-strategy implementa-
tion is too stringent to be achievable. Nonetheless, one can still obtain that
the agents reporting the truth (truth-telling) is a Nash equilibrium, as in the
following lemma.
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Lemma 1. There is a mechanism in which truth-telling is a Nash equilibrium.

Proof. One such mechanism is the naive dictatorship, i.e., the mechanism returns
a predefined ordering whatever the agents answer to the queries. Truth-telling
obviously is a Nash equilibrium since no agent can affect its payoff by changing
its strategy (answer). Note that this mechanism only outputs the true underlying
ordering with a very small probability 1/n!. �	

According to the above lemma, although truth-telling and Nash equilibrium
are easy to achieve, we still do not get the underlying order yet. Then, we provide
a simple mechanism (randomly choose three agents from A, then let them report
the best agent and take the majority answer (if it does not exist, we uniformly
pick one from A) as the best agent a∗, finally let a∗ report the remaining ordering
of A − {a∗} to obtain a complete ordering (output)) and it is not hard to verify
that truth-telling is a Nash equilibrium and this Nash equilibrium leads to the
underlying ordering (the details can be found in our full version). However, there
are many Nash equilibria in this simple mechanism, e.g., three random agents all
report the second-best agent or other agents. Thus this mechanism will output
wrong orderings with high probability since most Nash equilibria are bad as they
lead to wrong orderings.

Hence, we want to consider the strict Nash equilibrium (more extremely,
unique) that yields the underlying ordering since the strict Nash equilibrium
(see Definition 4) implies stability. However, the following lemma indicates a
negative result.

Lemma 2. The underlying ordering cannot be obtained with probability 1 by
any strict Nash equilibrium of any mechanism.

Proof. Assume that there is a strict Nash equilibrium which leads to the underly-
ing ordering with probability 1. Consider the last agent n, the expected ranking
of agent n is n in this strict Nash equilibrium. However, if it changes its strategy,
it does not get a strictly worse ranking than n as the lowest ranking is n anyway.
This contradicts the definition of strict Nash equilibrium. �	

Fortunately, if a tiny disorder between agents n and n− 1 is allowed, a strict
Nash equilibrium is still possible. The point is that in the proof above, agent n
always ranks the last. As agent n has no lower place to go down, the intuition
is to let agent n have a tiny probability to go upward. Besides, we need the
following reasonable assumption to get a simple enough mechanism.

Assumption 1. If the ranking of an agent is fixed in the outcome, then the
agent will report truthfully thereafter.

We propose a two-stage mechanism (Algorithm 1) in Sect. 3, satisfying the
following main theorem. We analyze this mechanism and provide the proof sketch
in Sect. 3. The detailed proof can be found in our full version.
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Theorem 2 (Main Theorem). Under Assumption 1, there is a mechanism in
which truth-telling is the unique strict Nash equilibrium and it leads to the under-
lying ordering, except for an arbitrarily small probability of disorder between the
last two agents. Further, the number of queries asked by the mechanism is n+1.

Moreover, the proposed two-stage mechanism is asymptotically optimal as
indicated by the following lower bound theorem (the proof can be found in our
full version).

Theorem 3 (Lower Bound). Any mechanism capable of retrieving the under-
lying ordering requires Ω(n) queries in the worst case.

3 The Two-Stage Mechanism

Note that the problem is trivial if n = 1. When n = 2, it is impossible to
distinguish the two agents. For n > 3, we propose the Two-Stage Mechanism
which is described in Algorithm 1. We defer n = 3 to the end of this section.
In Stage 1 of the two-stage mechanism, we use self-loop to denote the reported
answer when an agent reports itself, and let irrational answer denote the answer
when an agent i reports another agent j while agent j does not report itself.
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Intuition: When an agent i is asked to report the best agent (a∗) in Stage 1,
the agent only has three possible answers described below, where the last two
are wrong answers:

1. report a∗ (true answer);
2. report itself (self-loop answer);
3. or, report someone else (mostly irrational answers).

To enforce truth-telling strategy of all agents, we will ignore the wrong answers
(Case 2 and 3) and punish the misreporting agents in our mechanism. Concretely,
for the irrational answers, we ignore the answers in Line 8 of Algorithm 1 and
punish the agents in Line 14. For the self-loops, we ignore the answers in Line 9
and indirectly punish the agents in Line 5. Note that there is an exception for
agent a∗, i.e., a∗ reporting a∗ (itself) also belongs to Case 2. But this answer
should only be considered as the Case 1 true answer.

Analysis: Now we analyze the two-stage mechanism in more details before mov-
ing to the proofs. The best agent a∗ is selected in Stage 1. This process can be
distinguished as two modes:

1. Mode A: Uniformly pick
(a) At least two self-loops (i.e. reporting themselves):

Uniformly pick one from A − {i, j, k}. We denote this case as Case 1a ,
i.e., sub-item (a) in item 1. Similar denotations are used for other cases.

(b) Candidate set C = ∅:
Uniformly pick one from A − {i, j, k}. This case happens exactly when
i′, j′, k′ ∈ {i, j, k}, and no self-loop exists, i.e. all three answers are irra-
tional.

2. Mode B: Pick candidates (Randomly select from C.)
(a) i′, j′, k′ ∈ {i, j, k} and exactly one self-loop exists:

W.l.o.g., let i′ = i. C must only contain i. Because agents j and k do not
report themselves, those answers reporting j or k are irrational. Conse-
quently an agent not reporting itself will not be contained in C.

(b) There exists o in C. Recall that o denotes an agent except {i, j, k}:
C contains these o-type answers, and if it happens that a self-loop exists
with another agent also reporting the “self-loop” agent, C will contain
the self-loop, e.g. i′ = o, j′ = j, k′ = j, C = {o, j}.

The intuition is that Mode B usually allows us to select the correct agent a∗,
while Mode A usually is a bad case but rarely happens. Besides, note that Line
14 and 15 of Algorithm 1 do not affect the ranking of a∗, i.e., a∗ (selected in
Stage 1) always ranks the first in the outcome ˜O. This ensures that true answers
to the queries of Stage 2 can be obtained according to Assumption 1.

Now, we move to the proof sketch part. The proof details can be found in
our full version. To show truth-telling is the unique strict Nash equilibrium, it
should at least be a strict Nash equilibrium as stated by the following lemma.

Lemma 3. When n > 3, in Stage 1, the strategy profile consisting of the chosen
agents reporting 1 (truth-telling) is a strict Nash equilibrium.
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Then, to show the uniqueness in the following theorem, we only need to show
there are no other strict Nash equilibria. We prove this by contradiction, i.e.,
we show that any agent reporting 1 (true answer) is not strictly worse than
others, and thus there is no other strict Nash equilibrium except truth-telling,
otherwise the agent can change its answer to 1 without reducing its payoff which
contradicts the definition of strict Nash equilibrium (Definition 4). Note that the
number of queries is (n+ 1) since Stage 1 uses 3 queries and Stage 2 using n− 2
queries is sufficient since only one agent is remained.

Theorem 4. When n > 3, the two-stage mechanism uses n + 1 queries and
yields that truth-telling is the unique strict Nash equilibrium and it leads to
the underlying ordering, except that there is an arbitrarily small probability of
disorder between the last two agents.

The following corollary easily follows from the proof of Theorem4 which is
provided in our full version.

Corollary 1. The only remaining strategy in Stage 1 for each agent is truth-
telling using the iterated elimination of dominated strategies (IEDS) process from
agent 1 to agent n.

3.1 Two-Stage Mechanism for n = 3

For the n = 3 case, this situation follows the same paradigm as Algorithm 1. But
note that formerly Mode A uniformly pick works perfectly when n > 3, but for
n = 3, there is no agent for A−{i, j, k}. Thus, a slight difference is that we might
need to identify the second-best agent, rather than the best agent, i.e. select the
second-best agent, and fix its ranking as 2 in the outcome. This update obeys
the “spirit” of Assumption 1.

We describe the selection process in Stage 1 by cases. Let s denote the number
of “self-loop” agents, i.e. the agents reporting themselves.

1. s = 3. Uniformly pick a∗ from {1, 2, 3}. We denote this case as Case 1 .
2. s = 2. Select the only non-self-loop as the second-best agent.
3. s = 1. Select the only self-loop as a∗. Only two special sub-cases need extra

processing.
(a) The same as Line 14 of Algorithm 1, i.e. swap k and k + 1 if k < 3.
(b) It is similar to Line 15 of Algorithm 1, while here x /∈ {i, j, k} is not

required. The slight perturbation has be done if three agents report the
same one.

4. s = 0. The same as Case 1 .

The only slight modifications (differ from n > 3 case) are that the algorithm
now uniformly picks from {i, j, k} instead of from A − {i, j, k}, and the circum-
stance for two self-loops is tackled differently (i.e., identify the second-best agent
now).

We have a similar result for this n = 3 case, as stated in the following lemma.
The proof is not very hard and we provide it in our full version.
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Lemma 4. When n = 3, the two-stage mechanism with a slight difference uses
n + 1 queries and yields that truth-telling is the unique strict Nash equilibrium
and it leads to the underlying ordering, except that there is an arbitrarily small
probability of disorder between the last two agents.

Now, the main theorem, i.e. Theorem 2, easily follows from Theorem 4 and
Lemma 4.

4 Experiments

In this section, we conduct experiments on several scenarios to show our two-
stage mechanism is very robust. Recall truth-telling is the unique strict Nash
equilibrium in our mechanism, and the strict Nash equilibrium implies stability.
Intuitively, agents who adopt non-truth-telling strategy will eventually find it
more beneficial to report the truth. The reason is that at least agent a∗ (the
best agent) would like to adopt truth-telling. Consequently, other agents are
more or less forced to be honest according to the mechanism. Hence the strategy
of non-truth-telling naturally converges to the unique truth-telling equilibrium.

Concretely, we simulate the situation where there are many rounds for the
agents to switch their strategies. Initially, a portion of agents is set to hold
untruthful answers (randomly chosen). Let the noise factor denote the initial
fraction of misreporting agents, hence equivalently, the initial truthful ratio is
1−noise. Experiments are conducted on the number of agents n = 10, 40, 70, 100
and noise = 0.1, 0.5, 1. In each round, all agents sequentially switch their answers
to their best responses with respect to the two-stage mechanism, under the condi-
tion of other agents keeping their answers unchanged. Thus the switching process
in each round consists of n iterations, i.e., in each iteration, exactly one agent
switches to its best response. To compute the best response for an agent, as
the two-stage mechanism is randomized, this is approximated by enumerating
all answers of that agent and computing the average payoff for every enumer-
ated answer (by running the algorithm 10000 times) and then chose the highest
average payoff one.

Fig. 1. n = 10 Fig. 2. n = 40
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Fig. 3. n = 70 Fig. 4. n = 100

Figures 1, 2, 3 and 4 demonstrate the process of the strategies converging to
the unique truth-telling equilibrium under different noise factors. Note that a
truthful ratio equal to 1 means that all agents report true answers. The conver-
gence processes in all figures are very similar, which means the number of agents
does not affect the process much. Moreover, the total number of rounds in all
figures are 4, which shows that this process converges very fast.

We use the following Figs. 5 and 6 to compare the convergence performance
(speed) with respect to the number of agents. Particularly, if the initial fraction of
misreporting agents (i.e., noise) is very large (see Fig. 6), the speed with which the
strategies converge to the unique truth-telling equilibrium is almost independent
of the number of agents (i.e., n). If the noise is not that large (see Fig. 5), the
speed is inversely proportional to the number of agents. Nevertheless, they all
converge quickly to the unique truth-telling equilibrium within four rounds.

Fig. 5. noise = 0.5 Fig. 6. noise = 1

In conclusion, the number of agents (i.e., n) and the initial fraction of mis-
reporting agents (i.e., noise) both do not affect the performance much, and the
strategies of all agents converge quickly to the unique truth-telling equilibrium.
The experimental results validate that our two-stage mechanism is very robust.
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5 Conclusions

In this paper, we consider the problem of obtaining the underlying ordering
(ground truth) among n strategic agents with respect to their performance by
peer assessment. We first prove that there is no deterministic mechanism which
obtains the underlying ordering in a dominant-strategy implementation. Then,
we propose a two-stage mechanism in which truth-telling is the unique strict
Nash equilibrium and it leads to the underlying ordering, except that there is
an arbitrarily small probability of disorder between the last two agents. Note
that such a disorder is proved to be inevitable if a mechanism has a strict Nash
equilibrium leading to the underlying ordering. Moreover, our two-stage mech-
anism only needs n + 1 queries. We then prove an Ω(n) lower bound of query
complexity for any mechanism, which indicates that our mechanism is asymptot-
ically optimal. Finally, the experimental results demonstrate that the proposed
query-optimal two-stage mechanism is also very robust.

Discussions: We discuss the applicability of our results in other query models.
Theorem 1 (Impossibility Theorem) always holds for any query model since our
proof is independent of the query model. For Lemma2, it also always holds since
the fact (the last-ranked agent can always cheat as we demonstrated in the proof)
is irrelevant to the query model. As long as the number of possible answers to
a single query is O(n), Theorem 3 (Lower Bound) also holds. However, it might
be violated if one allows a very powerful query model, e.g. requiring an agent to
answer all the information it knows in just one query (the possible answers to a
single query can be n! in the worst case). For the extension, it is interesting to
consider the situation of collusion.
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Abstract. We study an atomic routing game in a network with interval
uncertainty, where the cost of each edge is load-dependent, and can be
any value in a given interval whose lower and upper limits are expressed
as functions of the edge load. Each player would select a path from his
source to his terminal in the network that minimizes his maximum regret,
where given a path (strategy) profile of the game, the maximum regret
of a player is the worst-case difference between his total cost (in the case
of sum-type cost) or her bottleneck cost (in the case of bottleneck-type
cost) and the optimum he could attain given the choices of other players
in the profile and a priori knowledge about the actual realization of edge
costs. A NE of this game, termed as robust Nash equilibrium (RNE), is
a path profile under which no player can reduce his maximum regret by
unilateral deviation. On the negative side, we show that the problem of
deciding whether a given 3-player game with the sum-type costs has an
RNE is NP-hard, even if the game is symmetric and all intervals have
unit length. On the positive side, we characterize network topologies, for
the game with either type of costs, that guarantee the RNE existence
regardless of source-terminal locations and interval settings.

Keywords: Robust routing game · Atomic routing
Minimum maximum regret · Nash equilibrium · Interval uncertainty

1 Introduction

Atomic routing games have attracted a great deal of attention over recent years
due to their various real-world applications, e.g., packets transmission in commu-
nication networks and vehicle routing in transport systems. In a typical setting
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of the atomic routing game, each selfish player is associated to a pair of source
and terminal vertices in the network; he selects a path from the source to the
terminal in the network for his travel, aiming at a certain objective. The cost
incurred to a player for traversing an edge in the network is typically load-
dependent, e.g., the common delay suffered by all players on the edge increases
as the edge becomes more congested. Two common player objectives exten-
sively studied in the literature are the sum- and bottleneck-types [4,5]. The
sum-type is minimizing the total cost a player spends in traveling along his cho-
sen path, while the bottleneck-type concerns with minimizing the highest cost
a player spends on an edge along his chosen path (called his bottleneck cost).
When atomic routing games with either objective are played under complete
information, pure-strategy Nash equilibria have been shown (under mild condi-
tions on cost functions) to be natural outcomes of the interactions among selfish
players [7,10].

The idealization of complete information is however impractical in a wide
variety of real-world applications. Due to limited information, inherent fluctu-
ations or unpredictable changes in the system (e.g., hardware failures, tempo-
rary construction projects, weather conditions, traffic accidents, etc.), players
are often uncertain about some aspects of the game they are playing. Among
many others, the interval uncertainty often arises when players only know an
interval estimate on the cost of each edge before making decisions (and learn
about the actual cost realization after their path selections). Under the interval
uncertainty, a natural solution of the routing game might be each player select-
ing a risk-averse strategy which is “robust” against the worst-case realization of
uncertain edge costs that could happen to him.

The Robust Routing Game Under Interval Uncertainty. We study in
this paper the robust atomic routing game under interval uncertainty which
adopts the popular robust criterion of minimum maximum regret [9,12,13]. In
the game, each edge of the network is associated to an interval whose lower and
upper limits are nondecreasing functions of the edge load. The cost of each edge
can take any value from the associated interval, regardless of the values realized
for other edges. The maximum regret of a player is the worst-case difference
between his cost (total cost or bottleneck cost depending on the player objective
of the game) and the optimum he could attain given a priori knowledge about
the actual realization of edge costs. Each player aims at selecting a path from
his source to his terminal that minimizes his maximum regret. We refer to such
an atomic routing game as robust routing game Γ , and denote it by Γ+ or
Γ b depending on whether the player objectives are the sum-type or bottleneck-
type. If all players are able to choose their minimum-maximum-regret paths
(strategies) at the same time, the resulting path (strategy) profile is called a
robust Nash equilibrium (RNE) of the robust routing game. Given an RNE, no
player can reduce his maximum regret by unilateral deviation, but for a fixed
realization of edge costs, it might be possible for a player to reduce his cost by
unilaterally deviating to another path.
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Our Contributions. We provide both negative and positive results on the RNE
existence of the robust routing game Γ . On the negative side, we present 2-player
games which show that

• no matter whether the underlying network is directed (resp. planar) or not,
the robust routing game Γ with either type objective does not necessarily
admit any RNE, even if the game is symmetric.

Previously the RNE nonexistence was only known for the bottleneck objective
and non-planar directed networks [14]. Building on the nonexistence we have
discovered, we prove, with the help of an idea from [14], that

• the problem of deciding whether a given 3-player game Γ+ on a directed
network has an RNE is NP-hard, even if the game is symmetric and all
intervals have unit length.

This stands in sharp contrast to the RNE existence of symmetric game Γ b whose
network is associated with intervals all of the same constant length [14].

On the positive side, we characterize network topologies that guarantee the
RNE existence regardless of source-terminal locations and interval settings. A
cut-vertex of a connected graph is a vertex whose removal will disconnect the
graph. A subdivision of a graph G refers to a graph obtained from G by repeatedly
subdividing edges (possibly none), where subdividing an edge (from vertex u to
v) consists of deleting the edge, adding a new vertex w and two new edges from
u to w and from w to v, respectively. For undirected graphs, we obtain the
following complete characterization:

• Let G be a connected undirected graph. Then
– every robust routing game Γ+ on G admits an RNE if and only if every

maximal connected subgraph of G without any cut-vertex is either an
edge or a cycle;

– every robust routing game Γ b on G admits an RNE if and only if every
maximal connected subgraph of G without any cut-vertex is either an
edge or a cycle on 2 or 3 edges.

(Note that a pair of parallel undirected edges is considered as a cycle.) The
result indicates that Γ+ allows more chances for RNE existing than Γ b does.
The structures of directed graphs are relatively complicated. We establish the
following necessary condition, which also implies a relatively narrow graphical
class for ensuring the RNE existence.

• Let G be a connected directed graph. Then every robust routing game Γ+

(resp. Γ b) on G admits an RNE only if G has no subgraph isomorphic to a
subdivision of G1 or G2 in Fig. 1.

These results partially answer a question of Werth et al. [14] concerning identi-
fying graphs which guarantee the existences of RNE.

Related Work. The most related work to ours is the aforementioned paper
[14] by Werth et al. which focused on the robust routing game Γ b. The authors
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Fig. 1. Forbidden structures for the RNE existence in directed networks.

proved that it is NP-complete in general to decide whether a given 3-player game
Γ b has an RNE, even if the game is symmetric. The NP-membership of the
decision problem is noteworthy; it follows from the polynomial-time solvability
of computing a best response in Γ b [2]. For the special case of symmetric Γ b

with uniform constant-length intervals, Werth et al. [14] proved that the Nash
equilibria of a generalized bottleneck routing game are RNEs of the special game
Γ b. The so-called price of robustness was also investigated for Γ b.

To the best of our knowledge, Aghassi and Bertsimas [1] were among the
first who combined concepts from robust optimization with those from game
theory to obtain distribution-free robust game model with incomplete informa-
tion. In the game, given a set of possible values of the uncertain payoff functions,
each player seeks to maximize his worst-case payoff. A mixed-strategy equilib-
rium is guaranteed to exist when the game is finite and has a bounded payoff
uncertainty set. The vast majority of subsequent work on robust games adopted
similar maximum-minimum-payoff (or minimum-maximum-cost) principles (e.g.,
[11]), with a few exceptions [12,14] concerning another widely accepted criterion
of minimum maximum regret, which we consider in this paper for our robust
routing game Γ .

The robust optimization counterpart to our robust routing game model,
known as the interval data minmax regret shortest (resp. bottleneck) path prob-
lem [2,3], can be considered as a 1-player game Γ+ (resp. Γ b). It is to find
a path from a given source to a given terminal that minimizes the maximum
regret of the single player, where the intervals all have constant lower and upper
limits. The shortest-path version of the robust optimization problem is strongly
NP-hard [3,15], while the bottleneck-path version is polynomial-time solvable
[2]. The complexity status instantly shows a difference between Γ+ and Γ b: the
problem of deciding RNE existence for Γ+ is not in NP unless P = NP, while
the decision problem for Γ b belongs to NP.

Paper Organization. Section 2 gives the formal mathematical model of our
robust routing game. Section 3 presents several instances of game Γ without
RNE, which particularly imply some necessary conditions for networks to ensure
RNE existence. Section 4 proves the NP-hardness of determining the RNE-
existence in game Γ+, by a reduction from the directed 2-edge-disjoint-path
problem. Section 5 characterizes all undirected graphs that guarantee the RNE
existences. Section 6 provides concluding remarks on future research.
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2 The Game Model

We study a game model for robust routing with interval uncertainty. By abuse
of notation, we use Γ to denote both the game model and an instance of the
game under consideration. Game Γ is played by a finite set U of players on an
underlying (directed or undirected) graph G = (V,E) with vertex set V and
edge set E. All paths under consideration are simple, and they are directed if G
is directed. Each player i ∈ U is associated with a pair of source vertex si and
terminal vertex ti in G, and his strategy set Pi consists of all si-ti paths (i.e.,
paths from si to ti) in G. Let P =

Ś

i∈U Pi denote the set of strategy profiles.
We often identify a path (strategy) profile p = (Pi)i∈U ∈ P, in which each player
i ∈ U chooses a path (strategy) Pi ∈ Pi, with the routing in which each player
i ∈ U travels along Pi. Under the routing p, the load on edge e ∈ E is defined as
the number pe = |{i ∈ U |e ∈ Pi}| of players who go through e. For each i ∈ U ,
we use p−i = (Pj)j∈U\{i} to denote the partial routing of players in U \{i}. The
game is called symmetric if all players have the same source and terminal.

In a typical setting of the game with complete information, where each edge
e ∈ E is equipped with a nondecreasing and nonnegative delay function de :
{1, 2, . . . , |U |} → R≥0, which maps the load of e to a nonnegative real number,
called the delay of e. In contrast, game Γ is to be played under some scenario to be
realized. This scenario is not known in advance, while some partial information
is available. Given a routing of Γ , the delay on an edge depends on not only its
load but also the scenario realized. Specifically, for each edge e ∈ E, the delay
function de : {1, 2, . . . , |U |}×Σ → R≥0 is now a function of two variables, where
Σ denotes the set of all realizable scenarios. Corresponding to each possible load
x ∈ {1, 2, . . . , |U |} on e, the delay de(x, ·) on e, no matter which scenarios is
realized, belongs to a given closed interval [le(x), ue(x)], where the lower limit
le(x) = min{de(x, ς)|ς ∈ Σ} and upper limit ue(x) = max{de(x, ς)|ς ∈ Σ} are
both nondecreasing functions of x. It is assumed that the scenario realizations are
“compact” over E, i.e., for any routing p and any values me ∈ [le(pe), ue(pe)],
e ∈ E, there is a scenario ς ∈ Σ such that de(pe, ς) = me for all e ∈ E. The
graph G along with the associated intervals [le(x), ue(x)], e ∈ E is referred to as
a network. The length ue(x)− le(x) of interval [le(x), ue(x)] is said to be constant
(resp. unit) if there exists constant ε ≥ 0 (resp. ε = 1) such that ue(x)− le(x) = ε
for each possible load x.

The game model Γ (or Γ (G) to specify the underlying network G) consists
of two sub-models, Γ+ and Γ b as specified below, for minimizing maximum
regrets w.r.t. sum-type costs and bottleneck costs, respectively. For convenience,
we often identify a subgraph (a path in particular) of G with its edge set.

The Sum-Type Costs.The most studied costs of individual players are their
path delays, the sums of delays of edges on their paths. In our robust routing
game, the delay depends not only the routing p = (Pi)i∈U but on the scenario
ς realized. Particularly, the path delay of player i ∈ U is

di(p, ς) =
∑

e∈Pi

de(pe, ς).
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The game Γ will be written as Γ+ or Γ+(G) if players’ costs are their path delays.
Upon the reveal of the realized scenario ς, player i might regret his choice Pi in
p because his unilateral change from Pi to another path P ′

i ∈ Pi might incur
to him a smaller cost, i.e., a shorter path delay di((P ′

i ,p−i), ς), where (P ′
i ,p−i)

is the routing in which player i follows P ′
i , while others keep their paths in

p−i unchanged. The regret ri(p, ς) of player i under routing p and scenario ς is
defined as the difference between his cost and the best he could attain assuming
p−i and ς. That is,

ri(p, ς) = di(p, ς) − min
P ′

i∈P i

di((P ′
i ,p−i), ς).

Removing the reference of scenario ς, the maximum regret of player i under
routing p is defined to be his highest regret among all scenarios realizable, i.e.,

ri(p) = sup
ς∈Σ

ri(p, ς) = sup
ς∈Σ

(
di(p, ς) − min

P ′
i∈P i

di((P ′
i ,p−i), ς)

)
.

Each player aims at choosing his path to minimize his maximum regret given
the choices of others.

The Bottleneck-Type Costs. Another type of individual costs often investi-
gated in literature is a bottleneck one. Concerning this type of costs, we write
Γ as Γ b or Γ b(G), where given routing p = (Pi)i∈U ∈ P and scenario ς ∈ Σ,
the cost of player i ∈ U is defined as

his bottleneck delay bi(p, ς) = max
e∈Pi

de(pe, ς),

i.e., the maximum edge delay among his path Pi. Similar to Γ+ introduced
above, player i ∈ U in Γ b has a regret

ri(p, ς) = bi(p, ς) − min
P ′

i∈P i

bi((P ′
i ,p−i), ς)

under p and ς, and a maximum regret ri(p) = supς∈Σ ri(p, ς) under p. Again,
each player wants to minimize his maximum regret.

Definition 1. A routing p of Γ is called a robust Nash equilibrium (RNE) if
no player i can decrease his maximum regret ri(p) by unilaterally changing his
path.

An RNE is actually a Nash equilibrium of game Γ , whose players pay for their
maximum regrets. In the rest of this section, we present some preliminary facts
that are useful for us to evaluate players’ maximum regrets.

In order to calculate the maximum regrets ri(p) = supς∈Σ ri(p, ς), i ∈ U ,
for game Γ with either type of cost, we identify some special scenarios from Σ.
Recalling the aforementioned “compactness” of scenarios realizations, to each
path P with at least one edge (particularly, P can be an edge), we may associate
a special scenario ςP ∈ Σ, under which, given any routing p, each edge e ∈ P
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suffers from the highest possible delay ue(pe) and all other edges e /∈ P suffer
from the lowest possible delays le(pe). The following lemma confirms (for game
Γ+) the intuition that the maximum regret of a player can be observed in such
a special scenario.

Lemma 2. Given routing p = (Pi)i∈U of game Γ+, for every i ∈ U we have

ri(p) = ri(p, ςPi) = di(p, ςPi) − min
P ′

i∈P i

di((P ′
i ,p−i), ςPi).

Given a routing p = (Pi)i∈U of game Γ b and a scenario ς ∈ Σ, an edge e on
Pi is called i’s bottleneck if e’s delay de(pe, ς) equals i’s bottleneck delay bi(p, ς).

Lemma 3 ([8,14]). Given routing p = (Pi)i∈U of game Γ b, for every i ∈ U ,
there is an edge e∗ ∈ Pi such that ri(p) = ri(p, ςe∗), and e∗ is i’s bottleneck
under p and ςe∗ .

3 Nonexistence of RNE

In this section, we present several 2-player instances of symmetric game Γ , none
of which admits an RNE. Simple underlying topologies (parallel graphs, undi-
rected cycles) or unit-length intervals are noteworthy features of the examples.
Immediate corollaries of the nonexistence provide necessary conditions for graph-
ical structures that could guarantee RNEs to exist.

3.1 A 2-player Game on a 3-edge Parallel Network

A parallel network G consists of a pair of vertices s and t connected by a set
of parallel undirected edges or directed edges from s to t. On G, the games Γ+

and Γ b are identical. The games are symmetric in that all players have s and t
as their common source and terminal, respectively.

Example 4. Consider the 2-player game Γ on the parallel network G1 formed by
three edges e1, e2, e3 whose associated intervals are as shown in Table 1.

Lemma 5. The symmetric 2-player game Γ on parallel network G1 (directed or
undirected) given in Example 4 does not admit any RNE.

Table 1. The associated intervals [lei(x), uei(x)] to parallel edges ei, i = 1, 2, 3

x = 1 x ≥ 2

i = 1 [0, 101] [48, 200]

i = 2 [48, 52] [51, 200]

i = 3 [51, 51] [200, 200]
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This can be verified by using either Lemma 2 or Lemma 3 It has been known that
game Γ b in a directed network does not necessarily admit an RNE [14]. Example
4 extends the negative result to undirected networks. Moreover, it provides the
following corollaries.

Corollary 6. Let G2 be the directed graph shown in Fig. 1. Then there is a
2-player symmetric game Γ on G2 that does not admit any RNE.

Corollary 7. Let G be a connected directed graph. If every game Γ on G admits
an RNE, then G has no subgraph isomorphic to a subdivision of G1 or G2 in
Fig. 1.

Corollary 8. Let G be a connected undirected graph. If every game Γ on G
admits an RNE, then every maximal connected subgraph of G that has no cut-
vertex is either an edge or a cycle.

3.2 A 2-player Game Γ b on a 4-edge Undirected Cycle

Example 9. Consider game Γ b is played by two players 1 and 2 in the undirected
cycle formed by four edges (s1, s2), (s2, t1), (t1, t2), (t2, s1), which are associated
with intervals [5, 5], [4x − 4, 6x − 5], [0, 12x − 12], [1, 7x − 6], respectively.

It can be shown that the above game Γ b does not admit any RNE , which along
with Corollary 8 implies the following.

Corollary 10. Let G ba a connected undirected graph. If every game Γ b on G
admits at least one RNE, then every maximal connected subgraph of G that has
no cut-vertex is either an edge or a cycle with at most three edges.

3.3 2-player Games with Constant-Length Intervals

In this subsection, we first present a 2-player game Γ+ (Example 11) that has no
RNE . Then we modify it to be a 2-player symmetric game Γ+ with unit-length
intervals that does not admit any RNE (Corollary 13).

Example 11. Consider the game Γ+ played by two players 1 and 2 on the acyclic
directed network G depicted in Fig. 2, where the intervals for bounding edge
costs are shown beside the corresponding edges. When the interval consists of a
singleton, we simply write it as the singleton.

Example 12. We make modifications on the game Γ+(G) in Example 11 to con-
struct a 2-player game Γ+ on network G̃ which has unit interval length. Graph
G̃ = (Ṽ , Ẽ) is obtained from G by performing edge subdivisions as follows:

(i) For each e ∈ E whose interval a positive integer length k (i.e., ue(x) =
le(x)+ k > le(x)), we subdivide e into k edges e1, . . . , ek such they in series
form a path from the tail of e to the head of e; we then associate e1 with
interval [le(x), le(x) + 1] and ei with interval [0, 1] for every i = 2, . . . , k.
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Fig. 2. A 2-player game Γ+ without any RNE, where player i ∈ {1, 2} travels from si
to ti = t.

(ii) We associate edges (s2, w), (s2, w′) ∈ Ẽ with interval [0, 1].
(iii) We associate edges (w, v), (w′, v′) ∈ Ẽ with interval [113 x2 − 8

3 , 11
3 x2 − 5

3 ].

In Γ+(G̃), two players i (i = 1, 2) travel from si to ti = t. It can be shown that
this game admits no RNE. Furthermore, we can extend the nonexistence to a
symmetric game, as the following corollary states.

Corollary 13. There is a 2-player symmetric game Γ+ with unit-length inter-
vals that does not admit any RNE.

Corollary 13 shows a sharp contrast to the RNE existence of the symmetric
game Γ b that is associated to intervals with uniform constant length [14].

4 Hardness of Determining RNE Existence

Building on the RNE nonexistence presented in Sect. 3, we are ready to prove
the NP-hardness of determining RNE existences in game Γ+ by reduction from
the directed 2-edge-disjoint-path (2EDP) problem, which is NP-complete [6]. The
same problem has been used in [14] to establish for similar hardness result for
game Γ b. Despite similarity in spirit of reduction, we need to come up with new
ideas to get around difficulties unique for the sum-type costs. As have been seen
in Sect. 3, game Γ+ does have properties different from those of game Γ b.

An instance of the directed 2EDP problem consists of a connected directed
graph G′ and four distinct vertices s′, t′, s′′, t′′. It is to determine whether G′

contains a pair of edge-disjoint s′-t′ path and s′′-t′′ path.

Theorem 14. The problem of deciding whether a given 3-player symmetric
game Γ+ on a directed network has an RNE is NP-hard.

Proof. We present a polynomial-time reduction from the directed 2EDP prob-
lem. Given an instance (G′ = (V ′, E′); (s′, t′), (s′′, t′′)) of the problem, we con-
struct a 3-player game instance Γ+ on network G as shown in Fig. 3.
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Fig. 3. The 3-player symmetric game Γ+(G), where three players travel from s to t.

Specifically, directed graph G = (V,E) and the associated intervals are obtained
as follows:

– Let parallel graph G1 = ({s, t}, {e1, e2, e3}) with associated intervals be as in
Example 4 (see Table 1);

– Make a disjoint union of G1 and G′, and add edges (s, s′), (s, s′′), (t′, t), (t′′, t),
so V = {s, t} ∪ V ′ and E = {e1, e2, e3} ∪ E′ ∪ {(s, s′), (s, s′′), (t′, t), (t′′, t)};

– Associate each edge e ∈ E′ ∪ {(s, s′), (s, s′′), (t′, t), (t′′, t)} = E \ {e1, e2, e3}
with the singleton interval [le(x), ue(x)] = {d(x)}, where

d(x) =

{
1

|E′| , if x = 1;

600, otherwise.
(1)

The player set of Γ+(G) consists of three players 1, 2, 3, who have common source
s and common terminal t. We will show that Γ+(G) admits an RNE if and only
if G′ has edge-disjoint s′-t′ path and s′′-t′′ path.

Let P denote the set of s-t paths in G that are edge-disjoint from {e1, e2, e3}.
Then P ∪ {e1, e2, e3} = Pi for i = 1, 2, 3. Observe also that every path in P is
either a concatenation of edge (s, s′), an s′-t′ path in G′, and edge (t′, t), or a
concatenation of edge (s, s′′), an s′′-t′′ path in G′, and edge (t′′, t).

The high-level idea of our proof is simple: If Γ+(G) admits an RNE, then, as
the 2-player game Γ+(G1) in Example 4 admits no RNE (recall Lemma 5), two
of the three players travel along paths in P. In turn, the very high value 600 of
delay d(x) for all x ≥ 2 (see (1)) enforces the two paths to be edge-disjoint. The
s′-t′ path and s′′-t′′ path contained in these two paths are as desired. Conversely,
given a pair of edge-disjoint s′-t′ path and s′′-t′′ path in G′ whose total number
of edges is minimized, we can show that the s-t paths in P containing them and
edge e3 form an RNE of Γ+(G). ��

Theorem 14 and its proof serve as a warm-up to help the reader understand
the more technical proof (which is in the same spirit) of the following stronger
hardness result.

Theorem 15. The problem of deciding whether a given 3-player game Γ+ has
an RNE is NP-hard, even if the game is symmetric and all intervals have unit
length.
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5 RNE-existence Characterization for Undirected Graphs

This section is devoted to establishing the following characterizations for undi-
rected graphs to guarantee RNE existences for games Γ+ and Γ b.

Theorem 16. Let G be a connected undirected graph. Then

(i) every robust routing game Γ+ on G admits an RNE if and only if every
maximal connected subgraph of G that has no cut-vertex is either an edge or
a cycle;

(ii) every robust routing game Γ b on G admits an RNE if and only if every
maximal connected subgraph of G that has no cut-vertex is either an edge or
a cycle on 2 or 3 edges.

The “only if” part of (i) has been verified by Corollary 8. To see its“if” part,
suppose G’s graphical structure is as stated. If G is a tree, then nothing needs
to be proved. So consider G being the edge-disjoint union of its cycles, denoted
C1, . . . , Ck (possibly none), and a forest which is spanned (induced) by the edges
outside the cycles (if any). It is easy to see that the game Γ+(G) is decomposed
into corresponding games Γ+ on cycles C1, . . . , Ck and the forest (if any). An
RNE of Γ+(G) could be obtained if we could obtain an RNE for each of these
smaller games and “weld” the RNEs into an RNE for the bigger game Γ+(G).
This reduces to prove that game Γ+ on an undirected cycle always possesses an
RNE. We accomplish the task by showing that the game is a generalized ordinal
potential game.

The “only if” part of (ii) has been proved by Corollary 10. By an argument
similar to the above, the“if” part of (ii) follows from the RNE existence of games
Γ b on 2-edge undirected cycles (which are identical with Γ+) and those on 3-edge
undirected cycles.

6 Concluding Remarks

In this paper, we have studied, under the minimum-maximum-regret criterion,
the equilibrium (referred to as RNE) existence of a robust routing game (model
Γ ) of unweighted atomic players in directed or undirected networks with interval
uncertainty. We have obtained both negative and positive results for two sub-
models Γ+ and Γ b, which concern with the sum- or bottle-type player costs,
respectively. While the previous work [14] dealt with only Γ b on directed net-
works, this paper provides a more complete picture about the general model Γ
(in terms of RNE existence w.r.t. network topologies), exhibiting the similarities
and differences between the two sub-models.

Our results show that, although Γ+ turns out to be more tractable (in terms
of RNE existence) than Γ b, the class of network topologies that can guarantee
RNE existence for either sub-model is not large. More conditions on interval
limits, interval lengths, source-terminal locations are needed for deriving RNEs in
more and larger classes of networks. The problem of deciding the RNE existence
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of Γ in a directed network has been shown to be NP-hard ([14] and this paper). It
might be interesting to investigate the complexity of the problem when restricted
to directed planar networks or undirected networks.
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Abstract. We consider the online problem in which an intermediary
trades identical items with a sequence of n buyers and n sellers, each of
unit demand. We assume that the values of the traders are selected by an
adversary and the sequence is randomly permuted. We give competitive
algorithms for two objectives: welfare and gain-from-trade.

1 Introduction

We study the problem of facilitating trade between n buyers and n sellers that
arrive online. We consider one of the simplest settings in which each trader,
buyer or seller, is interested in trading a single item, and all items are identical.
Each trader has a value for the item; a seller will sell to any price higher than its
value and a buyer will buy for any price lower than its value. Upon encountering
a trader, the online algorithm makes an irrevocable price offer, the trader reveals
its value and, if the value is at the correct side of the offered price the item is
traded. After buying an item from a seller, the online algorithm can store it
indefinitely to sell it to later buyers. Of course, the online algorithm can only
sell to a buyer if it has at least one item at the time of the encounter.

We consider online algorithms that offer prices based on the sequence of
past values and we assume that the online algorithm knows only the number of
buyers and sellers, but not their values. The values of the sellers and buyers are
selected adversarially and are randomly permuted. In that respect, the problem
is a generalization of the well-known secretary problem. The secretary problem
corresponds to the special case in which there are only buyers, the algorithm
starts with a single item, and the objective is to maximize the total welfare,
which is to give the value to a buyer with as high value as possible.

Extending this to both sellers and buyers, creates a substantially richer set-
ting. One of the most important differences between the two settings is that
besides the objective of maximizing the total welfare, we now have the objective
of maximizing the gain-from-trade. For both objectives, the algorithm must buy
from sellers with low values and sell to buyers with high values. The objective is
that at the end, the items end up at the hands of the traders, sellers or buyers,
with the highest values. The welfare of a solution is defined as the value of the
buyers and sellers that have an item. The gain-from-trade of a solution is the
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difference between the welfare at the end of the process minus the welfare at the
beginning. At optimality the two objectives are interchangeable: an algorithm
achieves the maximum welfare if and only if it achieves the maximum gain-from-
trade. But for approximate solutions, the two objectives are entirely different,
with the gain-from-trade being the more demanding one.

The Bayesian version of the problem, in which the values of the buyers and
sellers are drawn from known probability distributions has been extensively con-
sidered in the literature. Optimal mechanisms for bilateral trading, that is, the
offline case of a single seller and a single buyer, were first analysed by Myerson
and Satterthwaite in [18] and played a pivotal role in the development of the
area (see the section Related Work). The online Bayesian case was considered
in [10], where the values are drawn from a known distribution but the sequence
is adversarially ordered.

A generalization of our model is when the items may not be identical and
each buyer may have different value for each one of them, i.e., each seller has
a value for its item and each buyer has a vector of values, one for every pair
buyer-seller. This is also a generalization of the well-studied online maximum-
matching problem [13,15]. One can cast the online maximum-matching problem
as the version in which the sellers arrive first and have zero value for their item.
The optimal online algorithm for this problem has competitive ratio 1/e, when
the objective is the welfare (which in the absence of seller values is identical
to the gain-from-trade). Our model is incomparable to the online maximum-
matching problem: it is simpler in the sense that the items are identical (a
single value for each buyer instead of a vector of buyer-item values), and at
the same time more complicated in that the items are not present throughout
the process, but they are brought to the market by sellers that have their own
utility. The fact that in our model the buyer-item values are related, allows for a
much better competitive ratio regarding the welfare, (almost) 1 instead of 1/e.
More importantly, our algorithm is truthful, while in contrast, no good truthful
algorithm is known for the online maximum-matching problem, which remains
one of the main open problems of the area. On the other hand, the introduction
of sellers poses new challenges, especially with respect to the objective of the
gain-from-trade.

There are also similarities between our model and the extension of the clas-
sical secretary problem to k secretaries. From an influential result by Kleinberg
[14] we know that this problem has competitive ratio 1 − 1/

√
k which is asymp-

totically tight, and can be transformed into a truthful algorithm. This result
depends strongly on the knowledge of k. In our case the equivalent measure, the
number of trades is not known from the beginning and has to be learned, with
a degree of precision that is crucial, especially for the gain-from-trade objec-
tive. The fact that the gain-from-trade is not monotone as a function of time
highlights the qualitative difference between the two models; the gain-from-trade
temporarily decreases when the algorithm buys an item, with the risk of having
a negative gain at the end. The mix of buyers and sellers harshly penalizes wrong
decisions and the monotone structure of the problem is disrupted.
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1.1 Our Results

We consider the case when both the number of buyers and the number of sellers
is n. For welfare we show a competitive ratio of 1 − Õ(n−1/3), where Õ hides
logarithmic factors.

Our online algorithm achieves a competitive ratio of 1−Õ(n−1/3) against the
optimal benchmark. To achieve this, it has a sampling phase of length Õ(n2/3)
to estimate the median of the values of all traders, and then uses it as a price
for the remaining traders. But if the optimal number of trades is small, such a
scheme will fail to achieve competitive ratio almost one, because with constant
probability there will not have enough items to sell to buyers with high values.
To deal with this risk, the algorithm not only samples values at the beginning
but it additionally buys sufficiently many items, Õ(n2/3), from the first sellers1,
to balance the potential loss of welfare that results from removing items from
sellers to the expected loss from not having enough items for valuable buyers.

The term O(n−1/3) in the competitive ratio seems to be optimal for a scheme
that fixes the price after the sampling phase and relates to the number of items
needed to approximate the median to a good degree. It may be possible to
improve this term to O(n−1/2) by a more adaptive scheme, as in the case of the
k-secretary problem [14]. It may be possible to remove the logarithmic factors
from the competitive ratio, but we have opted for simplicity and completeness.

For the objective of gain-from-trade, we give a truthful algorithm that has
a constant competitive ratio, assuming that the algorithm starts with an item.
The competitive ratio is high, approximately 103, but it drops to a small con-
stant when the optimal number of trades is sufficiently high. The additional
assumption of starting with an item is necessary, because without it, no online
algorithm can achieve a bounded competitive ratio.

The main difficulty of designing an online algorithm for gain-from-trade is
that even a single item that is left unsold at the end has dramatic effects on the
gain-from-trade. The online algorithm must deal with the case of many traders,
large welfare, but few optimal trades and small gain-from-trade.

To address this problem, our algorithm, unlike the case of welfare, has a large
sampling phase. It uses this phase to estimate the number of optimal trades and
two prices for trading with buyers and sellers. If the expected number of optimal
trades is high, the algorithm uses the two prices for trading with the remaining
traders. But if the number is small, it runs the secretary algorithm with the item
that it starts with. Our algorithm is ordinal, in the sense that it uses only the
order statistics of the values not the actual values themselves. This leaves little
space for errors and it may be possible that cardinal algorithms that use the
actual values can do substantially better.

All omitted proofs can be found in the full version of the paper.

1 Buying from the first sellers cannot be done truthfully unless the algorithm knows
an upper bound on their value. But this is not necessary since there is an alternative
that has minor effects on the competitive ratio: the algorithm offers each seller the
maximum value of the sellers so far. This is a truthful scheme that buys from all but
a logarithmic number of sellers, in expectation.
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2 Related Work

The bilateral trade literature was initiated by Myerson and Satterthwaite in
their seminal paper [18]. They investigated the case of a single seller-buyer pair
and proved their famous impossibility result: there exists no truthful, individu-
ally rational and budget balanced mechanism that also maximizes the welfare
(and consequently, the gain from trade). Subsequent research studied how well
these two objectives can be approximated by relaxing these conditions. Blum-
rosen and Mizrahi [2] devised a 1/e-approximate, Bayesian incentive compatible
mechanism for the gain from trade assuming the buyer’s valuation is monotone
hazard rate. Brustle et al. expanded in this direction in [3] for arbitrary valu-
ations and downwards closed feasibility constraints over the allocations. In the
case where there are multiple, unit demand, buyers and sellers, McAfee pro-
vided a weakly budget balanced, 1 − 1/k approximate mechanism for the gain
from trade in [16], where k is the number of trades in the optimal allocation.
This was later extended to be strongly budget balanced by Segal-Halevi et al.
in [19]. McAfee also proved a simple 2-approximation to the gain from trade
if the buyer’s median valuation is above the seller’s [17]. This was significantly
improved by Colini-Baldeschi et al. in [5] to 1/r and O(log(1/r)), where r is the
probability that the buyer’s valuation for the item is higher than the seller’s.
Recently, Giannakopoulos et al. [10] studied an online variant of this setting
where buyers and sellers are revealed sequentially by an adversary and have
known prior distributions on the value of the items.

The random order model we are using has its origins in the secretary problem,
where n items arrive in online fashion and our goal is to maximize the probability
of selecting the most valuable, without knowing their values in advance. The
matroid secretary problem was introduced by Babaioff et al. [1], with many
recent results presented by Dinitz in [7]. Of particular interest to our problem
are secretary problems on bipartite graphs. Here, the left hand side vertices of
the graph are fixed and the right hand side vertices (along with their incident
edges) appear online. The selected edges must form a (incomplete) matching and
the goal is to maximize the sum of their weights. Babaioff et al. in [1] provided a
4d-competitive algorithm for the transversal matroid with bounded left degree d,
which is a special case of the online bipartite matching where all edges connected
to the same left hand side vertex have equal value. This was later improved to 16
by Dimitrov and Plaxton [6]. The case where all edges have unrelated weights
was first considered by Korula and Pal in [15] who designed a 8-competitive
algorithm, which was later improved to the optimal 1/e by Kesselheim et al.
[13]. Another secretary variant which is close to our work is when the online
selects k items instead of one, where Kleinberg [14] showed an asymptotically
tight algorithm with competitive ratio 1 − O(

√
1/k).

The wide range of applications of secretary models (and the related prophet
inequalities) have led to the design of posted price mechanisms, that are simple,
robust, truthful and achieve surprisingly good approximation ratios. Hajiaghayi
et al. introduced prophet inequality techniques in online auctions in [12]. The
k-choice secretary described above was then studied in [11] which combined with
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[14] yielded an asymptotically optimal, truthful mechanism. For more general
auction settings, posted-price mechanisms have been used by Chawla et al. in [4]
for unit demand agents and expanded by Feldman et al. in [9] for combinatorial
auctions and [8] for online budgeted settings.

3 Model and Notation

The setting of the random intermediation problem consists of two sets B =
{b1, . . . , bn} and S = {s1, . . . , sn} containing the valuations of the buyers and
sellers. For convenience, we assume that they are all distinct. The intermediary
interacts with a uniformly random permutation σ of S ∪ B which is presented
one agent at a time, over 2n steps. The intermediary has no knowledge of σ(t)
before step t.

We study posted price mechanisms that upon seeing the identity of agent t
offer price pt. This price cannot depend on the entire valuation function; only
the values within σ(1) . . . σ(t − 1) which are revealed at this point. We buy or
sell one item from sellers or buyers who accept our price, respectively. Of course,
we can only sell items if we have stock available.

The set of sellers from whom we bought items during the algorithm’s exe-
cution is TS = {s ∈ S | ∃t σ(t) = s ≤ pt } and similarly the set of buyers we
sold to is TB = {b ∈ B | ∃t σ(t) = b ≥ pt ∧ we have items available at time t}.
Notice that these sets are random variables, depending on σ.

The social welfare of online algorithm A is the sum of the valuations of all
agents with items: WA(S,B) = E

[∑
s∈S\TS

s +
∑

b∈TB
b
]
. The gain from trade

(or GFT) produced by algorithm A throughout the run is the difference between
the final and starting welfare: GFTA(S,B) = E

[∑
b∈TB

b − ∑
s∈TS

s
]
.

We are interested in the competitive ratio of our online algorithm A compared
to the offline algorithm OPT . In this setting there are two different offline algo-
rithms to compare against: optimal offline and sequential offline. They both know
S,B, but the first can always achieve the maximum welfare, whereas the second
operates under the same constrains as we, namely he can only perform trades
permitted by σ, which is unknown. We say that algorithm A is ρ-competitive
for welfare (or gain from trade) if for any S,B we have:

WA(S,B) ≥ ρ · WOPT(S,B) − α, (1)

for some fixed α ≥ 0.
Often we will refer to the matching between a set of buyers and a set of

sellers. Let M(S,B) = {{S1} ∪ {B1}}, where S1 ⊆ S,B1 ⊆ B is the set of sellers
and buyers with whom we trade (or are matched, in the sense that the items
move from sellers to buyers) in a welfare maximizing allocation and m(S,B)
the optimal gain from trade. Note that this does not contain pairs: only the
set of each side of the matching. Similarly, let M(S,B, q, p) be the matching
generated by only trading with sellers valued below q and buyers above p. In a
slight abuse of notation, we will use |M(S,B)| = |S1| for the size of the matching
and M(S,B) ∩ M(S′, B′) = {{S1 ∩ S′

1} ∪ {B1 ∩ B′
1}}.
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4 Welfare

In order to approximate the welfare, the online algorithm uses a sampling phase
to approximate the median price. The two main challenges are estimating the
median with a small sample and missing trades due to the online nature of
the input. We begin with two probability concentration results, similar to the
Azuma-Hoeffding inequality for the case without replacement.

Lemma 1. Let X = {x1, · · · , xN} where xi ∈ {0, 1} and x1 = x2 = . . . = xm =
1. Consider sampling n values of X uniformly at random without replacement
and let Xi be the value of the i − th draw. For Y =

∑n
i=1 Xi, we have that for

any ε > 0:
Pr[|Y − E [Y ] | ≥ εE [Y ]] ≤ e−2ε2 max{m,n}mn

N2 (2)

Similarly, we often encounter a situation where we are interested in the num-
ber of trades between n sellers and n buyers, arriving in a uniformly random
permutation. Assuming we buy from all sellers, occasionally we would encounter
a buyer without having any items at hand. This results shows that even though
this is the case, few trades are lost.

Lemma 2. The number of trades M(σ) in a uniformly random sequence con-
taining n buyers and n sellers satisfies:

E [M(σ)] ≥ n − 1
n

(
n −

√
2n log n

)
, (3)

assuming all sellers are valued below all buyers.

All the machinery is now in place to analyze sequential algorithms in this
setting. We first show a key property of the offline algorithm.

Proposition 1. The optimal offline algorithm sets a price p, equal to the median
of all the agents’ valuations and trades items from sellers valued below p to buyers
valued above p.

The optimal sequential offline algorithm would not just trade at this price. We
can modify this approach with a bias towards buying more items than needed,
in order to maximize the probability of finding high valued buyers.

Lemma 3. The sequential optimal offline is
(
1 − O

(
log n
n1/3

))
-competitive

against the optimal offline algorithm for welfare.

The next step is to design an online algorithm without knowing p or |M(S,B)|
beforehand. The algorithm is as follows:

1. Record the first 8n2/3 log n agents and calculate their median p′. Buy from
all sellers during this sampling phase.

2. After the sampling phase:
(a) Buy from seller s if s ≤ p′.
(b) Sell to buyer b is an item is available and b ≥ p′.
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For the analysis of this algorithm, we first need a concentration result on the
sample median p′.

Lemma 4. Let X = {1, . . . , 2n} and select 8n2/3 log n elements from X without
replacement. Then, their sample median M satisfies:

Pr[|M − n| ≥ n2/3] ≤ O

(
1
n

)
. (4)

This shows that our sample median p′ might have at most n2/3 agents more
on one side compared to the true median p. However, this loss is negligible
asymptotically. We now show that buying from sellers during the sampling phase,
before considering any buyers, can only increase the number of trades.

Lemma 5. Let σ be a sequence containing n buyers and n sellers and sσ′ the
exact same sequence where a seller has been moved to the front. Then we have
M(sσ′) ≥ M(σ), where M(σ) is the number of items sold.

Theorem 1. This algorithm is
(
1 − Õ

(
1

n1/3

))
-competitive for welfare against

the optimal offline.

Proof. As before, let M = |M(S,B)| be the size of the optimal offline matching.
The following analysis assumes that the event of Lemma 4 did not occur and p
and p′ split the agents in two sets, differing by at most n2/3. Given this, we ana-
lyze the algorithm in three steps. First show that we never buy too many items
from highly valued sellers, therefore we keep most of the sellers’ contribution to
the final welfare. Then we show that we always match a high proportion of the
valuable buyers by considering two cases: if there are few such buyers then they
are matched to the sellers we obtained during the sampling phase, otherwise we
have enough sellers below p′ to match them to.

We introduce some notation useful to the analysis: let W be the set containing
the top n−n2/3 highest valued agents. Then let SW , BW be the number of sellers
and buyers respectively in W and S′

W , B′
W be how many of them appeared after

the sampling phase.
To show the competitiveness of our algorithm, it suffices find the fraction of

W that is achieved at the end of the sequence: being (1−Õ(1/n1/3))-competitive
against W , the top n − n2/3 agents, implies a ratio of

(
1 − Õ(1/n1/3)

)
· n − n2/3

n
= 1 − Õ(1/n1/3)

against all n agents above the median and therefore the optimal offline.

We first show that we never lose too much welfare by buying from
sellers. Given p′, the only occasion on which a seller in W is bought is if he is
amongst the first 8n2/3 log n sellers. This event is clearly independent from the
condition on p′, meaning in expectation we keep

E [S′
W ] = SW

(
1 − 8n2/3 log n

n

)
= SW

(
1 − 8 log n

n1/3

)
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highly valued sellers. Therefore, enough of the sellers’ original value is kept. For
the number of items IS bought during the sampling phase, the following holds
by Lemma 1:

Pr
[
IS ≤ (1 − 1

2
)4n2/3 log n

]
≤ e−2 1

4 8n2/3 log n n2

4n2 ≤ e−n2/3
. (5)

To analyze the number of buyers in W matched, we consider two cases.
BW ≤ n2/3logn : We first need to find E [B′

W ], which is slightly more compli-
cated, since we have conditioned on p′ approximating the median. Given p′, at
least 4n2/3 log n agents were above the median value during the sampling phase.
Note that any of the buyers in W is above the median. Therefore, any of the
agents in the upper 4n2/3 log n half of the sampling phase could be replaced by
a buyer in W . Thus, in a random permutation, we have:

E [B′
W ] ≥ BW

(
1 − 4n2/3 log n

n − n2/3

)
.

We might also consider up to n2/3 extra buyers, if p′ underestimated p. However,
given that IS ≥ 2n2/3 log n with high probability, every buyer in B′

W will be
matched with an item, giving the claimed competitive ratio for this case.

BW > n2/3logn : The last case is similar but somewhat more complicated
and can be found in the full version.

5 Gain from Trade

Compared to the welfare, the gain from trade is a more challenging objective.
Even for large n, the actual trades that maximize the GFT can be very few and
quite well hidden. Buying from a single seller and being unable to sell could
completely shatter the GFT, while it could have very little effect on the welfare.

The setting has to be slightly changed. We give the online (and offline) algo-
rithm one extra, free item at the beginning to ensure that at least one buyer can
acquire an item. This modification is necessary.

Theorem 2. Starting with no items, the competitive ratio for the GFT is arbi-
trarily high.

The algorithm starts by estimating the total volume of trades in an optimal
matching by observing the first segment of the sequence. Using this information,
two prices p̂, q̂ are computed, to be offered to agents in the second part. Being an
ordinal mechanism, the goal is to maximize the number of trades and leave no
item unsold. The online algorithm A(c, ε,N) contains parameters whose values
will be specified later.
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With probability 1
2 ignore sellers and sell the item as in the normal

secretary, otherwise continue ;
Split the sequence into two segments such that σ = σ1σ2, with
|σ1| = c · 2n;
Let S1, B1 denote the sets of sellers and buyers of σ1;
Calculate the welfare maximizing matching M(S1, B1);
if |M(S1, B1)| ≤ N then

Sell the item to the highest buyer as in the normal secretary problem
and stop;

end
Set p̂, q̂ which only keeps (1 − ε) · c · |M(S1, B1)| many matched pairs;
i ← c · 2n, k ← ∅, M ← ∅;
/* For the first half of σ2, buy and sell items, keeping at

most one in stock */
while i ≤ c · 2n + (1 − c) · 2n/2 do

if σ(i) is a seller, k = ∅ and σ(i) ≤ q̂ then
k ← σ(i);

end
if σ(i) is a buyer, k = ∅ and σ(i) ≥ p̂ then

Sell to σ(i);
k ← ∅;

end
i ← i + 1;

end
For the second half of σ2, just try to sell the last remaining item, if any;
The idea is to use the first part of the sequence to estimate the matching

M(S,B). If a large (in terms of pairs) GFT maximizing matching is observed, it
is likely that a proportionate fraction of it will be contained in the second half.
In that case, sellers and buyers are matched in non overlapping pairs to avoid
buying too many items. Before moving on to the analysis of the algorithm, we
need a small lemma on the structure of welfare maximizing matchings, to explain
the prices set.

Lemma 6. For any S,B and S1 ⊆ S,B1 ⊆ B:

1. m(S,B) can be obtained by setting two threshold prices p, q and trading with
buyers above and sellers below them.

2. Choosing p̂ > p and q̂ < q such that |M(S,B, q̂, p̂)| ≥ α|M(S,B)| for α < 1
yields m(S,B, q̂, p̂) ≥ αm(S,B).

3. |M(S,B)| ≥ |M(S1, B1)| and m(S,B) ≥ m(S1, B1).

Theorem 3. A(c = 0.3, ε = 0.2758, N = 114) is O(1)-competitive for the gain
from trade against the optimal offline.

Proof. Let z = |M(S,B)|. We bound the gain from trade for the case where σ1,
σ2 contain their analogous proportion of M(S,B) and show that the losses are
insignificant otherwise. Let SM = {s ∈ M(S,B)} and BM = {b ∈ M(S,B)}, the
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sets of agents comprising the optimal matching. By Lemma 6, we know that any
seller in SM can be matched to any buyer in BM . Since we only care about the
size of the matching in σ1 and σ2, not its actual value, we define f(c, ε, z) as:

f(c, ε, z) = Pr

[
|SM ∩ S1|

|SM | ≥ c(1 − ε) ∧ |BM ∩ B1|
|BM | ≥ c(1 − ε)∧ (6)

|SM ∩ S2|
|SM | ≥ (1 − c)(1 − ε) ∧ |BM ∩ B2|

|BM | ≥ (1 − c)(1 − ε)

]

. (7)

We call this the well mixed probability, where an ε-approximate chunk of the
matching appears in both parts. The two events are not independent.

It is useful to think the input as being created in two steps: first the volume of
agents in S1, B1, S2, B2 is chosen and afterwards their exact values are randomly
assigned. As such, a lower bound on the size of the offline matching provides the
same bound on its gain from trade. We begin by bounding f(c, ε, z).

Lemma 7. The probability the matching is well-mixed is

f(c, ε, z) ≥ 1 − 2(e−2ε2zc2 + e−2ε2z(1−c)2)

Let p and q be the prices achieving the matching M(S,B), by Lemma 6. We
need to show that the prices p̂, q̂ computed achieve a constant approximation of
m(S2, B2). Since M(S,B) is well mixed and by using Lemma 6 we have that:

|M(S,B)| ≥ |M(S1, B1)| ≥ |M(S1, B1, q, p)| ≥ (1 − ε) · c · |M(S,B)|, (8)

where the second inequality holds since M(S1, B1) is a gain from trade maxi-
mizing matching and the third because at least a (1 − ε) · c fraction of M(S,B)
appeared in σ1. In particular, we have that M(S1, B1, q, p) ⊆ M(S1, B1) is the
highest value part of M(S1, B1) and M(S1, B1, q̂, p̂) ⊆ M(S1, B1, q, p), thus q̂ ≤ q
and p̂ ≥ p leading to:

|M(S1, B1, q̂, p̂)| ≥ (1 − ε)2c2|M(S,B)| (9)

by 8. We need to find how many of the trades in M(S2, B2, p̂, q̂) are achieved by
our algorithm. Let Ŝ2 = {s | s ∈ S2 ∧ s < q̂ } and B̂2 = {b | b ∈ B2 ∧ b > p̂}.

Lemma 8. Assuming the matching is well mixed:

Pr
[
|Ŝ2| ≥ ((1 − c)(1 − ε) − 1

2
)|SM |

]
≥ 1 − 2−c2(1−ε)2|SM |.

Clearly, Lemma 8 holds for buyers as well. The proof is almost identical, keeping
in mind that buyers are ordered the opposite way.

Since this is an ordinal mechanism, we want to maximize the number of
trades provided no item is left unsold as even a single unsold item ruins our gain
from trade guarantee.
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Lemma 9. Let x = |M(S2, B2, q̂, p̂)| and y = |S2|+ |B2|−x. Then, the probabil-
ity that no item is left unsold is at least 1 − 2−x. Moreover, the expected number
of trades in this case is:

x+y/2−1
2x+y−1 · x

2 − x
2x

1 − 2−x
≈ x/4 (10)

Everything is now in place to provide a lower bound on the gain from trade of
the matching calculated by the algorithm. Assuming z = |M(S,B)|, we combine
Lemmas 7, 8 and 9 to show that with probability at least

J(c, ε, z) = f(c, ε, z) · (1 − 2−c2(1−ε)2z) · (1 − 2−((1−c)(1−ε)− 1
2 )z) (11)

the matching has size at least ((1 − c)(1 − ε) − 1
2 )z/4. The matching is not a

uniformly random subset of M(S,B), but it is skewed to contain higher value
trades since p̂ > p and q̂ < q. Taking into account that we run a simple secretary
algorithm with probability 1/2 and assuming we lose the highest valued seller
s� in our matching when the agents are not well mixed, the GFT is:

1
2e

b� +
J(c, ε, z)

2
· ((1 − c)(1 − ε) − 1

2 )m(S,B)
4

− 1 − J(c, ε, z)
2

s� (12)

whereas the optimal offline GFT is at most m(S,B) + b�, where b� is the most
valuable buyer.

Therefore, c, ε and N are selected to maximize the minimum amongst all cases
of z, which is picked by the adversary. For the full proof please refer to the full
version of the paper. Computationally, we find that setting c = 0.3, ε = 0.2758
and N = 114 yields ρ ≥ 1/1434.

If we are given that |M(S,B)| will be large, then this algorithm can be
adapted to have greatly improved competitive ratio. In particular, setting c =
ε = 0.01 achieves ρ ≥ 1/17 as |M(S,B)| → ∞.
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Abstract. We examine a resource allocation problem where each agent
is to be assigned exactly one object. Agents are initially endowed with a
resource that they can swap with one another. However, not all exchanges
are plausible: we represent required connections between agents with
a social network. Agents may only perform pairwise exchanges with
their neighbors and only if it brings them preferred objects. We ana-
lyze this distributed process through two dual questions. Could an agent
obtain a certain object if the swaps occurred favourably? Can an agent
be guaranteed a certain level of satisfaction regardless of the actual
exchanges? These questions are investigated through parameterized com-
plexity, focusing on budget constraints such as the number of exchanges
an agent may be involved in or the total duration of the process.

Keywords: Resource allocation · Distributed process
Social network · Parameterized complexity

1 Introduction

Reallocating resources among agents is a central question widely studied both
in computer science and economics [1,3,10,14]. This problem refers to a par-
ticular setting of resource allocation, where the agents are initially endowed
with items [6]. Resource reallocation models many real-life situations, like real-
locating tasks between employees or reassigning time slots in schedules. In such
examples, agents are often assigned a single task. With exactly one item per
agent, the problem is known as housing market [1,19]. In this context, a central
authority may decide how to redistribute the objects [4,19]. Alternatively, the
agents may direct the reallocation by trading and negotiating among them in a
distributed process [7–9]. Although largely studied in general resource realloca-
tion [11,12,14,18], this approach has only recently been introduced in housing
markets [10].
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In a distributed process, natural obstacles may inhibit the agents in the
trades. Lack of trust may lead agents to adopt a greedy behavior so as to be
immediately better off in their new acquisition. Logistics difficulties, e.g., com-
munication and geographical distance, may also prevent some trades to occur.
This can be modeled by restricting trades to the links of a social network [13,17],
with exchanges limited to the cliques [9] or edges [16] of the graph.

We consider this latter format: a housing market with exchanges between
neighbors in a social network [16]. One of the main questions is the Reachable
Object (RO) problem: Given a target agent A and a target object x, is there a
sequence of exchanges ensuring A is eventually allocated x? This problem is very
appealing but is NP-complete even when the network is a tree [16]. We attempt
to mitigate this negative result by looking at more realistic constrained settings.

We draw inspiration from the fact that an agent may not be willing to perform
a large number of swaps or to wait a long time before getting the desired object.
We introduce natural budget constraints, the number of exchanges agents may
make and the total duration of the process, and we perform a refined complex-
ity analysis. Moreover, we introduce Guaranteed Level of Satisfaction
(GLS), a problem related to RO but more realistic. GLS asks whether an agent
can be guaranteed to be eventually allocated an item at least as good as the input
target item, regardless of the exchanges other agents perform, provided they are
rational swaps. While RO takes an optimistic perspective, GLS adopts a more
pessimistic point of view beyond “lucky” exchange sequences. These problems
naturally arise when we analyze the distributed process of exchanges in realloca-
tion but they can also model concrete issues. As an example, consider an online
exchange platform where users input in the system which item they hold as well
as their preference. A user may request a target object to the centralized sys-
tem which would then suggest a series of intermediate swaps to bring it to her.
Even in such a context, restricted rational exchanges are relevant: geographical
constraints can still prevent two agents to trade and the guarantee of getting a
better object is essential as otherwise an agent could be left worse off than she
started, should an intermediate agent exit the system during the process.

When parameterizing the problems by the maximal number of swaps per
agent, we show intractability even for highly structured graphs. However, when
constraining the duration of the process, we obtain more promising results: RO
and GLS are tractable in a very relevant class of networks, namely bounded
degree graphs, and in general the problems are tractable when the duration
does not depend on the input size. These results contrast strongly with both
previous work [16] and our first parameterization, and they focus on realistic
scenarios: actual social networks have indeed bounded degrees and the time that
an agent is willing to wait for a target object is independent from the input size.

We start with the swap dynamics model, RO and GLS, and some complexity
background. Section 3 relates RO and GLS. Our results for the max-swaps and
for the total-duration parameters are in Sects. 4 and 5 respectively.
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2 Formal Framework

2.1 Swap Dynamics Model

Let N be a set of n agents, and M a set of n resources (or objects). Each
agent i ∈ N has ordinal strict preferences �i over the objects, i.e., a �i b
means that agent i prefers object a to object b. An allocation σ is a bijection
σ : N → M , assigning to each agent exactly one object. The object assigned to
agent i in σ is denoted by σi. Each agent is initially endowed with an object,
and we denote by σ0 the initial allocation. The agents are embedded in a social
network, represented by an undirected graph G = (N,E). An instance of swap
dynamics model is a tuple I = (N,M,�, σ0, G).

Agents can exchange their objects so as to obtain better objects, but not
all exchanges are plausible. The possibilities depend on the social network and
on the preferences of the agents. We only admit swaps, rational trades between
neighbors. Formally, a swap in an allocation σ is a trade between two adjacent
agents (i, j) ∈ E such that the exchange is rational, i.e., σi �j σj and σj �i σi.

A sequence of swaps is a sequence of allocations (σ0, . . . , σt) such that a swap
is performed between two consecutive allocations σi and σi+1. An allocation σ is
reachable if there is a sequence of swaps leading to it, i.e., there exists a sequence
(σ0, . . . , σt) such that σt = σ. An allocation σ is stable if no swap is possible from
σ. An object x is reachable for agent i if there is a sequence of swaps (σ0, . . . , σt)
where σt

i = x. Swap dynamics refers to a distributed process where agents may
rationally exchange their objects when they are neighbors in the network, until
a stable allocation is reached.

Example 1. Consider an instance where n = 4 with the following social net-
work and preferences. The framed objects represent the initial object of each
agent.

A
B

C
D

A : b � c � a � d

B : c � a � b � d

C : d � a � b � c

D : a � b � d � c

Initially, only the swaps between agents A and B, and B and C are possible.
The rational swap (A,C) is not possible because the agents are not adjacent.
The swap (A,D) is not possible because it is not rational for A. The sequence of
exchanges (A,B), (B,C), and (C,D) gives rise to a reachable allocation where
every agent gets her best object. This is stable: no further swap can be performed.

2.2 Questions

We investigate swap dynamics by analyzing two natural decision problems.
Reachable Object (RO):
Instance: I = (N,M,�, σ0, G), A ∈ N , x ∈ M .
Question: Is there a sequence of swaps (σ0,. . . , σt) such that σt

A = x?
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Guaranteed Level of Satisfaction (GLS):
Instance: I = (N,M,�, σ0, G), A ∈ N , y ∈ M .
Question: For all sequences of swaps (σ0, . . . , σt) where σt is stable, does it hold
that either σt

A = y or σt
A �A y?

When asking whether an agent can obtain some object, a large number of
swaps may not be realistic. We thus study three variants of RO and GLS,
referred to as {RO/GLS}-{max/sum/makespan}, where the quantity of swaps
in a solution sequence is limited. In each variant, this quantity is measured differ-
ently, leading to different complexity-theoretic characterizations of the problem.

– max : Every agent is involved in no more than k swaps.
– sum: The total length of the sequence is no more than k.
– makespan: The makespan of the sequence is no more than k.

The makespan of a sequence of swaps is the minimum time that elapses from
the beginning to the end, when we allow parallel swaps. This notion can be
formalized as follows. Let s = (σ0, . . . , σt) be a sequence of swaps. A parallel
decomposition of s is a tuple of integers � = (�0, �1, . . . , �m) of length |�| = m,
such that 0 = �0 < �1 < · · · < �m = t, and for all 0 ≤ i < m the swaps
between allocation σ�i and allocation σ�i+1 do not involve the same agents. In
other words, the swaps between σ�i and σ�i+1 can be performed simultaneously.
The makespan is the length m of the shortest parallel decomposition. Observe
that the makespan of a sequence can be computed in linear time, and that the
sum parameter is a worst case bound in case no parallel swaps take place.

2.3 Parameterized Complexity

Parameterized complexity aims at solving hard problems in time f(k)nO(1),
called FPT time (fixed-parameter tractable), where n is the size of the instance,
f is a computable function, and k is a parameter of the problem. Assuming the
problem we are trying to solve is NP-hard, function f has to be superpolynomial,
unless P = NP. However, if our parameter k is small compared to the size of the
instance n, we achieve that the blow-up is limited to the small value k.

Some problems are highly suspected not to admit any algorithm in time
f(k)nO(1) for any computable function f , and thus not to be FPT. There are
hierarchies of complexity classes beyond FPT : W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ . . .,
and A[1] ⊆ A[2] ⊆ · · · ⊆ AW[SAT] ⊆ . . . ⊆ XP, where W[1] = A[1],W[t] ⊆ A[t] for
any t > 1, and W[SAT] ⊆ AW[SAT]. For instance, W[1] is the class of parameterized
decision problems that can be solved by a nondeterministic single-tape Turing
machine within k steps, and XP is the class of decision problems solvable in time
O(nf(k)) for some computable function f .

As a rudimentary informal intuition, FPT and W[1] can be thought of as cor-
responding to P and NP in the parameterized world. For instance, clique, the
problem of finding a clique of size k in a graph, is W[1]-complete for FPT reduc-
tions, where an FPT reduction may blow-up the instance size n only polynomially
but the new parameter can be any computable function of the old parameter.
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2.4 First-Order Logic

A vocabulary τ is a finite set of relation symbols. A finite structure A over τ
consists of a finite set A, called the universe, and for each R in τ a relation over
A. We assume a countably infinite set of variables. Atoms over vocabulary τ are
of the form x1 = x2 or R(x1, . . . , xk) where R ∈ τ and x1, . . . , xk are variables.
First-order (FO) formulas over τ are built from atoms over τ using standard
Boolean connectives ¬,∧,∨ and from quantifiers ∃,∀ followed by a variable. Let
ϕ be an FO formula. The variables of ϕ that are not in scope of a quantifier are
its free variables. Let ϕ(A) be the set of all assignments of elements of A to ϕ’s
free variables, such that ϕ is satisfied. A is a model of ϕ if ϕ(A) is not empty.
The class Σ1 (resp. Σ2) contains all FO formulas of the form ∃x1, . . . ,∃xkϕ
(resp. ∃x1, . . . ,∃xk∀y1, . . . ,∀ykϕ) where ϕ is a quantifier free FO formula.

Let Φ be a class of formulas. The model checking problem inputs a finite
structure A and a formula ϕ ∈ Φ and asks whether the formula satisfies the
model, ϕ(A) �= ∅. A natural parameter is the size of (a reasonable encoding of)
ϕ. We will use one result bridging model checking and parameterized complexity.

Theorem 1. [15] Model checking the existential fragment of first-order logic,
MC(Σ1), is W[1]-complete. Model checking the second level of the hierarchy,
MC(Σ2), is A[2]-complete.

3 Relation Between RO and GLS

Reachable Object (RO) asks whether an agent A can obtain an object x by
a sequence of swaps. RO is known to be NP-complete even for trees [16]. Guar-
anteed Level of Satisfaction (GLS) asks whether agent A is guaranteed
to obtain object y or an object preferred to y in any stable reachable allocation.
GLS is even more natural than RO since it offers guarantees for the agent and
does not only focus on lucky configurations. It is close to the complementary of
RO, and thus the study of RO also contributes to the understanding of GLS.

Proposition 2. co-RO is linearly reducible to GLS.

Proof (sketch). We reduce from the co-RO problem asking whether object x
is unreachable for agent A. Let I = {(N,M,�, σ0, G), A, x} be an instance of
co-RO. An instance I ′ = {(N ′,M ′,�′, σ0′, G′), A, y} of GLS is constructed by
adding an agent Y and an object y. The initial allocation σ0′ is the same as σ0

for all agents in N and assigns y to Y . The network G′ has the same structure
as G, with one more edge (Y,A). Denote by a the object of agent A in σ0. If A
prefers x to a, then denote by Pa the set containing a and the objects that are
preferred to a and less preferred than x in �A. Otherwise, Pa contains a and the
objects that A prefers to a. Denote by Px the set of objects that A prefers to x.
Ranking �′

A is constructed from �A, by moving the objects in Px to the end of
�′

A, and by putting y at the top of �′
A. The agents in N \ {A} keep the same

preferences as in � but rank y last, and Y only prefers the objects of Pa to y.
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We claim that x is not reachable for A in I iff A obtains y or an object
preferred to y in any reachable stable allocation in I ′, i.e., iff there is no stable
reachable allocation where A gets z such that y �A z. This part is omitted. �

Since RO is NP-complete even on trees [16] and the previous reduction adds
only one agent and possibly one swap to an instance of RO, GLS is co-NP-
hard on trees. Observe that GLS is in co-NP: after guessing a reachable stable
allocation, checking whether agent A owns y or an object preferred to y is direct.

Corollary 3. GLS is co-NP -complete even for trees.

We refine the complexity of the problems using natural parameters: the num-
ber of swaps per agent and the length of the sequence. Although RO and GLS
are close to be dual problems, they are indeed not complementary. GLS focuses
on stable allocations. A k-bound on the sequence of swaps introduces a depen-
dency on k on the notion of stability: a stable allocation is either stable in the
standard meaning, or is reached after k swaps. Stability is not necessary in RO
because for an assignment solution σ where agent A gets object x, all the stable
allocations reachable from σ assign to A an object preferred to x or x itself.

4 Maximum Number of Swaps per Agent

Consider that the agents are not willing to perform an important number of
swaps in the whole swap process. Surprisingly in this context, our two problems,
RO and GLS, remain difficult even for a very small maximum number of swaps.

Theorem 4. For fixed k ≥ 2, RO-max is NP-complete, even on degree 4 graphs.

Proof. Membership in NP is straightforward, as it is a special case of the uncon-
strained RO problem, known to be in NP.

For hardness, we start with k = 2 and reduce from (3, B2)-SAT — the
restriction of SAT to instances where each clause contains three literals and
each variable occurs exactly twice as a positive literal and twice as a negative
literal. This variant of the propositional satisfiability problem is NP-complete [5].

We are given an instance of (3, B2)-SAT with n variables {x1, . . . , xn} and
m clauses {C1, . . . , Cm}. We create a literal-agent Y �

j (resp., Y �
j ) for each �th

(� ∈ {1, 2}) occurrence of literal xj (resp., xj), and a variable-agent Yj for each
variable xj . Two clause-agents Ki and K ′

i are created for each 0 < i < m. Three
other agents Y0, K ′

0 and Km are added. Each agent initially owns an object
denoted by the lower-case version of her name, e.g., agent Ki gets object ki.

In the network, we have the paths [Yj−1, Y
1
j , Y 2

j , Yj ] and [Yj−1, Y 1
j , Y 2

j , Yj ]
for each 1 ≤ j ≤ n, and the edge (Ki,K

′
i) for each 1 ≤ i < m. If the �th literal

xj (resp., xj) belongs to clause Ci, then we have the path [K ′
i−1, Y

�
j ,Ki] (resp.,

[K ′
i−1, Y

�
j ,Ki]). We connect Km and Yn. See for an example Fig. 1.

The preferences of the agents are given below. Notation {�i} stands for the
literal-objects of clause Ci ranked in arbitrary order and k(xj

i ) (resp. k(xj
i ))
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for the object related to the clause in which the jth occurrence of xi (resp. xi)
appears. The objects that are not mentioned in the preferences are ranked in
arbitrary order after the initial endowment.

K′
0 : {�1} � b � [. . . ]

Ki : k′
i � b � ki � [. . . ] Y 1

j : k(x1
j ) � b � y2

j � a � y1
j � [. . . ]

K′
i : {�i+1} � b � k′

i � [. . . ] Y 2
j : k(x2

j ) � b � yj � a � y2
j � [. . . ]

Km : a � b � km � [. . . ] Y
1
j : k(x1

j ) � b � y2
j � a � y1

j � [. . . ]

Y0 : y1
1 � y1

1 � a � [. . . ] Y
2
j : k(x2

j ) � b � yj � a � y2
j � [. . . ]

Yn : b � a � yn � [. . . ] Yj : y1
j+1 � y1

j+1 � a � yj � [. . . ]

We claim that all clauses are satisfiable iff object b reaches agent Yn. The only
way for Yn to get hold of b is by swapping a with Km. Object b can only reach
Km via clause-agents and literal-agents, while a can only reach Yn via variable-
agents and literal-agents. Agents perform at most two swaps, so no literal-agents
can be involved in the move of both a and b.

Suppose that truth assignment φ satisfies all clauses. Let Ti be a literal-agent
of clause Ci related to a true literal in φ. Since all clauses are satisfiable, object b
can reach Km via the path [K ′

0, T1,K1,K
′
1, T2, . . . , Tm−1,Km−1,K

′
m−1, Tm,Km].

For variable xj , let Z1
j and Z2

j be the literal-agents related to the literal of xj

that is false in φ. Clearly, these agents are not an agent Ti. It suffices for a to
reach Yn via the path [Y0, Z

1
1 , Z2

1 , Y1, . . . , Yn−1, Z
1
n, Z2

n, Yn].
Suppose now that object b is reachable for agent Yn. By construction, the

path of b to Km goes through exactly one literal-agent per clause, while the path
of a to Yn goes through exactly two literal-agents associated with the same literal
for each variable. Thus, the truth assignment of variables that sets to true the
literals related to literal-agents in the path of object b, satisfies all the clauses.

If k > 2, we adapt the reduction via a delay gadget added to each agent. �

K′
0

Y 1
1 Y 1

2 Y 1
3

Y0

K1 K′
1

Y
1
1 Y 2

2 Y
1
3

Y1

K2 K′
2

Y 2
1 Y

1
2 Y 2

3

Y2

K3 K′
3

Y
2
1 Y

2
2 Y

2
3

Y3

K4

Fig. 1. Graph construction for an instance of (3, B2)-SAT with four clauses where
C1 = (x1 ∨ x2 ∨ x3), C2 = (x1 ∨ x2 ∨ x3), C3 = (x1 ∨ x2 ∨ x3), and C4 = (x1 ∨ x2 ∨ x3).

From Proposition 2 and its proof, the same hardness exists for GLS, with an
additional swap and one more neighbor for agent A who must obtain the object.

Corollary 5. For k ≥ 3, GLS-max is co-NP-complete, even on degree 5 graphs.
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One could think that the problem is easier when the structure of the network
is restricted to trees. Yet, it is possible to prove that RO-max on trees is W[SAT]-
hard. We leave out the lengthy formal proof but we state the main idea. We
reduce from Monotone Weighted Satisfiability [2]. Can an input propositional
formula ϕ with no negations be satisfied with a truth assignment of weight k? We
build an instance of RO-max with a graph based on the syntax tree of ϕ where
k chosen variable-objects must move to the occurrences of their corresponding
variable as a prerequisite to given object x reaching given agent A. Since the
variable-objects make up almost all the swaps, O(k) swaps per agent suffice.

Globally, the problems remain difficult in very simple graphs even when the
number of swaps per agent is limited. Fortunately, the parameters on the length
of the sequence let us circumvent the general difficulty of the two problems.

5 Length of the Sequence of Swaps

Two parameters are used to bound the length of the sequence of swaps: the total
number of exchanges and the makespan. Contrary to the previous parameter,
they lead to circumscribe the problems into parameterized complexity classes
that are not so high in the hierarchy, allowing tractability results when the
parameters are bounded by a constant. Moreover, for bounded degree graphs,
relevant in the context of social networks, we obtain fixed parameter tractability.

Theorem 6. RO-sum and RO-makespan are W[1]-hard even for trees.

Proof (sketch). We perform a reduction from clique, the problem of deciding
whether there exists a clique of size k in a graph G = (V,E) such that V =
{1, ..., n} and |E| = m. Assume that each edge in E is written (v, w) such that
v < w, and consider the lexicographical order over E. Let us denote by e1i and
e2i the first and second vertex of the ith edge. Let dv be the degree of vertex v
and δv(d), for 1 ≤ d ≤ dv, the dth edge incident to v. We construct an instance
I ′ of RO (see Fig. 2 for an example) by creating:

– two connected agents X and Y , and two vertex-agents Uvw
v and Uvw

w for each
edge (v, w) ∈ E, connected via a path [Y,Uvw

v , Uvw
w ].

– agents T and T �, for 1 ≤ � ≤ k, representing the k vertices of the clique that
we must choose. They are connected via a path to Y : [Y, T 1, . . . , T k, T ].

– agents Av and A�
v, for v ∈ V and 1 ≤ � < k, representing the choice of the

k−1 edges of the clique that are incident to v if v belongs to the clique. They
are connected via a path to Y for each v: [Y,A1

v, . . . , Ak−1
v , Av].

– agents T �∗ adjacent to T �, for 1 ≤ � ≤ k, and agents A�∗
v adjacent to A�

v, for
1 ≤ � < k and v ∈ V . They are used to “validate” their associated agent by
giving to her their initial object once they own an expected object.

– auxiliary agents used to facilitate the passage of some objects: if an agent B
has a connected auxiliary agent B[z], then the swap with B[z] must precede a
swap for getting an object associated with z. The auxiliary agents we use are
agents Y [vw] corresponding to edge (v, w) and connected to Y , agents Y [v]
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Fig. 2. Graph construction for an instance of clique with vertices {V1, V2, V3, V4} and
k = 3. The edges are: {V1, V2}, {V1, V3}, {V2, V3} and {V3, V4}.

corresponding to vertex v and connected to Y , agent Y [t] corresponding to
object t and connected to Y , agents A

�[δv(d)]
v corresponding to edge δv(d), for

1 ≤ d ≤ di, and connected to agent A�
v, for v ∈ V and 1 ≤ � < k, and agents

T �[v] corresponding to vertex v and connected to agent T � for 1 ≤ � ≤ k.

The initial object of an agent is denoted by the lower-case version of her
name, e.g., agent Y [v] gets object y[v]. The preferences of the agents are as
follows (objects in brackets may not exist for all indices).

X : t � x � [. . . ] Av : ak−1∗
v � av � [. . . ] T : tk∗ � t � [. . . ]

Uvw
v : a

1[vw]
v � uvw

w � y[vw] � uvw
v � [. . . ] Uvw

w : y[vw] � uvw
w � [. . . ]

A
�[δv(d)]
v : (a�+1[δv(dv)]

v ) � · · · � (a�+1[δv(1)]
v ) � a�

v � a
�[δv(d)]
v � [. . . ] A�∗

v : u
δv(dv)
v � · · · � u

δv(1)
v � a�∗

v � [. . . ]

T �[v] : (t�+1[v−1]) � · · · � (t�+1[1]) � t� � t�[v] � [. . . ] T �∗ : a1 � a2 � · · · � an � t�∗ � [. . . ]

Y [v] : (t1[v−1]) � · · · � t1[1] � a
1[em]
e2
m

� · · · � a
1[e1]

e2
1

� y[v] � [. . . ]

Y [vw] : a
1[em]
e2
m

� · · · � a
1[e1]

e2
1

� y � y[vw] � [. . . ]

A�
v : y[v] � (a�−1∗

v ) � av � a�∗
v � u

δv(dv)
v � a

�[δv(dv)]
v � · · · �

(a�+1[δv(2)]
v ) � u

δv(2)
v � a

�[δv(2)]
v � (a�+1[δv(1)]

v ) � u
δv(1)
v � a

�[δv(1)]
v � a�

v � [. . . ]
T � : y[t] � (t�−1∗) � t � t�∗ � an � t�[n] � · · · �

(t�+1[2]) � a2 � t�[2] � (t�+1[1]) � a1 � t�[1] � t� � [. . . ]
Y : x � t � y[t] � t1[n] � an � y[n] � · · · � t1[1] � a1 � y[1] �

a
1[em]
e2
m

� uem

e2
m

� a
1[em]
e1
m

� uem

e1
m

� y[em] � · · · � a
1[e1]

e2
1

� ue1
e2
1

� a
1[e1]

e1
1

� ue1
e1
1

� y[e1] � y � [. . . ]

We claim that there exists a clique of size k in graph G iff object x can
reach agent Y within a total of k3 + 4k2 + k + 2 swaps or a makespan of 5k(k −
1)/2 + 3k + 4. An agent A�

v (or T �) is said to be “validated” if she obtains at
a moment object a�∗

v (or t�∗). We omit the details of the proof but the idea is
that, let object x reach agent Y , all the k agents T � and all the k − 1 agents
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A�
v of k branches Av need to be validated. The associated clique in graph G is

given by the vertices v for which all the k − 1 agents A�
v have been validated.

All the agents A�
v, for 1 ≤ � < k, are validated if we can bring in the branch

k − 1 objects uvw
v (or uwv

v , following the order) representing an edge incident to
v. Observe that the given budget allows bringing in the branches only k(k − 1)
objects uvw

v and the construction forces to choose uvw
w if uvw

v has been chosen. �
Combining the proofs of Theorem6 and Proposition 2 leads to hardness for

GLS.

Corollary 7. GLS-sum and GLS-makespan are co-W[1]-hard even for trees.

This W[1] -hardness for RO and GLS parameterized by the length of the
sequence rules out the existence of FPT algorithms even in trees under standard
complexity assumptions. However, the following results on the membership to
respectively W[1] and co-A[2] show that the problems are not so hard. They are
notably in XP for any graph, thus tractable when the parameter is a constant.

Theorem 8. RO-sum is in W[1].

Proof. An instance I of RO with a swap dynamics model (N,M,�, σ0, G), agent
A and object x, and k as a total number of swaps, is transformed into an instance
I ′ = (A, ϕ) of MC(Σ1), known to be W[1]-complete (Theorem 1). Structure A is
an (E ,�, σ0, A,X)-structure with variables in N ∪M , where relations E , �, σ0,
A and X are defined as follows. The binary relation E over N2 represents the
edge set E. The ternary relation � over N × M2 represents the preferences of
the agents, i.e. �(i, a, b) means that agent i prefers object a to b. For the sake of
clarity, we write a�i b instead of �(i, a, b). The binary relation σ0 over N × M
represents the initial allocation σ0, i.e. σ0(i, z) means that i is initially endowed
with z. Finally, the unary relations A and X respectively represent agent A and
object x, i.e. A(y) means that y is agent A and X(y) means that y is object x.

The Σ1-formula ϕ is defined as ϕ = ∃x0∃b0∃x1∃y1∃a1∃b1 . . .

∃xk∃yk∃ak∃bk

(
σ0(x0, b0) ∧ ∨

0≤k′≤k ψk′
)

with

ψk′ ≡ A(xk′) ∧ X(bk′) ∧
k′∧

i=1

(
E (xi, yi) ∧ bi �

xi

ai ∧ ai �
yi

bi ∧ oi(xi, ai) ∧ oi(yi, bi)
)

where for all i, oi(q, r) stands for
(
σ0(q, r) ∧ ∧i−1

j=1 xj �= q ∧ yj �= q
)

∨
∨i−1

j=1

(∧i−1
p=j+1 xp �= q ∧ qp �= q

)
∧

(
(xj = q ∧ oj(yj , r))∨

(
yj = q ∧ oj(xj , r)

))
.

One can prove by induction over i that formula oi(q, r) is true iff object
r is owned by agent q before ith swap. Globally, formula ψk′

is true iff the
sequence of exchanges between the agents (xi, yi) exchanging the objects (ai, bi),
for i ∈ {1, . . . , k′}, is a sequence of swaps leading to give object x to agent A.�
The same idea and a slightly different FO formula work for RO-makespan.
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Proposition 9. RO-makespan is in W[1].

Proof (sketch). We reduce to MC(Σ1) but face a new difficulty. We cannot
quantify over all potential exchanges within makespan k: it would lead to a
formula of size Ω(n). The crux of this proof is to observe that not all exchanges
are relevant to decide the problem. Assume we process independent swaps in
parallel for up to k time steps. Looking at it from the end, the only relevant
swap in the last step k involves agent A, so we quantify over a single swap and
ignore all concurrent ones. In the one-before-last, only swaps involving A or A’s
partner at step k may be relevant. So considering two swaps happening at step
k−1 and ignoring all other concurrent ones suffice. All in all, we need to quantify
over no more than 2k+1 exchanges. The rest is similar to that of Theorem 8. �

A similar reasoning is applied to GLS. We reduce GLS to model-checking
FO formula using more sophisticated Σ2 formulas.

Proposition 10. GLS-sum/-makespan is in co-A[2].

Proof (sketch). We reduce co-GLS to MC(Σ2), known to be A[2]-complete
(Theorem 1), following an approach similar to that of Theorem8 and
Proposition 9. �

The previous results show that RO and GLS are not “so hard” considering
the length of the sequence as a parameter. Furthermore, for some natural classes
of graphs, the problems are even tractable with respect to these parameters.

Proposition 11. RO/GLS-sum/makespan are FPT on bounded degree graphs.

Proof. The proof follows the idea developed for Proposition 9. Let Δ be the
degree of G and consider the RO problem. At the kth step, the only relevant
exchange involves agent A and a neighbor, so there are O(Δ) possible swaps. The
one-before-last step can only involve A or one her neighbor, therefore there are
at most 2Δ possible swaps for RO-sum and at most Δ + Δ2 for RO-makespan.
This argument applies at any of the k steps, hence there are O(Δk.k!) sequences
of swaps for RO-sum and O(Δk2

) for RO-makespan, and it suffices to verify if
one sequence assigns x to A. Concerning GLS, it suffices to test the reachability
to A of any object x such that y �A x, and so it just adds a factor of n. �

6 Conclusion and Perspectives

This article studies the distributed process of swap dynamics along a network
for reallocating objects among agents. Two related problems are investigated:
Reachable Object (RO), “can a given agent obtain a given object?”, and
Guaranteed Level of Satisfaction (GLS), “is a given agent guaranteed
to get a given object or better?”. Both problems are hard but the parameterized
approach allows us to escape this difficulty for a relevant class of graphs.

We consider natural parameters constraining the number of swaps per agent
or the duration of the sequence. Assuming that they remain small is reasonable
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in practice as the patience of the agents typically does not increase with the
instance size. In the case of few swaps per agent, RO and GLS remain hard even
on bounded degree graphs. So, this parameterization, although natural, does
not help us to grasp the problems. However, considering the total length of the
sequence, although both problems are intractable even for trees, this hardness is
circumscribed to not “so hard” parameterized complexity classes, leading to the
possibility of handling the problems when the parameters do not depend on the
instance size, very natural assumption. Furthermore, unlike the first parameter,
the length of the sequence permits to obtain fixed parameter tractability on
bounded degree graphs, which typically model real social networks.

The parameterized approach allows progress in the understanding of the
problems and leads to significant and realistic positive results. So far, we have
considered restrictions on the network as well as on the solution size. A natural
extension is to investigate the influence of a third dimension: constraints on the
preference profile, e.g., single-peaked domains. Furthermore, assuming the full
knowledge of the preferences and the network is not relevant in all the contexts.
Relaxing this assumption could be a challenging future work.
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Abstract. Various crypto-currencies backed by Blockchain technology
are now springing up like mushrooms. Miners in these peer-to-peer net-
works compete to maintain the validity of the underlying ledgers to earn
the bootstrapped crypto-currencies. With limited hashing power, each
miner needs to decide how to allocate their resource to different crypto-
currencies so as to achieve the best overall payoff. Together all the miners
form a hashing power allocation game. We consider the setting of the
game in which the miners are risk-neutral. We show that a unique pure
Nash Equilibrium exists and can be computed efficiently in this settings.

1 Introduction

With the advancement of the blockchain technologies (a.k.a., distributed ledger
technology), distributed applications (DApps) are burgeoning. Starting from the
bitcoin, many altcoins have been proposed to achieve different goals. At the time
of this writing, there are almost 1,600 cryptocurrencies with market capitaliza-
tion totalling approximate $456 billion1, and among them Bitcoin [5], Ethereum
[9] and Ripple [26] are the top three market-caped crypto-currencies.

Miners in these peer-to-peer networks play the important role of maintaining
the integrity of the underlying blockchains, incentivized to earn digital currencies
and transaction fees. Mining involves executing a distributed consensus protocol
on how to achieve agreement of the underlying ledger when there is no central
authority in presence. Among them, proof-of-work (PoW) [20], proof-of-stake
(PoS) [30] and proof-of-burn (PoB) [23] are the widely adopted consensus pro-
tocols by existing crypto-currencies.

For example, in the PoW framework, during a given average time period (e.g.,
every 10 min for Bitcoin), miners participate in a winner-take-all competition to

1 According to https://coinmarketcap.com/.
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extend the next block on the longest block chain by solving some cryptographic
hashing proof-of-work, a mathematical puzzle. As a concrete case, in Bitcoin
network, the puzzle goes as follows [33]: given a difficulty d > 0, a challenge c
and a nonce x (usually bit-strings), a function

Fd(c, x) → {TRUE,FALSE}

is called a Proof-of-Work (PoW) function if it has the following two properties:
(i) Fd(c, x) is fast to compute, given d, c, and x; and (ii) for fixed parameters
d and c, finding x such that Fd(c;x) = TRUE is computationally difficult but
feasible. The difficulty d is used to adjust the time to find such an x.

With miners equipped with certain computing power (a.k.a., hashing power
in Bitcoin network) and a large number of different cryptocurrencies to mine,
they are facing the challenge on how to allocate their computing power to com-
pete in mining each cryptocurrency to maximize their expected payoffs. Due to
the competitive nature of the mining protocol, all miners together form a non-
cooperative allocation game. This work aims to answer the following questions
associated with the aforementioned game: 1. Does Nash Equilibrium (NE) exist?
2. Is NE unique? 3. Can the NE be computed efficiently? We offer affirmative
answers to all three questions for the risk-neutral miners.

For the game with risk-neutral miners, we show that the Nash Equilibrium
allocation is unique and follows a proportional rule (Theorems 1 and 2) where
each miner will allocate his total computing power to a given crypto-currency
proportional to the percentage of the award among all currencies, while his
expected revenue is proportional to the percentage of the hashing power pos-
sessed and the total award.

The equilibrium analysis of the allocation game is of both theoretical and
practical relevance. On the theoretical side, we set up a succinct backbone model
which admits a closed-form solution via non-trivial technical analysis. On the
practical side, we provide insights which can help mining pool managers (such
as BTC.com [7], AntPool [3], Slush Pool [25], ViaBTC [32] and BTC.TOP [8],
etc.) or individual miners in making the most important operational/tactical
decisions, namely how to allocate the hashing power when facing under reward
and peer competition.

To filter out the most salient factors that are of managerial relevance, we
made some simplifications in the modelling, such as the the assumption that
the cost to purchase certain hashing power is independent from the price of the
currencies. However, this type of deviations from the realism on one hand may
be a good approximation to reality and on the other hand is to be expected in
an early attempt to apprehend an otherwise complex problem. Also, this work
focuses on static games, and leave the discussion of dynamic games to future
research.

Several blockchain games (mainly non-cooperative in nature) are proposed
in the recent literature to address and improve upon the limitations of existing
distributed consensus mechanism in various crypt-currencies [4,11,14,17,21,30],
while some other games (mainly non-cooperative in nature) focus on the appli-
cation layer without invoking any protocol technicality, such as the mining
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pool games [10,13,14,24,29]. Our computing power allocation game is non-
cooperative and focuses on the application layer; namely the allocation of mining
resource. Furthermore, these games all deal with a single currency, which is a
major difference from the game investigated in this work.

Our computing power allocation game is similar to the extensively-studied
general blotto game in the game theory literature [1,2,15,16,27], but the two
models have completely different utility functions to suit different applications
in mind.

Our game can be considered as a special case of the games investigated
in [12,31] in the context of P2P computing and post trading. However, our
game possesses special structure that are lacking in the latter and hence admits
stronger results. As a matter of fact, the games in [12,31] are so general that
they only guarantees the existence of Nash equilibrium, while our game admits
a unique pure Nash equilibrium with a closed-form solution.

The resource allocation nature is also relevant to the large literature on port-
folio management [18], and the market equilibrium model, in particular the
Fisher market [19,22]. However, the portfolio management literature usually
assume that the supply of assets is independent from the allocation decision.
And the Fisher market models focus on finding market-clearing prices and the
allocation rule at market equilibrium.

The readers are referred to the survey by [6] for research perspectives and
challenges for Bitcoin and cryptocurrencies.

2 The Computing Power Allocation Game

There are n miners N = {1, . . . , n} with computing powers h = (h1, . . . , hn)
(the cost to possess such a computing power, expressed in fiat currency such as
US dollar). There are m cryptocurrencies M = {1, . . . , m} available for mining.
Miner i ∈ N allocates xij ≥ 0 of his computing power to mine cryptocurrency
j. Evidently

∑
j∈M xij = hi, i ∈ N.

For each cryptocurrency j, the n miners play a winner-take-all game and
the winner is rewarded with uncertain reward R = (R1, . . . , Rm) (expressed in
fiat currency such as US dollar) with mean vector E[R] = μT = (μ1, . . . , μm)T .
Miner i ∈ N wins cryptocurrency j ∈ M with probability proportional to its
allocated computing power

pij =
xij∑

�∈N x�j
(1)

and his payoff for cryptocurrency j ∈ M is given by

πij(x) =

{
Rj − xij , w.p. pij

−xij , w.p. 1 − pij

Therefore miner i’s total payoff is given by

πi(x) =
∑

j∈M

πij(x) =
∑

j∈M

Rjpij −
∑

j∈M

xij =
∑

j∈M

Rj
xij∑

�∈N x�j
− hi = RT yi(x) − hi
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where x = (xij)n×m ∈ R
n×m
+ and

yi(x) =

⎛

⎜⎜⎝

xi1
x11+...+xn1

...
xim

x1m+...+xnm

⎞

⎟⎟⎠ , i ∈ N. (2)

The mean of miner i’s payoff is given as follows

ER[πi(x)] = μT yi(x) − hi. (3)

3 Main Result

The Nash Equilibrium for risk-neutral miners can be obtained by solving the
following n optimization problems based on (3): for any given i ∈ N ,

max
xi·∈R

m
+

μT yi(x) =
∑

j∈M

xij∑n
h=1 xhj

μj (4)

s.t.
∑

j∈M

xij = hi

xij ≥ 0.

Let xi = (xij) be the allocation of miner i and x−i be the profile without
miner i’s allocation. For each risk-neutral miner, his object is to maximize the
expected utility from all of cryptocurrencies. So given an allocation profile x =
(xij) = (x1,x2, · · · ,xn), define Uij(x) to be the expected utility of miner i from
cryptocurrency j, i.e. Uij(x) = xij∑n

h=1 xhj
μj . Therefore the utility of miner i is

Ui(x) =
∑

j∈M Uij(x).
A power allocation profile x is a Nash equilibrium, if and only if no miner

benefits by changing his strategy unilaterally. However, there is one difficulty,
that is at the point where for some cryptocurrency j ∈ M , xij = 0 for each
i ∈ N , Ui is discontinuous. So we cannot apply the standard method in [28]
to study Nash equilibrium. We first propose the following lemma to show that
Nash equilibrium could not be at the discontinuous point.

Lemma 1. Given an allocation profile x. If there is at least a cryptocurrency j ∈
M with xij = 0 for each i ∈ N , then allocation x cannot be a Nash equilibrium.

Proof. W.l.o.g. we assume that xi1 = 0 for each i ∈ N . Then there must exist
another cryptocurrency, say j = 2, with xi2 > 0. Therefore, the allocation of
miner i is xi = (0, xi2, xi3, · · · , xim). Let us consider another allocation x′

i, with
x′

i1 = ε, x′
i2 = xi2 − ε and x′

ij = xij for each j = 3, · · · ,m, in which

0 < ε < min{xi2,
μ1(

∑
h∈N xh2)

2

μ1

∑
h∈N xh2 + μ2

∑
h�=i xh2

}.

On one hand, allocation x′
i is feasible as 0 < ε < xi2. On the other hand,

if other miners remain their allocations unchanged and miner i reallocate his
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computing power as x′
i unilaterally, then miner i will obtain the whole reward

from cryptocurrency 1 and his utility shall be

U ′
i = μ1 +

xi2 − ε∑
h∈N xh2 − ε

μ2 +
∑

j=3

xij∑
h∈N xhj

μj .

The difference of utility is

ΔUi = U ′
i − Ui = μ1 +

xi2 − ε∑
h∈N xh2 − ε

μ2 − xi2∑
h∈N xh2

μ2

= μ1 −
∑

h∈N,h�=i xh2μ2ε∑
h∈N xh2(

∑
h∈N xh2 − ε)

=
μ1(

∑
h∈N xh2)

2 − (μ1

∑
h∈N xh2 + μ2

∑
h�=i xh2)ε∑

h∈N xh2(
∑

h∈N xh2 − ε)

>
μ1(

∑
h∈N xh2)

2 − (μ1

∑
h∈N xh2 + μ2

∑
h�=i xh2)ε

(
∑

h∈N xh2)2
> 0.

The last inequality is from the definition of ε. Thus we can conclude that the
allocation x in which for some j ∈ M , xij = 0 for each i ∈ N , is not a Nash
equilibrium. ��

Conveniently, we define the following condition of an allocation x,

Condition 1 For each cryptocurrency j ∈ M ,
∑

i∈N xij > 0.

Based on Lemma 1, it is sufficient for us to study the Nash equilibrium at
such allocations satisfying Condition 1. From (4), we know the utility function of
miner i is linear and the domain {(xi1, xi2, · · · , xim)|∑j∈M xij = hi, xij ≥ 0}
is convex. Then by the first-order optimality condition, there exists Lagrange
multiplier αi > 0, such that

∂Ui

∂xij
=

∑
h�=i xhj

(
∑n

h=1 xhj)2
· μj

{
= αi if xij > 0,
≤ αi if xij = 0.

From another perspective, at an equilibrium, if miner i allocates positive com-
puting power for some cryptocurrencies, then he shall has the same marginal
value on these cryptocurrencies. Otherwise, he may have lower marginal value.
Therefore, we face another difficulty that how to characterize Nash equilibrium
at x satisfying Condition 1, but xij = 0 for some j ∈ M and i ∈ N . For this
purpose, we consider a kind of restricted strategy at first, that is for miner i, he
only changes his allocation between two cryptocurrencies j and k with

x′
ij = xij − ε, x′

ik = xik + ε, x′
i� = xi�, l �= j, k, (5)

where xij > 0 and ε > 0. For convenience, we call such a kind of strategy as a
restricted strategy on cryptocurrencies j and k.

Lemma 2. In the hash power allocation game, if all miners are only permitted
to play the restricted strategy, then an allocation x is a Nash equilibrium, if
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and only if for each miner i ∈ N , there is a constant αi such that for each
cryptocurrency j,

∑
h�=i xhj

(
∑n

h=1 xhj)2
· μj = αi. (6)

Proof. Obviously, allocation x must satisfy Condition 1. W.l.o.g., assume miner
i plays the restricted strategy on cryptocurrencies j and k and his new allocation
x′ is shown as (5). It is possible that xik = 0. Clearly,

Uij(x
′
i,x−i) =

xij − ε∑n
h=1 xhj − ε

μj , Uik(x′
i,x−i) =

xik + ε∑n
h=1 xhk + ε

μk.

Since others’ allocations are unchanged and x′
i� = xi�, � �= j, k, we have

Ui�(x′
i,x−i) = Ui�(x), � �= j, k. Therefore

ΔUi = (Uij(x
′
i,x−i) − Uij(x)) + (Uik(x′

i,x−i) − Uik(x))

=

[
xij − ε∑n

h=1 xhj − ε
− xij∑n

h=1 xhj

]
· μj +

[
xik + ε∑n

h=1 xhk + ε
− xik∑n

h=1 xhk

]
· μk

=
− ∑

h�=i xhjμjε∑n
h=1 xhj(

∑n
h=1 xhj − ε)

+

∑
h�=i xhkμkε

∑n
h=1 xhk(

∑n
h=1 xhk + ε)

.

If the result of (6) holds, which means
∑

h�=i xhj

(
∑n

h=1 xhj)2
· μj =

∑
h�=i xhk

(
∑n

h=1 xhk)2
· μk,

then it is easy to deduce that,
∑

h�=i xhjμjε∑n
h=1 xhj(

∑n
h=1 xhj − ε)

>

∑
h�=i xhjμjε

(
∑n

h=1 xhj)2
=

∑
h�=i xhkμkε

(
∑n

h=1 xhk)2
>

∑
h�=i xhkμkε

∑n
h=1 xhk(

∑n
h=1 xhk + ε)

,

implying ΔUi ≤ 0.
On the other hand, we shall prove (6) is the necessary condition for a Nash

equilibrium allocation if each miner is only allowed to play the restricted strategy.
For this purpose, we try to prove that once the result of (6) does not hold, miner
i can get more utility by playing a restricted strategy.

W.l.o.g., suppose
∑

h�=i xhj

(
∑n

h=1 xhj)2
· μj <

∑
h�=i xhk

(
∑n

h=1 xhk)2
· μk,

There must exist an arbitrarily small constant ε > 0 such that
∑

h�=i xhjμj∑n
h=1 xhj(

∑n
h=1 xhj − ε)

<

∑
h�=i xhkμk∑n

h=1 xhk(
∑n

h=1 xhk + ε)
.

So

ΔUi =
− ∑

h�=i xhjμjε∑n
h=1 xhj(

∑n
h=1 xhj − ε)

+

∑
h�=i xhkμkε

∑n
h=1 xhk(

∑n
h=1 xhk + ε)

> 0
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It means that miner i can benefit by playing the restricted strategy on cryp-
tocurrencies j and k and the current allocation x is not a Nash equilibrium.

In addition, because of the arbitrariness of j and k (even though xik = 0),
we have the sufficient and necessary condition of any pure Nash equilibrium for
the restricted strategy that there is a constant αi for each miner i ∈ N and

∑
h�=i xhj

(
∑n

h=1 xhj)2
· μj = αi, ∀j ∈ M.

is satisfied. ��
Next let us turn to the characterization of any pure Nash equilibrium for more

general strategy. W.l.o.g., suppose the new allocation x′
i after manipulation is

x′
i1 = xi1 + ε1, x′

i2 = xi2 + ε2, · · · , x′
ik = xik + εk,

x′
i(k+1) = xi(k+1) − εk+1, · · · , x′

i(k+h) = xi(k+h) − εk+h,

x′
i(k+h+1) = xi(k+h+1), · · · , x′

im = xim, (7)

where each ε� > 0, x′
ij ≥ 0 for each j ∈ M , and

∑k
�=1 ε� =

∑h
�=1 εk+�.

Algorithm A is proposed in Table 1, which constructs a series of intermediate
allocations from xi to x′

i. For the sake of convenience, let x0
i = xi, x

p
i = x′

i and
the intermediate allocations are denoted by x1

i , · · · ,xp−1
i .

Table 1. The Algorithm to Construct Intermediate Allocations

Algorithm A

Input: Allocations x0
i = xi and xp

i = x′
i

Output: The intermediate allocations x1
i ,x

2
i , · · · ,xp−1

i .
1: Set t := 1, r := 1 and q := 1;
2: While t ≤ k and r ≤ h;
3: Set ηq = min{εt, εk+r};

4: Set xq
i� =

⎧
⎪⎨

⎪⎩

xq−1
i� + ηq, � = t

xq−1
i� − ηq, � = k + r

xq−1
i� , � �= t, k + r.

and Output allocation xq
i = (xq

i�);

5: If ηq = εt = εk+r;
Set t := t + 1, r := r + 1, q := q + 1 and go to line 2;

6: Else
7: If ηq = εt

Set εk+r := εk+r − ηq, t := t + 1, q := q + 1 and go to line 2;
8: If ηq = εk+r

Set εt := εt − ηq, r := r + 1, q := q + 1 and go to line 2.
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Here we give an example to show how Algorithm A works.

Example 1. Suppose the strategic miner i changes his allocation to x′
i = (xi1 +

5, xi2 + 3, xi3 + 1, xi4 − 6, xi5 − 3, xi6). Then the intermediate allocations are

x0
i = (xi1, xi2, xi3, xi4, xi5, xi6);

x1
i = (xi1 + 5, xi2, xi3, xi4 − 5, xi5, xi6);

x2
i = (xi1 + 5, xi2 + 1, xi3, xi4 − 5 − 1, xi5, xi6);

x3
i = (xi1 + 5, xi2 + 1 + 2, xi3, xi4 − 5 − 1, xi5 − 2, xi6);

x4
i = (xi1 + 5, xi2 + 1 + 2, xi3 + 1, xi4 − 5 − 1, xi5 − 2 − 1, xi6).

Obviously, at least one of indices t and r is increased by 1 at each step in
Algorithm A. Because

∑k
�=1 ε� =

∑h
�=1 εk+�, then Algorithm A must terminate

at the case that ηq = εt = εk+r and obtain the last allocation x′. Thus Algo-
rithm A can be finished in at most k + h − 1 steps, which implies the time
complexity of Algorithm A is O(n). Furthermore these intermediate allocations
have several nice properties, which are necessary for us to obtain the result on
Nash equilibrium.

Lemma 3. Given the series of allocations x0
i ,x

1
i , · · · ,xp

i from Algorithm A. For
any two adjacent allocations xq−1

i and xq
i

1. xq
it = xq−1

it + ηq, xq
i(j+r) = xq−1

i(j+r) − ηq, and xq
i� = xq−1

i� , � �= t, k + r;
2. For any allocation xq

i , q = 1, 2, · · · , p, there exist three cases:
– Case 1. xq−1

it = xit + ω and xq−1
i(k+r) = xi(k+r), ω > 0;

– Case 2. xq−1
it = xit and xq−1

i(k+r) = xi(k+r) − ω, ω > 0;

– Case 3. xq−1
it = xit and xq−1

i(k+r) = xi(k+r).

Proof. The first claim is from line 4 in Algorithm A directly. The three cases in
the second claim are right from line 5-8 in Algorithm A. ��

Based on the previous analysis for the changing processes from xi to x′
i, the

following theorem shows the sufficient and necessary condition for the existence
of Nash equilibrium in Lemma 2 also holds, even though the miners are allowed
to play more general strategy.

Theorem 1. An allocation x in the hash power allocation game is a Nash equi-
librium, if and only if for each miner i ∈ N and any cryptocurrency j, there is
a constant αi satisfying

∑
h�=i xhj

(
∑n

h=1 xhj)2
· μj = αi. (8)

Proof. Of course, x satisfies Condition 1. Let us suppose x to be a Nash equi-
librium allocation, but Eq. (8) does not hold. By the proof in Lemma 2, miner i
can change his allocation to a new one x′

i shown as (5), to improve his utility.
It is a contradiction to the assumption that x is a Nash equilibrium.
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On the other hand, we shall prove that once an allocation x satisfies (8), it
must be a Nash equilibrium. W.l.o.g., suppose a strategic miner i changes his
allocation to x′

i as (7). So we can obtain a series of allocations x0
i ,x

1
i , · · · ,xp

i

from Algorithm A. The first claim in Lemma 3,

xq
it = xq−1

it + ηq, xq
i(k+r) = xq−1

i(k+r) − ηq, and xq
i� = xq−1

i� , � �= t, j + r,

shows that any two adjacent allocations xq
i and xq−1

i are the same, except for
the t-th and k + r-th elements. It can be viewed as miner i plays a restricted
strategy on two cryptocurrencies t and k + r from xq−1

i to xq
i . So we focus on

the change between xq
i and xq−1

i by using the similar proof in Lemma 2. There
are three cases for each xq

i , q = 1, · · · , p, in the second claim of Lemma 3. Here
we only concentrate on Case 1: xq−1

it = xit + ω and xq−1
i(k+r) = xi(k+r), ω > 0.

Suppose to the contrary that ΔUq
i = Ui(x

q
i ,x−i) − Ui(x

q−1
i ,x−i) > 0, then

0 < Ui(x
q
i ,x−i) − Ui(x

q−1
i ,x−i) =

(
xi(k+r)−ηq∑n

g=1 xg(k+r)−ηq
− xi(k+r)∑n

g=1 xg(k+r)

)
μk+r+

(
xit+ω + ηq∑n
g=1 xgt+ω+ηq

− xit+ω∑n
g=1 xgt+ω

)
μt.

It is equivalent to

(
∑

g �=i xgt)μt

(
∑n

g=1 xgt + ω)(
∑n

g=1 xgt + ηq + ω)
>

(
∑

g �=i xg(k+r))μk+r

(
∑n

g=1 xg(k+r))(
∑n

g=1 xg(k+r) − ηq)

⇔ ηq <
(
∑

g �=i xgt)μt(
∑n

g=1 xg(k+r))
2 − (

∑
g �=i xg(k+r))μk+r(

∑n
g=1 xgt + ω)2

(
∑

g �=i xgt)μt(
∑n

g=1 xg(k+r)) + (
∑

g �=i xg(k+r))μk+r(
∑n

g=1 xgt + ω)
. (9)

Since
(
∑

g �=i xgt) · μt

(
∑n

g=1 xgt + ω)2
<

∑
g �=i xgt · μt

(
∑n

g=1 xgt)2
=

∑
g �=i xg(k+r) · μk+r

(
∑n

g=1 xg(k+r))2
,

where the equation is from condition (8), we can continue (9) to be

ηq <
(
∑

g �=i xgt)μt(
∑n

g=1 xg(k+r))
2 − (

∑
g �=i xg(k+r))μk+r(

∑n
g=1 xgt + ω)2

(
∑

g �=i xgt)μt(
∑n

g=1 xg(k+r)) + (
∑

g �=i xg(k+r))μk+r(
∑n

g=1 xgt + ω)
< 0.

This contradicts to the condition that ηq > 0. Therefore ΔUq
i ≤ 0 for Case 1.

By the similar analysis, we also can get ΔUq
i ≤ 0 for other two cases. Thus

each ΔUq
i ≤ 0, q = 1, · · · , p. It is not hard to see that the total difference ΔUi

can be partitioned as

ΔUi =
[
Ui(x

1
i ,x−i) − Ui(x)

]
+ · · · +

[
Ui(x

′
i,x−i) − Ui(x

p−1
i ,x−i)

]

= ΔU1
i + · · · + ΔUp

i . (10)

It implies ΔUi ≤ 0, since each component ΔUq
i ≤ 0 in (10). So miner i can not

improve his utility by changing allocation from xi to x′
i. �

Based on the sufficient and necessary condition for a Nash equilibrium, we
will propose the closed-form solution of a pure Nash equilibrium and prove the
the uniqueness of such a pure Nash equilibrium in following theorem.
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Theorem 2. A hash power allocation profile x = (xij) is a Nash equilibrium, if
and only if it has the form as xij = μj∑m

�=1 μ�
· hi, for any i ∈ N and j ∈ M .

Proof. It is not hard to see that once each xij has the form as xij = μj∑m
�=1 μ�

·hi,
then for any j ∈ M ,

∑
h�=i xhj

(
∑n

h=1 xhj)2
· μj =

∑n
h=1 hh − hi

(
∑n

h=1 hh)2
(

m∑

�=1

μ�),

which is irrelevant to the cyprocurrency j and such a ratio can be defined as αi.
Then the allocation x = (xij) with xij = μj∑m

�=1 μ�
· hi is a Nash equilibrium by

Theorem 1.
On the other hand, Theorem 1 tells us for any j ∈ M ,

∑
h�=i xhj

(
∑n

h=1 xhj)2
· μj = αi.

It implies
n∑

i=1

αi =
n∑

i=1

∑
h�=i xhj

(
∑n

h=1 xhj)2
μj =

(n − 1)
∑n

h=1 xhj

(
∑n

h=1 xhj)2
μj =

n − 1∑n
h=1 xhj

μj . (11)

From Eq. (11), we continue to have

n∑

i=1

αi =
(n − 1)μ1∑n

h=1 xh1
= · · · =

(n − 1)μm∑n
h=1 xhm

.

Then

μ1∑n
h=1 xh1

= · · · =
μm∑n

h=1 xhm
=

∑m
j=1 μj∑m

j=1

∑n
i=1 xij

=

∑m
j=1 μj∑n
i=1 hi

.

So
∑n

i=1 αi = (n − 1) ·
∑m

j=1 μj
∑n

i=1 hi
, which is a constant. On the other hand, from

Eq. (11), we can get
∑n

h=1 xhj

μj
=

n − 1∑n
i=1 αi

∀j ∈ M ; (12)

Then for any j ∈ M ,

αi =

∑
h�=i xhj

(
∑n

h=1 xhj)2
μj =

∑
h�=i xhj

μj

(
μj∑n

h=1 xhj

)2

=

∑
h�=i xhj

μj

(∑n
i=1 αi

n − 1

)2

, (13)

where the last equality is from (12). Also Eq. (13) guarantees
∑

h�=i xhj

μj
=

(n − 1)2αi

(
∑n

i=1 αi)2
. (14)

Furthermore, the difference between (12) and (14) is

xij

μj
=

n − 1∑n
i=1 αi

− (n − 1)2αi

(
∑n

i=1 αi)2
. (15)
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The right side of (15) shows xij

μj
is only related to index i which can be denoted

by γi. So xij = γiμj . In addition, by the condition of
∑m

j=1 xij = hi, we have

n∑

j=1

xij =
n∑

j=1

γiμj = γi

n∑

j=1

μj = hi.

Therefore, γi = hi∑n
j=1 μj

and xij = μj∑m
�=1 μ�

· hi. It concludes this claim. ��

Based on the result of Theorem 2 and the formation of each miner’s expected
payoff (3), we can easily get the following corollary.

Corollary 1 Under the pure Nash equilibrium allocation xij = μj∑m
�=1 μ�

· hi for

any i ∈ N and j ∈ M , each miner i’s expected payoff is hi∑n
�=1 h�

(
∑m

�=1 μ�).

4 Conclusion

This paper discusses the issue of a hashing power allocation game in cryptocur-
rencies, in which there are n miners equipped with certain computing power and
m different cryptocurrencies to be mined. Each miner shall allocate his com-
puting power in mining the cryptocurrencies properly to compete with others
to maximize his payoff. In this paper, we mainly consider the hashing power
allocation game with the risk-neutral objective. We show that the Nash Equilib-
rium allocation of this game is unique and follows a proportional rule where each
miner will allocate his total computing power to a given cryptocurrency propor-
tional to the percentage of the award among all currencies, while his expected
revenue is proportional to the percentage of the hashing power possessed and
total award.

Besides, the risk-averse objective is also interesting for us to consider in
the future. For each risk-averse miner i, he tries to minimize the uncertainty,
that is to minimize the objective of yi(x)T Σyi(x), subject to the constraint of∑

j∈M xij = hi. Here vector yi(x) is defined as (2) and Σ � 0 is the covariance
matrix of uncertain reward R, i.e. Σ = Cov[R]. For this kind of game, we are
also concerned about the existence and uniqueness of a pure Nash equilibrium.
In addition, how to compute a pure Nash equilibrium is our task too.
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Abstract. We study the class of resource-based coalitional games. We
provide efficient algorithms to compute solution concepts for weighted
voting games, threshold task games and r-weighted voting games; in
particular, we compute approximately optimal coalition structures, and
present non-trivial bounds on the cost of stability for these classes; in
particular, we improve upon the bounds given in [2] for weighted voting
games.

Keywords: Cooperative games · Cost of stability
Optimal coalition structure generation

1 Introduction

Several real-world scenarios require strategic agents to pool their resources in
order to complete tasks. For example, in the EU council of members, a resolu-
tion requires support by at least 55% of member states, who must also represent
at least 65% of the EU population; in computational domains, each agent has a
certain amount of a computational resource (e.g. RAM, CPU cycles etc.) that are
allocated to complete tasks. Such scenarios can be intuitively modeled as coali-
tional games based on the notion of tasks and resources, which we term resource
based cooperative games. Resource-based games include the canonical class of
weighted voting games (WVGs), as well as threshold task games (TTGs) [8],
and vector weighted voting games [14]. Computing cooperative solution concepts
in resource based cooperative games is computationally intractable, even for
WVGs. However, there has been little effort towards computing approximate
solution concepts for this class. This is where our work comes in.

1.1 Our Contribution

We propose efficient approximation algorithms for resource based cooperative
games. We study three classes of games: weighted voting games (WVGs), thresh-
old task games (TTGs) and r-weighted voting games (r-WVGs); for each class,
we provide an efficient algorithm finding approximately optimal coalition struc-
tures, and bounds on the cost of stability. Additional results on r-TTGs appear
in Appendix ??; proofs and additional details are in the appendix.
c© Springer Nature Switzerland AG 2018
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1.2 Related Work

Weighted voting games are an extremely well-studied class of games: on the one
hand, they are computationally succinct (requiring only n weights and a thresh-
old to describe); on the other hand, computing solution concepts for WVGs
is well-known to be computationally intractable [13–15,18]. The complexity of
solution concepts for general cooperative games has been well studied in the lit-
erature, dating back to Deng and Papadimitriou [12]; more recent works include
[6,10,16,17] (see [9,11] for an overview). Chalkiadakis et al. [8] introduce the
class of threshold task games; however, they allow players to allocate partial
resources to tasks. The only work we are aware of that studies a TTG model in
the classic cooperative game setting is by Balcan et al. [5]. The optimal coalition
structure generation problem is also well-studied (see Rahwan et al. [20] for a
recent overview). Other related works include [3,4]. Anshelevich and Sekar [1]
study stability under a similar model, where tasks are limited in supply. Bachrach
et al. [2] introduce the cost of stability, and study the cost of stability for WVGs;
however, they assume that coalition structures do not form, resulting in a higher
cost of stability; other works studying the cost of stability include [7,19,21].

2 Preliminaries

A cooperative game G = 〈N, v〉 consists of a set of players N = {1, . . . , n}
and a characteristic function v : 2N → R. Given a set of players S ⊆ N (also
known as a coalition), v(S) is the value of S; we assume that v(∅) = 0, and
that v is monotone: if S ⊆ T ⊆ N then v(S) ≤ v(T ). A coalition structure is a
partition of N into disjoint coalitions. We say that a coalition structure CS∗ is
optimal if it maximizes social welfare; that is, CS∗ maximizes

∑
S∈CS v(S). Let

OPT (G) be the value of an optimal coalition structure over G. We refer to the
problem of finding an optimal coalition structure (also known as the coalition
structure generation problem) as OptCS. We say that a coalition structure CS∗

is β-optimal for G if v(CS∗) ≥ βOPT (G).
Once players form coalitions, they need to find some reasonable way to divide

the revenue they generate. Given a coalition structure CS , an imputation for CS
is a vector x ∈ R

n
+ satisfying

∑
i∈S xi = v(S) for all S ∈ CS . The tuple 〈CS ,x〉

is called an outcome of G. Let I(G) be the set of all outcomes for G. The core
is a subset of I(G) from which no coalition can deviate; that is,

Core(G) = {〈CS ,x〉 ∈ I(G) : x(S) ≥ v(S),∀S ⊆ N}.

We observe that if 〈CS ,x〉 ∈ Core(G) then CS must be optimal (else at least
one coalition S belonging to an optimal coalition structure CS∗ can deviate).
Unfortunately, the core of a game can be empty.

Example 2.1. Consider a 3 player game where v(S) = 0 if |S| ≤ 1 and is 1
otherwise. The optimal coalition structure has a value of 1. However, it is easy
to check that if every coalition of size 2 receives a payoff of at least 1, the total
payoff to all players must be at least 3

2 (paying 1
2 to every player).
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As Example 2.1 implies, stabilizing a game may require an additional external
subsidy. The minimal total payoff needed can be found by solving the following
linear program

min
∑

i∈N

xi, s.t. for all S ⊆ N : x(S) ≥ v(S). (1)

Let V ∗ be the value of the optimal solution to (1); the relative cost of stability
of a game G is CoS (G) = V ∗

OPT(G) .
1

Resource-based Cooperative Games:
Weighted voting games (WVGs) are the simplest class of resource-based cooper-
ative games: a WVG is defined by a weight vector w ∈ Zn

+ and a threshold (or
quota) q ∈ Z+, such that v(S) = 1 if w(S) ≥ q, and v(S) = 0 otherwise.
Threshold task games (TTGs) are similar to WVGs. Just like in WVGs, each
player has a weight wi ∈ Z+; we now have a set of tasks T = {t1, . . . , tm}, where
each task tj ∈ T has a threshold qj ∈ Z+ and a value vj ∈ Z+. The characteristic
function v is: v(S) = maxj∈[m]{vj : w(S) ≥ qj}.

We can further consider multiple resource types: players have r different
resources, and each task requires a certain amount of each resource to be com-
pleted. More formally, v is an r-TTG if each player owns a resource vector
wi ∈ R

r
+; there is a set of tasks T , where every task tj ∈ T has a value

vj and a threshold vector qj ∈ R
r
+. The value of a coalition S ⊆ N is given

by v(S) = maxj∈[m]

{
vj :

∑
i∈S wi ≥ qj

}
. r-WVGs [14] (also known as vector

WVGs) are a subclass of r-TTGs with a single task.

3 Warmup: Weighted Voting Games

We begin our exploration with WVGs, the most basic class of resource-based
cooperative games. Computing an optimal coalition structure for WVGs is com-
putationally intractable [13] (note that this immediately implies intractablity for
TTGs, and in particular for r-TTGs). Thus, our first objective is to establish
an approximation algorithm for the optimal coalition structure problem. Let G
be a WVG with weights w and a threshold q. We begin by presenting a 1

2 -
approximation algorithm for the optimal coalition structure problem (given in
Appendix ??).

Theorem 3.1. Given a WVG G, Algorithm ?? outputs a 1
2 -optimal coalition

structure for G.

Let us now turn to the problem of bounding the cost of stability in weighted
voting games. The cost of stability in WVGs has been studied in [2]; however,
their analysis does not assume the formation of optimal coalition structures. It
turns out that doing so offers a significantly better approximation guarantee; in
fact, the bound presented in Theorem 3.2 is tighter as OPT (G) grows.
1 In the original work defining the cost of stability [2], the cost of stability is defined

as V ∗ −OPT (G). Subsequent works (e.g. [7,19]) utilize the definition we use here.
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Theorem 3.2. Given a WVG G, CoS (G) < 3
2 + 1

OPT(G) .

The bound in Theorem 3.2 is not tight; consider a 3-player WVG where each
player has a weight of 1, and the threshold is 2; this game is equivalent to the
one in Example 2.1, and its cost of stability is 3

2 .

4 Threshold Task Games

We now turn our attention to threshold task games; recall that a TTG is given
by a weight vector w, and a set of tasks T = {t1, . . . , tm}, where each task
tj has a threshold qj and a value vj . The value of a coalition is the value of
the best task that it can complete with its total weight. For general TTGs, we
assume that the weight of each player is no more than the minimum threshold
(i.e. that the value of single players is 0); this is a departure from the framework
of Theorem 3.1 where single player coalitions were allowed.

Theorem 4.1. Let G be a TTG, such that v({i}) = 0 for all i ∈ N , and let v∗ be
the value of the most valuable task in T ; then there exists an efficient algorithm
that outputs a coalition structure CS∗ whose value is at least 1

2 (OPT (G) − v∗).

Leveraging the result in [8], Algorithm ?? (Appendix ??) outputs a 1
2 approxi-

mation for the OptCS problem in TTGs, and runs in pseudopolynomial time.

Theorem 4.2. Given an n player TTG G, such that v({i}) = 0 for all i ∈ N ,
Algorithm ?? outputs a 1

2 -optimal coalition structure for G, and runs in time
polynomial in n and W , the sum of player weights.

Whether there exists a truly polynomial time 1
2 -approximation algorithm for the

optimal coalition structure problem for TTGs remains an open problem. Next,
let us examine the cost of stability for TTGs.

Theorem 4.3. For any TTG G, CoS (G) ≤ 2; this bound is tight.

5 r Weighted Voting Games

Let us now address the class of r-WVGs. Assuming multiple resource types
significantly increases problem complexity; however, Algorithm ?? outputs an
approximately optimal coalition structure of an r-WVG, with an approximation
quality that exponentially decreases in r (see Appendix ??).

Theorem 5.1. Given an r-WVG G, Algorithm ?? outputs a 1
2×3r−1 -optimal

coalition structure for G.

Using Theorem 5.1 we can bound CoS (G) when G is an r-WVG: i.e. an r-TTG
with only one task. The full proof appears in Sect. ??.

Theorem 5.2. If G is an r-WVG then CoS (G) ≤ 2 × 3r−1.
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Abstract. We consider a game-theoretic setting of contention in com-
munication networks. In a contention game each of n ≥ 2 identical play-
ers has a single information packet that she wants to transmit in a fast
and selfish way through one of k ≥ 1 multiple-access channels by choosing
a protocol. Here, we extend the model and results of the single-channel
case studied in [2] by providing equilibria characterizations for more than
one channels, and giving specific anonymous, equilibrium protocols with
finite and infinite expected latency. For our equilibrium protocols with
infinite expected latency, all players, with high probability transmit suc-
cessfully in optimal time, i.e. Θ(n/k).

Keywords: Contention resolution · Multiple channels
Acknowledgement-based protocol · Ternary feedback · Game theory

1 Introduction

The need for multiple channels in communications has become clear in today’s
technologies. Robustness and high throughput are two main goals that multiple-
channels communication systems try to achieve, since dependence from a small
group of nodes in a network as well as collision of packets that are transmit-
ted on the same node are the issues from which single-channel broadcast com-
munications suffer. Many works in the Electrical and Electronics Engineering
community have so far considered multi-channel medium access control (MAC)
protocols (e.g. [6]) which have been shown to achieve higher throughput and
lower delay than the single-channel MAC protocols. The limited feedback in
such systems is caused by the multi-channel hidden terminal problem [7]. To the
authors’ knowledge, strategic behaviour in such multi-channel systems is limited
to the Aloha protocol [5], contrary to the case of single-channel systems (e.g. [1]).

P. G. Spirakis—The work of this author was partially supported by the ERC Project
ALGAME.
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For equilibrium protocols, a desired property is anonymity, that is, protocols
which do not use player IDs. If a players’ protocol depended on her ID, then equi-
libria are simple, but can be unfair as well; scheduling each player’s transmission
through a priority queue according to her ID is an equilibrium. The only works on
acknowledgement-based, equilibrium protocols, is by Christodoulou et al. [2,3]
which consider only a single channel. Among other results, they give the unique,
anonymous, equilibrium protocol with finite expected latency for 2 players, and
an efficient protocol with infinite expected latency for at least 3 players. The
existence of a symmetric equilibrium with finite expected latency remains an
open problem, even for three players. However, for the settings with 2 and 3
transmission channels, we manage to present simple, anonymous protocols for
up to 4 and 5 players respectively.

In this short paper, we examine the problem of strategic contention resolu-
tion in multi-channel systems, where obedience to a suggested protocol is not
required. We provide two types of equilibrium protocols. The first type (Sect. 3)
describes an anonymous, equilibrium protocol that yields finite expected time of
successful transmission to a player. Similarly, the second type (Sect. 4) describes
an anonymous, equilibrium protocol which yields infinite expected latency to
a player but is also efficient, that is, all players transmit successfully within
Θ( #players

#channels ) time with high probability. The latter result makes clear the advan-
tage (with respect to time efficiency) that multiple channels bring to a system
with strategic users, which is that the time until all players transmit success-
fully with high probability is inversely proportional to the number of available
channels.

2 The Model and Definitions

Game Structure. We define a contention game as follows. Assume a set of players
[n] = {1, 2, . . . , n} and a set of channels K = {1, 2, . . . , k}. Each player has a
single packet that needs to be sent through a channel in K, without caring
about the identity of the channel. All players know n and K. Time is discrete,
i.e. t = 1, 2, . . . . The players that have not yet successfully transmitted their
packet are called pending and initially all n players are pending. At any t, a
pending player i has a set A = {0, 1, 2, . . . , k} of pure strategies: a pure strategy
a ∈ A is the action of choosing channel a ∈ K to transmit her packet on, or no
transmission (a = 0). At time t, a (mixed) strategy of a player i is a probability
distribution over A that potentially depends on information that i has gained
from the process based on previous transmission attempts. If exactly one player
transmits on a channel in a given slot t, then her transmission is successful, she is
no longer pending, and the game continues with the rest of the players. However,
whenever two or more players try to transmit on the same channel at the same
time slot, a collision occurs and they remain pending. The game continues until
there are no pending players.

Transmission Protocols. Let Xi,t ∈ A be the channel-indicator variable that
keeps track of the identity of the channel where player i attempted transmission
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at time t; value 0 indicates no transmission attempt. An acknowledgement-based
protocol uses very limited channel feedback. After each time step t, the informa-
tion received by a player i who transmitted during t is whether her transmission
was successful (in which case she gets an acknowledgement and exits the game) or
whether there was a collision. Let �hi,t be the vector of the personal transmission
history of player i up to time t, i.e. �hi,t = (Xi,1,Xi,2, . . . , Xi,t). A decision rule
fi,t for a pending player i at time t, is a function that maps �hi,t−1 to a strategy,
with elements Pr(Xi,t = a|�hi,t−1) for all a ∈ A. For a player i ∈ N , a (trans-
mission) protocol fi is a sequence of decision rules fi = {fi,t}t≥1 = fi,1, fi,2, . . . .
When the context is clear enough we will drop some of the indices accordingly.

Individual Utility and Equilibria. For a protocol profile �f = (f1, f2, . . . , fn), we
denote the expected latency of player i ∈ [n], given a history �hi,t by C

�f
i (�hi,t). We

say that �f is an equilibrium if for any transmission history �ht the players cannot
decrease their expected latency by unilaterally deviating after t.

3 Equilibria with Expected Latency<∞
Nash Equilibria Characterization. Here we provide a characterization of
general equilibria (both symmetric and asymmetric) for an arbitrary number of
channels k ≥ 1 and players n ≥ 2.

Let �f = (f1, f2, . . . , fn) be a tuple of acknowledgement-based protocols (not
necessarily anonymous) for the n players. For a (finite) positive integer τ∗, and
a given history �hi,τ∗ = (ai,1, ai,2, . . . , ai,τ∗), define for player i the protocol

gi = gi(�hi,τ∗) �
{

(Pr{Xi,t = ai,t} = 1) , for 1 ≤ t ≤ τ∗

fi,t, for t > τ∗.
(1)

We will call a personal history �hi,τ∗ consistent with the protocol profile �f if
there is a non-zero probability that �hi,τ∗ will occur for player i under �f . If �hi,τ∗

is consistent with �f we call protocol gi(�hi,τ∗) consistent with �f , and when clear
from the context we write gi instead. Also, we denote the set of all gi’s, that is,
all gi(�hi,t)’s for all t ≥ 1, which are consistent with �f by G �f

i .

In a protocol profile �f , a player is interested in her expected latency C
�f
i (hi,0)

at the start of the game, denoted by just C
�f
i .

Lemma 1 (Equilibrium characterization). The following statements are
equivalent:

(i) �f is an equilibrium.

(ii) ∀ player i ∈ [n]

{
(a) C

(�f−i,gi)
i = C

(�f−i,ri)
i = C

�f
i , ∀gi, ri ∈ G �f

i , and

(b) C
(�f−i,gi)
i ≤ C

(�f−i,ri)
i , ∀gi ∈ G �f

i , ri /∈ G �f
i .
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Now we are ready to give anonymous, equilibrium protocols for 2 and 3
channels. Let us define the following memoryless protocol with parameter k ∈
{2, 3} which corresponds to the number of channels.

Protocol fk : For any player i, every t ≥ 1, and any transmission history,

fk
i,t =

(
Pr{Xi,t = 0} = 0, Pr{Xi,t = a} =

1
k

, ∀a ∈ K

)
. (2)

n Players - 2 Transmission Channels. By employing our characterization,
we show that for k = 2 channels, f2 is an equilibrium protocol for n ∈ {2, 3, 4}
players (Theorem 1). The next two lemmata are easily proved by Markov chain
analysis which is omitted due to lack of space.

Lemma 2. When all n ≥ 2 players use protocol f2 the expected latency of any
player is 2n/n.

Lemma 3. For n ≥ 5 players, f2 is not an equilibrium protocol. In fact, a better
response for any player is to not transmit in t = 1 and then follow f2.

Theorem 1. For n ∈ {2, 3, 4} players and k = 2 channels, f2 is an equilibrium
protocol with expected latencies 2, 8/3 and 4, respectively.

Proof Sketch. We show that the protocol profile where all n players use protocol
f2 is in equilibrium by showing that the condition (ii) of Lemma 1 holds. Starting
with condition (ii − a), assume a unilateral deviator i and an arbitrary protocol
gi consistent with �f . This protocol would dictate a history of transmissions �hi,τ∗

with only “1” and “2” in it for some arbitrary τ∗ ≥ 1, and then continue following
f2. The process of any such protocol, from the perspective of i is modelled as a
Partially Observable Markov Decision Process, which due to the anonymity and
uniformity of f2, reduces to a Markov chain that yields expected latency 2n/n.

For condition (ii − b), suppose i chooses a protocol ri that is not consistent
with �f . This means that there must exist some time t < ∞ for which Pr{Xi,t =
0} > 0. Let us focus on the smallest such t, namely t0 � inf{t : Pr{Xi,t = 0} >

0}. Now if we consider some arbitrary history �hi,t0 = (ai,1, ai,2, . . . , ai,t0) and its
respective protocol ri = ri(�hi,t0) as in (1), one of two things can be true: either
ai,t0 = 0 or for t > t0 protocol ri is not identical to f2. That is, we have the
categories for ri presented in Table 1. Note that the pairs of categories that ri

could be simultaneously are (1-I), (1-II), (2-I), and (2-II). By checking each of

Table 1. The categories of protocol ri(hi,t0).
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those cases and letting ri be a best response, we show that no such protocol can
yield expected latency to i lower than 2n/n. ��
n Players - 3 Transmission Channels. Similarly, in the case with k = 3
channels, we employ our equilibria characterization and show that f3, defined
in (2), is an equilibrium protocol for n ∈ {2, 3, 4, 5} players. However, now we
do not have a closed-form expression for the expected latency of a player such
as the one of Lemma 2, thus, in order to follow the same method as before, for
each n ∈ {2, 3, 4, 5} under examination we have to find its expected latency
individually.

Theorem 2. For n ∈ {2, 3, 4, 5} players and k = 3 channels, f3 is an equi-
librium protocol with expected latencies 3/2, 15/8, 189/80 and 597/200, respec-
tively.

4 An Efficient Protocol with Expected Latency = ∞
In this section we give an anonymous, equilibrium protocol for the general case
of k ≥ 1 channels and any number of n ≥ 2k + 1 players. For this, we employ
the deadline idea introduced in [4] and consequently used in [2,3]. Our protocol
has the property that the time until all players transmit successfully is Θ(n/k)
with high probability, even though the expected latency is infinite.

Consider k ≥ 1 transmission channels, n ≥ 2k + 1 players, a fixed constant
β ∈ (0, 1) and a deadline t0 to be determined consequently. The t0 − 1 time
steps are partitioned into r + 1 consecutive intervals I1, I2, . . . , Ir+1 where r is
the unique integer in

[− logβ n/2 − 1,− logβ n/2
]
. For any j ∈ {1, 2, . . . , r + 1}

define nj = βjn/k. For j ∈ {1, 2, . . . , r} the length of interval Ij is lj = 	 e
β nj
.

Interval Ir+1 is special and has length lr+1 = n/k. We define the following
protocol.

Protocol g: Every player among 1 ≤ m ≤ n pending players for t ∈ Ij

assigns transmission probability 1/max{nj , k} to each channel. Right
before the deadline t0 = 1 +

∑r+1
j=1 lj each pending player is assigned to a

random channel equiprobably, and for t ≥ t0 always attempts transmission
to that channel.

The proof of the following theorem is similar to that of Theorem 11 in [2]
which considers the case with k = 1 channel, and is omitted due to lack of space.

Theorem 3. Protocol g for n ≥ 2k + 1 players and k ≥ 1 channels, is an
equilibrium protocol and it is also efficient.
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Abstract. We study single-winner STV from the point of view of com-
munication. First, we assume that voters give, in a single shot, their top-k
alternatives; we define a version of STV that works for such votes, and
we evaluate empirically the extent to which it approximates the stan-
dard STV rule. Second, we evaluate empirically the communication cost
of the protocol for STV defined by Conitzer and Sandholm (2005) and
some of its improvements.

1 Introduction

Single transferable vote (STV)1 is an appealing voting rule: it is relatively easy
to understand, it is not easy to manipulate, and it enjoys a very important nor-
mative property: clone-proofness. It is used in single-winner and multi-winner
political elections in several countries. It fails to satisfy a number of other impor-
tant properties,but in many contexts, being sensitive to cloning may be worse
than the failure of these other properties. On the other hand, when compared
to other rules that are widely used in practice (such as plurality, k-approval for
small k, approval, or plurality with runoff), STV suffers from a significant draw-
back: its direct implementation requires an important amount of information to
be communicated from the voters, because its input consists of a collection of
complete rankings over candidates. Our aim is to get a more accurate idea of
the precise amount of information that we need from the voters to compute or
to approximate STV. We successively consider two contexts.

First, we assume that voters communicate, in a single shot, their top-k candi-
dates, and we use an approximation of STV which needs only these top-k ballots
as input.

Second, we consider interactive communication protocols, to be run between
the central authority and the voters until the outcome of the vote is eventually
determined. We study empirically the average communication complexity of the
protocol defined by Conitzer and Sandholm [2], and of an improved variant of it.

This is a short version of our long paper submitted to SAGT 2018 (this submitted
long version is available at https://goo.gl/Knd59d).

1 For single-winner elections, STV is often called instant runoff voting.

c© Springer Nature Switzerland AG 2018
X. Deng (Ed.): SAGT 2018, LNCS 11059, pp. 251–255, 2018.
https://doi.org/10.1007/978-3-319-99660-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99660-8_23&domain=pdf
https://goo.gl/Knd59d


252 M. Ayadi et al.

2 Approximating STV with Truncated Ballots

An election is a triple E = (N,A, P ) where N = {1, ..., n} is the set of voters, A
is the set of candidates, with |A| = m; and P = (�1, ...,�n) is the (preference)
profile, where for each i, �i. A resolute voting rule maps any election to a single
winner.

Given a prespecified linear order � over candidates, called tie-breaking pri-
ority, the STV � rule proceeds in (up to m−1) rounds. (For brevity notation we
will simply write STV , leaving � implicit.) In each round, the candidate with the
smallest number of voters ranking them first is eliminated (using tie-breaking if
necessary), and the votes who supported it now support their preferred candidate
among those that remain.

Given k ≤ m, a top-k ballot is a linear order of k among the m candidates in
A. A top-k profile is a collection of n top-k ballots. Using truncated ballots as
a way of reducing the amount of information in voting has been considered in a
few recent works, especially [1,3,6–8].

For each k ≤ m, STVk is defined similarly as STV, but with top-k ballots
as input. In each round, the candidate ranked first by the smallest number of
voters is eliminated (using tie-breaking if needed). When all k candidates in a
vote have been eliminated, the vote is ignored in later rounds (such a vote will
be said to be exhausted). We repeat this process until there exists a candidate
ranked first by the majority of non-exhausted truncated votes. STV1 coincides
with plurality, and STVm−1 (and STVm) with STV .

In order to evaluate the quality of STVk, we measure the frequency with
which the approximation outputs the true winner using randomy generated date
with the Mallows model, and then using real data.
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Fig. 1. Success probabilities of top-k voting for
STVk: m = 7 varying n, k and φ.

10                            100  1200

Fig. 2. Success probabilities of
STVk with Dublin data: varying
k ∈ {1, 2, 3} and n∗ (n∗ < n).

The Mallows φ model is described by two parameters: reference ranking σ and
dispersion parameter φ ∈ [0, 1]. The probability of a ranking r under this model
is: P (r;σ, φ) = 1

Z φd(r,σ) where d is the Kendall tau distance and Z =
∑

r′ φd(r,σ)

is a normalization constant. We draw 1000 random profiles. then we simulate
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the elicitation of top-k (k ∈ {1 . . . 6}) preferences m = 7 and let n and φ vary
(Fig. 1).

Our results suggest that the winner is always predicted correctly when φ ≤
0.8, k = 2 and with large n. When φ = 1, the success rate is 82% with top-4
ballots of 500 voters. In all cases, top-2 ballots seem to be always sufficient to
predict the correct STV winner with 100% accuracy with small values of φ and
high number of voters.

Next, we use the Dublin data (n = 3662, m = 12) from the PrefLib library
[5], with samples of n∗ voters among n (n∗ < n) where 1000 random profiles
are constructed with n∗ voters. Then, we consider the top-k ballots obtained
from these profiles, where k ∈ {1, 2, 3} over 12 candidates, and we compute the
probability of selecting the correct winner (the winner of the complete profile of
the n∗ sampled votes) (Fig. 2). Our results suggest that predicting the correct
winner with a small number of voters fails significantly often when k is too small
(k ≤ 1

4m). Also, the performance increases with n. Indeed, k = 1 is sufficient to
predict the correct winner when n∗ ≥ 1120.

Obviously, increasing the value of k leads to a decrease in the number of
voters needed for correct winner selection for instance, when k = 1

6m (resp.
k = 1

4m) over 12 candidates, n∗ ≥ 830 (resp. n∗ ≥ 710) are needed to always
output the correct result.

3 Communication Protocols for STV

Now, we allow for more sophisticated, interactive protocols where voters may
report their preferences incrementally, when the central authority asks them to
do so; on the other hand, we are not any longer interested in computing an
approximation of STV, but in computing the real STV winner. With the aim of
assessing the communication complexity of STV, Conitzer and Sandholm [2] a
protocol for STV, which we call P1:

1. each voter submits her most preferred candidate over the set of all available
candidates to the central authority (C).

2. let d ∈ A be the candidate ranked first by the fewest voters (using tie-breaking
if necessary).

3. d is eliminated; all voters who had d as their current best candidate receive
a message from C asking them to send their next preferred candidate among
the remaining ones. For each of these voters, their vote is transferred to this
next best remaining candidate.

4. this process is repeated until there exists a candidate x ranked first by more
than 50% of the votes or only one candidate remains in the set of available
candidates.

We say that x ∈ A is an immediate loser if we know that x will be the next
candidate eliminated after the currently eliminated one. Formally, let d be the
candidate which is about to be eliminated, and U the set of remaining candidates
(including d); candidate x is an immediate loser if for every y �= x, d, either (1)
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S(y, PU ) > S(x, PU ) + S(d, PU ), or (2) S(y, PU ) = S(x, PU ) + S(d, PU ) and
y � x.

Eliminating an immediate necessary loser during the execution of the proto-
col will never change the final outcome since we know exactly when it will be
eliminated, then we can safely remove it.2 This is the key property used in the
next protocol, which we call P2, which is an improvement over P1: in P2, the two
first steps are similar as P1. Then, if there is an immediate loser at this point, it
is eliminated as well, together with d; from the set of available candidates. After
d is eliminated, there may be another immediate loser; the process is repeated
until there is no immediate loser. After removing all immediate losers in PU ,
we select a voter whose top candidate is d or an immediate loser. We ask this
voter to report her next preference among the available ones in U . Unlike P1, P2

queries one voter at a time since the new voter’s preference may help to detect
another immediate losers, thus reduce the set of available candidates. We repeat
this process until we obtain a tops-only profile P with candidates among U for
each voter. Finally, the process is repeated until there exists a candidate ranked
first by more than 50% of the votes or only one candidate remains in U .

Now, we evaluate the average communication complexity of P1 and P2 using
data generated from the Mallows φ model. Our objective is to determine the
average communication complexity reported from voters in order to return the
winner. We refer to PWorst as the theoretical communication complexity.

For each experiment, we draw 1000 random profiles. We simulate the number
of bits transferred between the central authority and the voters when with m = 7
and let n and φ vary (see Fig. 3). Results suggest that in practice, we can save
a lot in communication costs compared to the theoretical complexity. Even with
high φ, using P2, we can save almost 50% of bits communicated. Also, our
results suggest that when φ ≤ 0.8, P2 is efficient to reduce the communication
cost. When φ ≥ 0.9, from the results we can detect that P1 and P2 become closer
in communication cost.

Fig. 3. Average communication cost with P1, P2 and PWorst

2 Jiang et al. [4] define a weaker version of necessary losers for STV in the context of
a search algorithm for outputting all parallel universe STV winners.
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Abstract. This paper is devoted to the two-opposite-facility location
games with a penalty whose amount depends on the distance between
the two facilities to be opened by an authority. The two facilities are
“opposite” in that one is popular and the other is obnoxious. Every self-
ish agent in the game wishes to stay close to the popular facility and stay
away from the obnoxious one; its utility is measured by the difference
between its distances to the obnoxious facility and the popular one. The
authority determines the locations of the two facilities on a line segment
where all agents are located. Each agent has its location information as
private, and is required to report its location to the authority. Using the
reported agent locations as input, an algorithmic mechanism run by the
authority outputs the locations of the two facilities with an aim to max-
imize certain social welfare. The sum-type social welfare concerns with
the penalized total utility of all agents, for which we design both random-
ized and deterministic group strategy-proof mechanisms with provable
approximation ratios, and establish a lower bound on the approximation
ratio of any deterministic strategy-proof mechanism. The bottleneck-
type social welfare concerns with the penalized minimum utility among
all agents, for which we propose a deterministic group strategy-proof
mechanism that ensures optimality.
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1 Introduction

The facility location game originally models the following scenario in practice: the
central authority is going to build one or more facilities on a street (modeled as a
line segment) where some selfish agents are located. The authority does not know
the agents’ exact locations, and thus conduct a survey for all agents. Each agent,
who is required to report its own location, wishes to maximize its own utilities
(e.g., minimizing its own distances to the facilities). The authority needs to design
a mechanism, that maps the reported locations of agents to the locations where the
facilities are to be opened. It is assumed that all agents know the mechanism that
the authority adopts to aggregate agents’ information to the final facility loca-
tions. Some agents might have incentive to misreport their locations. The goals of
the authority are twofold: avoiding such misreports and maximizing some social
welfare. The strategy-proofness of a mechanism guarantees that an agent cannot
acquire more utility from misreporting, while the group strategy-proofness dis-
courages simultaneous misreporting by any group of agents.

In this paper, we address (group) strategy-proof mechanism design for the
two-opposite-facility location game proposed by [4], where two facilities to be
opened have opposite characteristics for agents, that is, all agents want to stay
as close as possible to one facility and stay as far away as possible from the other.
Nevertheless, for some practical reasons, the two facilities should not be too far
away to lose some connection. So, the distance between the two facilities cannot
exceed a given constant C (referred to as distance constant). For instance, in
order to save the cost of transportation and enhance garbage disposal efficiency,
the government should set a limitation to the distance between the refuse col-
lection point and the waste treatment plant. In our model, we relax the distance
constraint to be a soft one by introducing to the central authority a penalty
which equals a nonnegative coefficient λ times the amount of distance violation
(w.r.t. to C). The more violation a location scheme incurs, the heavier penalty
the authority carries. We evaluate mechanism efficiency in terms of optimizing
certain social welfare – the sum-type (bottleneck-type) one of maximizing the
penalized total (maximum) utility of all agents. We follow the convention to
assume that the approximation ratio of a mechanism is always greater than or
equal to one.

Related Work. The facility location games with one facility to be opened has been
widely studied. Moulin [2] first characterized strategy-proof and Pareto efficient
mechanisms in the line space. Procaccia and Tennenholtz [3] studied the facility
location game on the line for both total utilities and minimum agent utilities, and
derived several approximation bounds under the constraint of strategy-proofness.
Study on the topic of two facilities can be found in [1,4] and references therein. In
particular, for the aforementioned two-opposite-facility location game on a line
segment with limited distance, Zou and Li [4] proposed a (n/2)-approximation
and a n-approximation deterministic group strategy-proof mechanisms for an
even number and an odd number of agents, respectively, where n is the number
of agents. The approximation ratios for both mechanisms were proved to be the
best that a deterministic strategy-proof mechanism can achieve.
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Our Contributions. We investigate the two-opposite-facility location game model
with a penalty whose amount depends on the distance between these two facil-
ities. Henceforth, we abbreviate the game model and its restriction to a line
segment as the 2OFLGP and 2OFLGP-L, respectively.

– For the sum-type social welfare, we design both randomized and determinis-
tic group strategy-proof mechanisms for the 2OFLGP-L. The randomized one
achieves an approximation ratio 2, by taking two possible optimal schemes
respectively with probability 1/2. The deterministic one achieves an approxi-
mation ratio (k −1)R+1 (when n = 2k), or 2(k −1)R+1 (when n = 2k −1),
where R is the ratio of the length of the line segment to the distance constant
C. Furthermore, we prove that no deterministic strategy-proof mechanism
can have an approximation ratio better than k − 1, when n = 2k is even and
penalty coefficient λ belongs to interval (0, 2).

– For the bottleneck-type social welfare, we propose a deterministic group
strategy-proof mechanism for the 2OFLGP-L, that achieves the optimality.

2 Model

In the 2OFLGP, the decision maker wishes to build two facilities F0 and F1 with
opposite preferences on some network, where all agents want to stay as close (far
away) as possible to F1 (from F0). Let N = {1, 2, . . . , n} denote the set of agents.
Given the location xi of agent i ∈ N in the network, x = (x1, . . . , xn) denotes the
location profile of all agents. Given input x, a building scheme S = (y0, y1) is the
output of a mechanism, where y0 and y1 are locations of F0 and F1, respectively.
Denote by d(x, y) the distance between the locations x and y in the network. For
the scheme S = (y0, y1), we define |S| = d(y0, y1). Regarding the distance con-
straint : |S| ≤ C, where C ≥ 0 is a given constant, we allow a moderate violation by
paying a penalty. The penalty is measured by function p(S) := λ(|S|−C)+ with a
penalty coefficient λ ≥ 0, where (|S|−C)+ = max{|S|−C, 0}. Given x and S, the
utility of agent i is defined as the difference between its distances towards F0 and
F1, i.e., u(xi, S) = d(xi, y0) − d(xi, y1). Each agent reports only its own location,
and tends to maximize its utility by misreporting. The game model consists of
two sub-models, for maximizing the sum-type social welfare – the penalized total
utility of all agents and the bottleneck-type social welfare – the penalized min-
imum agent utility, respectively. Given a location profile x and building scheme
S = (y0, y1), the sum-type social welfare is defined as

su(S,x) =
n∑

i=1

(d(xi, y0) − d(xi, y1)) − λ(|S| − C)+, (1)

and the bottleneck-type social welfare is defined as

mu(S,x) = min
i∈N

(d(xi, y0) − d(xi, y1)) − λ(|S| − C)+ (2)
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Given a mechanism that outputs a solution S for a location profile x, we
say the mechanism is strategy-proof, if for any agent i ∈ N and its misreported
location x′

i, we have u(xi, S) ≥ u(xi, S
′), where S′ is the output of this mecha-

nism with respect to input x′ = (x−i, x
′
i). In addition, it is group strategy-proof

if for any group of agents G ⊆ N and their misreported partial location pro-
file x′

G, u(xi, S) ≥ u(xi, S
′) holds for some i ∈ G, where S′ is the output of

the mechanism with respect to input x′ = (x−G,x′
G). For a randomized mecha-

nism, it is universally group strategy-proof if it is a probability distribution over
deterministic group strategy-proof mechanisms.

3 Mechanisms

In this section, we present mechanisms for the 2OFLGP-L on a line segment with
length L. Without loss of generality assume the left end-point of the segment is 0
and the right end-point is L. The location of each agent or each facility is on this
segment: xi, yj ∈ [0, L] for i ∈ N, j ∈ {0, 1}, and the distance d(x, y) between
two locations x and y is their one-dimensional Euclidean distance |x − y|.

3.1 The Sum-Type Social Welfare

Given a location profile x, define a function g(y) =
∑

i=1 gi(y) =
∑n

i=1 d(xi, y)
over the domain [0, L]. Denote by g′

−(y) and g′
+(y) the left and right derivatives

of g(y), respectively. Given a scheme S = (y0, y1), the social welfare su(S,x) =∑n
i=1(d(xi, y0) − d(xi, y1)) − λ(|S| − C)+ = g(y0) − g(y1) − λ(|S| − C)+. Fixing

y0 = 0, we define optl(x) by:

optl(x) :=

⎧
⎪⎨

⎪⎩

xm1 if xm1 ≤ C

C if xm1 > C & λ ≥ |g′
+(C)|

xi if xm1 > C & λ < |g′
+(C)|

where xi is the unique solution of |g′
−(xi)| > λ and |g′

+(xi)| ≤ λ. Fixing y∗
0 = L,

we define optr(x) by:

optr(x) :=

⎧
⎪⎨

⎪⎩

xm2 if L − xm2 ≤ C

L − C if L − xm2 > C & λ ≥ |g′
−(C)|

xj if L − xm2 > C & λ < |g′
−(C)|

where xj is the unique solution of |g′
+(xj)| > λ and |g′

−(xj)| ≤ λ.

Mechanism 1. Given a location profile x, output S = (0, optl(x)) with prob-
ability α, and S = (L, optr(x)) with probability 1 − α, where α ∈ [0, 1] is a
constant.

Theorem 1. Mechanism 1 is universally group strategy-proof, and achieves an
approximation ratio max{ 1

α , 1
1−α} for the 2OFLGP-L with the sum-type social

welfare. (Taking α = 1/2, Mechanism 1 achieves approximation ratio 2.)
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Mechanism 2. Given location profile x, output S = (0, optl(x)) if optl ≥ L −
optr; and output S = (L, optr(x)) otherwise.

Theorem 2. Let R = L/C. For the 2OFLGP-L with the sum-type social wel-
fare, Mechanism 2 is group strategy-proof, and has an approximation ratio
(k − 1)R + 1 when n = 2k, and an approximation ratio 2(k − 1)R + 1 when
n = 2k − 1.

The following complementary lower bound indicates the quality of the above
approximation ratio in some special cases.

Theorem 3. For n = 2k and λ ∈ (0, 2), any deterministic strategy-proof mech-
anism cannot have an approximation ratio smaller than k−1 for the 2OFLGP-L
with the sum-type social welfare.

3.2 The Bottleneck-Type Social Welfare

Denote by xe1 and xe2 the locations of leftmost and rightmost agents respectively.
Define vl(x) to be xe1 if λ < 1 and to be min{C, xe1} otherwise. Define vr(x) to
be xe2 if λ < 1, and to be max{xe2 , L − C} otherwise.

Mechanism 3. If vl(x) ≥ L − vr(x), output (0, vl(x)); otherwise, output
(L, vr(x)).

Theorem 4. Mechanism 3 is group strategy-proof and outputs an optimal build-
ing scheme for the 2OFLGP-L with the bottleneck-type social welfare.

4 Conclusions

In this paper, we assume that the penalty is linear with the distance violations.
It might be interesting to investigate the game with other kinds of penalties, e.g.,
those increasing exponentially with distance violations. We can also study the
infinite line, [0,+∞] and [−∞,+∞]. For the line [0,+∞], under the sum-type
objective, an optimal mechanism outputs y1 = max1≤i≤n xi and y0 = y1 + C if
λ ≥ n; and outputs S = (+∞,max1≤i≤n xi) otherwise. This mechanism is group
strategy-proof. Under the bottleneck-type objective, the results in Sect. 3.2 could
be easily extended by analogous analyses.
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Abstract. Mastermind is a famous game played by a codebreaker
against a codemaker. We investigate its static (also called non-adaptive)
black-peg variant. Given c colors and p pegs, the codemaker has to choose
a secret, a p-tuple of c colors, and the codebreaker asks a set of questions
all at once. Like the secret, a question is a p-tuple of c colors. The code-
maker then tells the codebreaker how many pegs in each question are
correct in position and color. Then the codebreaker has one final ques-
tion to find the secret. His aim is to use as few of questions as possible.
Our main result is an optimal strategy for the codebreaker for p = 3 pegs
and an arbitrary number c of colors using �3c/2� + 1 questions.

A reformulation of our result is that the metric dimension of Zn ×
Zn × Zn is equal to �3n/2�.

1 Introduction

Mastermind is a board game invented by Meirowitz in 1970 with applications
in cryptography [3] and bioinformatics [4]. In the original version of the game,
the so-called codemaker chooses a secret code consisting of 4 pegs and 6 possible
colors for each peg. The so-called codebreaker must discover this code by making
a sequence of guesses, called questions, until the secret has been found, using
as few questions as possible. Each answer of the codemaker consists of black
and white pegs, one black peg for each peg of the question which is correct in
both position and color, and one white peg for each peg which is correct only in
color. For Mastermind with p pegs and c colors the decision problem to decide
whether a secret exists which satisfies a given set of questions and answers is NP-
complete [14]. An analysis of optimal strategies has been presented for original
Mastermind [7,10], and for several of its variants, e.g., for the black-peg variant,
where no white pegs are given in the answers [8,11], and the AB Game, where
the secret and each question must not contain any color twice [12].

Static (or Non-Adaptive) Mastermind requires the codebreaker to ask all
questions at the beginning of the game. The codebreaker then receives all answers
and must be able to find the secret in a final question. Goddard [6] gave a

c© Springer Nature Switzerland AG 2018
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�2c/3 + 1�-strategy for two pegs, a c-strategy for three pegs and a c-strategy
for four pegs1 all of which are optimal for sufficiently large c. Here, we consider
Static Black-Peg Mastermind, i.e., the codebreaker only receives black pegs as
answers, and thus only gets to know how many of the positions in each question
are correctly colored. We present an optimal �3c/2� + 1-strategy for the case of
p = 3 pegs and an arbitrary number c of colors. This continues the work in [9],
where a �(4c − 1)/3�-strategy for p = 2 was presented, and in [5], where the
static black-peg variant of the AB Game was studied and a (�4c/3�−1)-strategy
was given for the case p = 22 and additionally a O(n1.525)-strategy for the case
p = c, where the questions and secrets correspond to permutations.

Mastermind may be studied from the point of view of Game Theory, the
theory that investigates the (effect of) strategic choices made by interacting
opponents. While it is a one-player game, where only the codebreaker acts, it can
be viewed as a two-player game by allowing the codemaker to change the secret
before answering a question, in a way consistent with previous answers. To define
a winning situation for each player, one may limit the number k of questions.
The existence of winning strategies for either player would then depend on k.
For Static Black-Peg Mastermind with 3 pegs and c colors our main result shows
that the codebreaker has a winning strategy if and only if k > �3c/2�; otherwise,
the codemaker has a winning strategy.

The metric dimension of an arbitrary (undirected and unweighted) graph is
the minimal size of a set U such that every vertex v of the graph is uniquely
determined by the vector of distances between v and the vertices in U . This
concept occurred first in [1] and has since been studied in various papers. In [13]
it was shown that the metric dimension of (Z2)n is asymptotically O(n/ log n),
and in [2] that the metric dimension of Zn × Zn is �(4n − 1)/3 − 1�. It is easy
to see that the minimal number of questions needed to win Static Black-Peg
Mastermind on p pegs with c colors is equal to the metric dimension of (Zc)p

plus 1. Thus, our optimal �3c/2�+1-strategy gives that the metric dimension of
Zn × Zn × Zn is �3n/2�) for all n.

2 Preliminaries

We number the pegs by 1, 2 . . . , p, and the colors by 1, 2, . . . , c. For r ∈ N, an r-
strategy for Static Black-Peg Mastermind consists of r− 1 questions Q1, Q2, . . . ,
Qr−1 ∈ {1, 2, . . . , c}p. Such a strategy is feasible if every possible secret S is
uniquely determined by the r − 1 answers so that the codebreaker can ask the
final question S to win the game. The strategy is called optimal if r is minimal.
In the following consider only the case p = 3.

We implemented a computer program available at [15], to check for p = 3,
small c ∈ N and r ∈ N all possible strategies, i.e., all combinations of questions,
for being feasible. This program serves both as a corroboration of the feasibility
of the main strategy for small c, and as a part of the optimality proof for all c.
1 Note that in [6] the final question was not taken into account.
2 The case p = 1 is trivial for both games: exactly c questions are needed.
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3 The Main Result: A (�3c/2� + 1)-Strategy for p = 3

We introduce a (�3c/2� + 1)-strategy for each c, where we distinguish between
the cases c ≡ 0, 1, 2, 3 mod 4. Note that for the number k := �3c/2� of questions
(without the final question) it holds that k = 3 · c

2 if c is even, and that k =
3 · c−1

2 + 1 if c is odd. Table 1 shows examples of the four cases. Below, we use
the superscript “×2” to denote a color that is repeated twice.

Strategy 1 ((�3c/2� + 1)-strategy for p = 3 and c > 4, c ≡ 0 mod 4)3

Divide the k questions into three blocks B1, B2, B3 of k/3 (= c/2) questions
each.

1. Peg 1 contains the colors 1, 2, . . . , k/3 in B1, the colors (k/3 + 1)×2, (k/3 +
2)×2, . . . , (k/2)×2 in B2, and the colors (k/2+1)×2, (k/2+2)×2, . . . , c×2 in
B3.

2. Peg 2 contains the colors (k/2 + 1)×2, (k/2 + 2)×2, . . . , (2k/3)×2 (i.e., B3 of
peg 1) in B1, the colors 1, 2, . . . , k/3 (i.e., B1 of peg 1) in B2, and the colors
k/2, (k/3 + 1)×2, (k/3 + 2)×2, . . . , (k/2 − 1)×2, k/2 (i.e., again B2 of peg 1,
but here shifted down by one question) in B3.

3. Peg 3 contains the colors k/2, (k/3+1)×2, (k/3+2)×2, . . . , (k/2−1)×2, k/2
(i.e., B2 of peg 1, but shifted by one question) in B1, the colors 2k/3, (k/2 +
1)×2, (k/2 + 2)×2, . . . , (2k/3 − 1)×2, 2k/3 (i.e., B3 of peg 1, but shifted by
one question) in B2, and the colors 1, 2, . . . , k/3 (i.e., B1 of peg 1) in B3.

The shifting of questions is essential for this strategy and the following
ones. E.g., if on peg 3 of Strategy 1 in Table 1a, the first eight colors were
9, 9, 10, 10, 11, 11, 12, 12 instead of 12, 9, 9, 10, 10, 11, 11, 12, the possible secrets
(1, 13, 10) and (1, 14, 9) would get the same combination of answers: 2B, 1B, 1B,
1B, 14× 0B, i.e., the strategy would not be feasible. Without this shifting there
would be colors which would occur in exactly the same set of questions, e.g.,
color 13 on peg 2 and color 9 on peg 3 would occur in the questions 1 and 2, and
color 14 on peg 2 and color 10 on peg 3 would occur in the questions 3 and 4.

Strategy 2 ((�3c/2� + 1)-strategy for p = 3 and c > 4, c ≡ 1 mod 4)4

Divide the k questions into three blocks B1, B2, B3 of (k + 2)/3(= (c + 1)/2),
(k + 2)/3 and (k + 2)/3 − 2 questions, respectively.

1. Peg 1 contains the colors 1, 2, . . . , (k+2)/3 in B1, and the colors ((k+2)/3+
1)×2, ((k + 2)/3 + 2)×2, . . . , c×2 in B2 and continuing throughout B3.

2. Peg 2 contains the colors ((k + 1)/2 + 1)×2, ((k + 1)/2 + 2)×2, . . . , (2(k +
2)/3− 1)×2, (k+1)/2 in B1, the colors 1, 2, . . . , (k+2)/3 (i.e., B1 of peg 1)
in B2, and the colors ((k + 2)/3 + 1)×2, ((k + 2)/3 + 2)×2, . . . , ((k + 1)/2 −
1)×2, (k + 1)/2 in B3.

3 For c = 4, this strategy with 6 questions is not feasible, as the shifting step does not
work. However, changing peg 3 of the third question from color 4 to color 3 leads to
a feasible strategy with 6 questions.

4 For c = 1, this strategy with 1 question is not defined, and the strategy with 0
questions (i.e., only the final question) is optimal.
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3. Peg 3 contains the colors (k+ 1)/2 − 2, ((k+ 2)/3 − 1)×2, ((k+ 2)/3)×2, . . . ,
((k+1)/2−3)×2, (k+1)/2−2, (k+1)/2−1 in B1, the colors 2(k+2)/3−1, ((k+
1)/2+1)×2, ((k+1)/2+2)×2, . . . , (2(k+2)/3−2)×2, 2(k+2)/3−1, (k+1)/2−1
in B2, and the colors 1, 2, . . . , (k + 2)/3 − 2 in B3.

Strategy 3 ((�3c/2�) + 1-strategy for p = 3 and c ≡ 2 mod 4)
Divide the k questions into three blocks B1, B2, B3 of k/3 (= c/2) questions
each.

1. Peg 1 contains the colors 1, 2, . . . , k/3 in B1 and the colors (k/3 +
1)×2, (k/3 + 2)×2, . . . , c×2 in B2 and continuing throughout B3.

2. Peg 2 contains the colors 1, 2, . . . , k/3 (i.e., B1 of peg 1) in B2 and the colors
(k/3 + 1)×2, (k/3 + 2)×2, . . . , (2k/3)×2 in B3 and continuing throughout B1.

3. Peg 3 contains the colors 1, 2, . . . , k/3 (i.e., B1 of peg 1) in B3 and the colors
(k/3+1)×2, (k/3+2)×2, . . . , (2k/3)×2 in B1 and continuing throughout B2.

Strategy 4 ((�3c/2�) + 1-strategy for p = 3 and c ≡ 3 mod 4)
Divide the k questions into three blocks B1, B2, B3 of (k + 2)/3 (= (c + 1)/2),
(k + 2)/3 and (k + 2)/3 − 2 questions, respectively.

1. Peg 1 contains the colors 1, 2, . . . , (k+2)/3 in B1 and the colors ((k+2)/3+
1)×2, ((k + 2)/3 + 2)×2, . . . , c×2 in B2 and continuing throughout B3.

2. Peg 2 contains the colors ((k+2)/2)×2, ((k+2)/2+1)×2, . . . , (2(k+2)/3−1)×2

in B1, the colors 1, 2, . . . , (k + 2)/3 (i.e., B1 of peg 1) in B2, and the colors
(k+2)/2−1, ((k+2)/3+1)×2, ((k+2)/3+2)×2, . . . , ((k+2)/2−2)×2, (k+
2)/2 − 1 in B3.

3. Peg 3 contains the colors (k+ 2)/2 − 2, ((k+ 2)/3 − 1)×2, ((k+ 2)/3)×2, . . . ,
((k + 2)/2 − 3)×2, (k + 2)/2 − 2 in B1, the colors 2(k + 2)/3 − 1, ((k +
2)/2)×2, ((k+2)/2+1)×2, . . . , (2(k+2)/3− 2)×2, 2(k+2)/3− 1 in B2, and
the colors 1, 2, . . . , (k + 2)/3 − 2 in B3.

Theorem 1. Strategies 1, 2, 3 and 4 are feasible and optimal (�3c/2�) + 1-
strategies for p = 3 and for the corresponding c with c �= 1, 4.

Recall that the AB Game corresponds to Mastermind, but with the additional
condition that both in the secret and questions the colors on different pegs must
be pairwise distinct. By observing that the strategies in Theorem1 only use
questions containing three different colors each, we thus obtain the following.

Corollary 1. For c = 6 and for all c ≥ 8, the Strategies 1, 2, 3 and 4 are also
feasible strategies for the AB Game with p = 3 and the considered c.

4 Idea of Proof of Theorem1

Feasiblity: For a given strategy, two questions are called neighbors, and double
neighbors, if they have one color in common on exactly one peg and two pegs,
respectively. A question Q is called a (a1, a2, a3)-question for a1, a2, a3 ∈ N, if
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Table 1. Examples for Strategies 1, 2, 3 and 4 with p = 3.

1 2 3
Q1 1 13 12
Q2 2 13 9
Q3 3 14 9
Q4 4 14 10
Q5 5 15 10
Q6 6 15 11
Q7 7 16 11
Q8 8 16 12
Q9 9 1 16
Q10 9 2 13
Q11 10 3 13
Q12 10 4 14
Q13 11 5 14
Q14 11 6 15
Q15 12 7 15
Q16 12 8 16
Q17 13 12 1
Q18 13 9 2
Q19 14 9 3
Q20 14 10 4
Q21 15 10 5
Q22 15 11 6
Q23 16 11 7
Q24 16 12 8

c = 16 k = 24

1 2 3
Q1 1 14 11
Q2 2 14 8
Q3 3 15 8
Q4 4 15 9
Q5 5 16 9
Q6 6 16 10
Q7 7 17 10
Q8 8 17 11
Q9 9 13 12
Q10 10 1 17
Q11 10 2 14
Q12 11 3 14
Q13 11 4 15
Q14 12 5 15
Q15 12 6 16
Q16 13 7 16
Q17 13 8 17
Q18 14 9 12
Q19 14 10 1
Q20 15 10 2
Q21 15 11 3
Q22 16 11 4
Q23 16 12 5
Q24 17 12 6
Q25 17 13 7

c = 17 k = 25

1 2 3
Q1 1 14 10
Q2 2 15 10
Q3 3 15 11
Q4 4 16 11
Q5 5 16 12
Q6 6 17 12
Q7 7 17 13
Q8 8 18 13
Q9 9 18 14
Q10 10 1 14
Q11 10 2 15
Q12 11 3 15
Q13 11 4 16
Q14 12 5 16
Q15 12 6 17
Q16 13 7 17
Q17 13 8 18
Q18 14 9 18
Q19 14 10 1
Q20 15 10 2
Q21 15 11 3
Q22 16 11 4
Q23 16 12 5
Q24 17 12 6
Q25 17 13 7
Q26 18 13 8
Q27 18 14 9

c = 18 k = 27

1 2 3
Q1 1 15 13
Q2 2 15 9
Q3 3 16 9
Q4 4 16 10
Q5 5 17 10
Q6 6 17 11
Q7 7 18 11
Q8 8 18 12
Q9 9 19 12
Q10 10 19 13
Q11 11 1 19
Q12 11 2 15
Q13 12 3 15
Q14 12 4 16
Q15 13 5 16
Q16 13 6 17
Q17 14 7 17
Q18 14 8 18
Q19 15 9 18
Q20 15 10 19
Q21 16 14 1
Q22 16 11 2
Q23 17 11 3
Q24 17 12 4
Q25 18 12 5
Q26 18 13 6
Q27 19 13 7
Q28 19 14 8

c = 19 k = 28

for i = 1, 2, 3, the i-th color of Q occurs ai times on the i-th peg (throughout the
strategy). In Table 1a, Q3 = (3, 14, 9) and Q4 = (4, 14, 10) are neighbors (but
not double neighbors), and both are (1, 2, 2)-questions,

As can be seen in Table 1, the four strategies consist only of (1, 2, 2)-questions,
(2, 1, 2)-questions and (2, 2, 1)-questions, and no double neighbors exist.

In Table 1a, if the neighbors Q3 = (3, 14, 9) and Q4 = (4, 14, 10) both receive
an answer ≥ 1B, then the secret has the form (?, 14, ?), unless one of the neigh-
bors Q2 = (2, 13, 9) and Q5 = (5, 15, 10) also receives an answer ≥ 1B, and in
this case the secret has the form (4, ?, 9) or (3, ?, 10). The detailed proof needs
an extensive case distinction and the introduction of the so-called strategy graph,
where the questions correspond to vertices and two questions are connected by
an edge, if they are neighbors.
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Optimality: This proof relies on observations regarding the feasibility of the
strategy, e.g., on each peg all but one color must occur, and there can be at
most one (1, 1, 1)-question. We consider the cases of odd and even c and four
subcases each, depending on how many of the three pegs contain c colors. Note
that in the strategies of Table 1 all colors occur at least once on each peg, except
for peg 3 of Strategies 2 and 4, where the colors (k + 1)/2 and k/2, respectively,
do not occur. This case must be excluded for Strategies 1 and 3 for even c as
well, which makes the proof much more difficult for even c than for odd c. The
detailed proof needs again several cases and the introduction of a new term, the
so-called proof questions.

Due to the space limitation, we refer to the forthcoming full version of the
paper for the feasibility and optimality proofs.
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12. Jäger, G., Peczarski, M.: The worst case number of questions in generalized AB
game with and without white-peg answers. Discrete Appl. Math. 184, 20–31 (2015)
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Abstract. In the storable good monopoly problem, a monopolist sells a
storable good by announcing a price in each time period. Each consumer
has a unitary demand per time period with an arbitrary valuation. In
each period, consumers may buy none, one, or more than one good (in
which case the extra goods are stored for future consumption incurring a
linear storage cost). We compare the performance of two important pric-
ing mechanisms on the profitability of the monopolist: pre-announced
pricing mechanisms and price contingent mechanisms. In pre-announced
pricing the prices in each time period are stated in advance; in a price
contingent mechanism each price is stated at the start of the time period,
and these prices are dependent upon past purchases. We prove that the
monopolist can earn at most O(log T +logN) times more profit by using
a pre-announced pricing mechanism rather than a price contingent mech-
anism. Here T denotes the number of time periods and N denotes the
number of consumers. This bound is tight; examples exist where the
monopolist would earn a factor Ω(log T + logN) more by using a pre-
announced pricing mechanism.

1 Introduction

The design and analysis of dynamic pricing mechanisms in a monopolistic envi-
ronment is a fundamental topic in microeconomic theory, and one that has been
studied in depth for at least thirty years; see, for example, [8]. In this setting, the
two most studied pricing mechanisms are pre-announced pricing (also known as
price-commitment) and contingent pricing (also known as no-commitment pric-
ing, threat pricing, or subgame-perfect pricing). Under pre-announced pricing,
the monopolist announces in advance the price at which goods can be purchased
at every point in time along the time-horizon. If the monopolist uses a contingent
pricing mechanism, the price in a given time period is only announced at the
start of that specific period; moreover, the price may depend on the past history.
One of the central questions in dynamic pricing is whether pre-announced pricing
c© Springer Nature Switzerland AG 2018
X. Deng (Ed.): SAGT 2018, LNCS 11059, pp. 267–271, 2018.
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or contingent pricing provide higher profits for the monopolist. From a math-
ematical perspective, one difficulty in answering this question is that the tools
required to study these mechanisms are quite different. Specifically, the study
of pre-announced pricing relies on constrained optimization techniques whereas
the study of contingent pricing relies heavily on game theoretic techniques.

In this paper we focus on a model for storable goods, i.e. goods that can
be bought and stored for consumption in the future. A confounding feature in
pricing storable goods is that a lower price may not only increase the current
consumption (the consumption effect), but can also induce consumers to store
additional goods for future consumption (the stockpiling effect).

[5] studied a storable good market where a monopolist sells a storable good
to consumers with time-dependent demand over an arbitrary number of time
periods. A key result they obtained is that consumer surplus and monopolist
profits are higher under a pre-announced pricing mechanism than under a price-
contingent mechanism. The model of [5] assumes that the good is infinitesimally
divisible, by proposing that there is a continuum of non-atomic buyers or that
there is a single consumer in the market who can always obtain some positive
additional utility by consuming an additional fraction of the good. [2] studied
the [5] model in the setting of indivisible goods. Specifically, they analyzed the
cases where either there is a finite (possibly very large) number of buyers with a
unitary demand per period, or, there is a single buyer with an arbitrary demand
per period but who can only obtain value from an integral number of items.
Surprisingly, for an indivisible good, in sharp contrast to the case of a divisible
good, consumer surplus and monopolist profits may sometimes be lower under
a pre-announced pricing mechanism than under a price-contingent mechanism.
Indeed, the authors gave a simple two period and two consumer example where
profits using a price contingent mechanism were more than 6% higher than
could be achieved via a pre-announced pricing mechanism. More generally, [2]
showed that the monopoly profits under a contingent pricing mechanism can be
Ω(log T +log N) times more profitable than those obtained under pre-announced
pricing mechanism, where T is the number of time periods and N is the number
of consumers. Formally, let ΠCP and ΠPA denote the profits obtained by a con-
tingent pricing mechanism and a pre-announced pricing mechanism, respectively.
Then [2] proved:

Theorem 1. For indivisible storable goods market with N consumers and
T time periods, we have Θ(log T + log N) ≤∃ ΠCP

ΠPA ≤∀ Θ(log T + log N).

Here ≤∃ means that there exists a market instance, with T time periods and
N consumers, such that the inequality is satisfied, and ≤∀ means that for every
instance, with T time periods and N consumers, the inequality is satisfied.

This result suggests the use of a contingent pricing mechanism may be prefer-
able for the monopolist. However, there are several reasons why the monopolist
may not wish to use such a mechanism. For example, in practice the use of a
threat-based pricing mechanism may not be popular with the firm’s customers.
In contrast, pre-announced pricing mechanisms are naturally transparent and
fair. Furthermore, the optimal strategies in a contingent pricing mechanism are
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based upon subgame perfect equilibria; whether these actually arise in practice is
debatable. Moreover, these equilibria may be very sensitive to initial conditions,
so they may be less suited for use in incomplete information settings. Again, in
contrast, the profitability of pre-announced pricing mechanisms do not change
significantly given small changes in the instance, and computing (near)-optimal
pre-announced pricing mechanisms can still be straight-forward in many incom-
plete information settings.

Given this, the aim of this work if to investigate in more detail the perfor-
mance of pre-announced pricing mechanisms. As a first step, it turns out that
contingent pricing mechanisms do not always outperform pre-announced pricing
mechanisms. This we can see from the following example which will also serve
to illustrate the storable good model (that we define formally in the full paper).

Consumer Value at t=1 Value at t=2

I 1 0

II 0 2

Here we have a market with two consumers and two time periods. Consumer I
only values the good in period 1 and consumer II only values the good in period 1.
There is a storage cost of ε = 1, so if the price in period 1 is low enough it may
be attractive to the second consumer to purchase the good in period 1 and then
store it for consumption in period 2.

In this example the monopolist will benefit from using a pre-announced pric-
ing mechanism instead of a price-contingent mechanism. To see this, let’s begin
by analyzing the profit obtained under a contingent pricing mechanism. Without
loss of generality, we may assume the monopolist has a cost 0 of producing the
item; so the terms revenue and profits are interchangeable. First, suppose the
monopolist wants to sell at least one unit in period 1. In that case, the price in
period 1 needs to be at most p1 = 1. In this case, consumer I would buy the
item and a second item will be also be bought by consumer II. By storing the
good for one period, the total cost to consumer II is 2. Consumer II would not
be better off by waiting until the second period to buy. Because the monopolist
does not have to commit to future prices under this mechanism, the optimal
price the monopolist would then charge in period 2 is p2 = 2.1 Thus, the profit
of the monopolist is 2. Second, if the monopolist decides not to sell any units
in period 1 then consumer I won’t buy at all. Further, the period 2 price would
be p2 = 2 which would provide the monopolist the same profits. Thus, under a
contingent pricing mechanism the profit is ΠCP = 2.

We now show that there exists a pre-announced pricing strategy for the
monopolist that can guarantee a profit strictly higher than 2. Suppose the
monopolist pre-announces the prices p1 = 1 and p2 = 1.99. Naturally, con-
sumer I would buy at period 1. However, note that consumer II would prefer to
1 Ties can be broken in either direction by slightly modifying the price announced.
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buy in period 2 as buying in period 1 and incurring the storage cost of ε = 1 is
worse than buying at 1.99 in period 2. Thus, the monopolist profit is 2.99 > 2.
So using a pre-announced pricing mechanism provides the monopolist a profit
of almost 1.5 times higher than by using a price contingent policy.

This example illustrates that, as well as the practical advantages discussed
above, there may be financial incentives for the monopolist to use a pre-
announced pricing mechanism. Our main contribution is to quantify exactly how
large this financial incentive may be. Specifically, in the full paper we prove:

Theorem 2. For indivisible storable goods market with N consumers and
T time periods, we have Θ(log T + log N) ≤∃ ΠPA

ΠCP ≤∀ Θ(log T + log N).

Hence, a pre-announced pricing mechanism can be Θ(log T + log N) times more
profitable than a price-contingent mechanism and this bound is tight! Thus, there
is a remarkable symmetry with Theorem 1. Together, Theorems 1 and 2 show
that, in the storable good monopoly model, neither of the two pricing mech-
anisms can consistently provide a higher profit for the monopolist. Moreover,
whilst the ratios in either direction can be arbitrarily large the performances of
the two mechanism are equivalent to within a logarithmic factor.

1.1 Related Literature

The literature on monopoly pricing is extensive. [4] studied pre-announced pric-
ing strategies for a monopoly model in which consumers are atomic and the
number of items is limited (i.e. the number of items is less than the number
of consumers). They proved that pre-announced pricing is beneficial for the
monopolist, but this benefit decreases as the market size increases. [9] considered
a monopoly model in a finite time horizon model where buyers arrive continu-
ously and are heterogeneous in patience and valuation. The authors characterized
the structure of the optimal contingent pricing policy. [1] studied a two-period
monopoly model in which consumers arrive under a Poison process. The authors
showed that the monopoly profits can increase by switching from a contingent
pricing mechanism to a pre-announced pricing policy. [7] considered a two-period
model of a durable good and analyzed the potential benefit of strategic capacity
rationing under pre-announced pricing. Their main result is that rationing can be
beneficial for the monopolist but only when consumers are risk-adverse. [3] stud-
ied a new pricing mechanism in which the seller commits to a price menu which
states the future price as a function of the available inventory. They proved that
there exists a unique equilibrium under this policy when there is a single unit
of inventory, but multiple equilibria may exist otherwise. [10] studied a pricing
mechanism in a problem where the monopolist sells a limited number of items
over a finite time horizon. The authors found market conditions in which their
proposed pricing strategy outperforms a pre-announced pricing. Recently, [6],
studied pre-announced pricing mechanisms for a modified version of the storable
goods model of [2] where goods can be stored for a limited time (seasonal goods).
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Waitlist is the most commonly used mechanism for public resource allocation,
like public housing and organs for transplants. Currently, Hong Kong government
adopts a waitlist mechanism for public rental housing. Eligible applicants are
entitled to 3 housing offers (one at a time). Applicants who refuse all the 3
housing offers have to rejoin the waitlist system again.

Motivated by this allocation system, we study the waitlist mechanism with
any number k of deferrals, which means each agent either takes the flat in k
chances or rejoin the waitlist. Under a Markov Decision Process model, we
investigate the optimal strategy for each agent in the system and character-
ize the equilibrium state of the system. The optimal strategy is determined
by the agent’s outside option that represents the urgence for public housing.
Then we focus on measuring the performance of the waitlist mechanisms with
varying number of deferral numbers, concerning four evaluating metrics: (i) idle
waiting time, the number of periods taken between the time of registration for
(i.e., joining) the waitlist and the time of receiving the first offer; (ii) match value,
which is defined as an agent’s expected value for a matched house conditioned on
matching and shows whether the matched agents receive their desirable houses;
(iii) match distribution, which evaluates how the low income families are sat-
isfied by the public housing; (iv) social welfare, the total benefit for the whole
society. The results depend on the distribution of all agents’ outside options.
When the probability density function (p.d.f.) of the outside options among the
agents is concave, the idle waiting time is decreasing in k, the match value and
social welfare is increasing in k; when p.d.f. is convex, the idle waiting time and
match distribution are increasing in k, the match value is decreasing in k. This
will help the government to decide a proper mechanism to improve the current
system.

A full version of this paper is available at https://papers.ssrn.com/sol3/papers.cfm?
abstract id=3203280.
Work is supported in part by the Research Grant Council of Hong Kong (GRF
Project No. 16213115 and GRF Project No. 16243516), and the National Natural
Science Foundation of China (NSFC Grant No. 11601022).
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