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Abstract. We study approximation algorithms for the following geo-
metric version of the maximum coverage problem: Let P be a set of n
weighted points in the plane. We want to place m a × b rectangles such
that the sum of the weights of the points in P covered by these rectan-
gles is maximized. For any fixed ε > 0, we present efficient approximation
schemes that can find a (1 − ε)-approximation to the optimal solution.
In particular, for m = 1, our algorithm runs in linear time O(n log( 1

ε
)),

improving over the previous result. For m > 1, we present an algorithm

that runs in O(n
ε

log( 1
ε
) + m( 1

ε
)O(min(

√
m, 1

ε
))) time.

Keywords: Maximum coverage · Geometric set cover · Polynomial-time
approximation scheme

1 Introduction

The maximum coverage problem is a classic problem in theoretical computer
science and combinatorial optimization. In this problem, we are given a universe
P of weighted elements, a family of subsets and a number k. The goal is to
select at most k of these subsets such that the sum of the weights of the cov-
ered elements in P is maximized. It is well-known that the most natural greedy
algorithm achieves an approximation factor of 1 − 1/e, which is essentially opti-
mal (unless P=NP) [17,20,25]. However, for several geometric versions of the
maximum coverage problem, better approximation ratios can be achieved (we
will mention some of such results below). In this paper, we mainly consider the
following geometric maximum coverage problem:
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Definition 1. (MaxCovR(P,m)) Let P be a set of n points in a 2-dimensional
Euclidean plane R

2. Each point p ∈ P has a given weight wp ≥ 0. The goal of
our geometric max-coverage problem (denoted as MaxCovR(P,m)) is to place m
a × b rectangles such that the sum of the weights of the covered points by these
rectangles is maximized. More precisely, let S be the union of m rectangles we
placed. Our goal is to maximize

Cover(P, S) =
∑

p∈P∩S

wp.

We also study the same coverage problem with unit disks, instead of rect-
angles. We denote the corresponding problem as MaxCovD(P,m). One natural
application of the geometric maximum coverage problem is the facility placement
problem. In this problem, we would like to locate a certain number of facilities to
serve the maximum number of clients. Each facility can serve a region (depending
on whether the metric is L1 or L2, the region is either a square or a disk).

1.1 m = 1

Previous Results: We first consider MaxCovR(P, 1). Imai and Asano [21], Nandy
and Bhattacharya [24] gave two different exact algorithms for MaxCovR(P, 1),
both running in time O(n log n). It is also known that solving MaxCovR(P, 1)
exactly in algebraic decision tree model requires Ω(n log n) time [4]. Tao et
al. [26] proposed a randomized approximation scheme for MaxCovR(P, 1). With
probability 1 − 1/n, their algorithm returns a (1 − ε)-approximate answer in
O(n log(1ε ) + n log log n) time. In the same paper, they also studied the problem
in the external memory model.
Our Results: For MaxCovR(P, 1) we show that there is an approximation scheme
that produces a (1 − ε)-approximation and runs in O(n log(1ε )) time, improving
the result by Tao et al. [26].

1.2 General m > 1

Previous Results: Both MaxCovR(P,m) and MaxCovD(P,m) are NP-hard if m
is part of the input [22]. The most related work is de Berg, Cabello and Har-
Peled [12]. They mainly focused on using unit disks (i.e., MaxCovD(P,m)). They
proposed a (1 − ε)-approximation algorithm for MaxCovD(P,m) with time com-
plexity O(n(m/ε)O(

√
m)).

1 We note that their algorithm can be easily extended to MaxCovR with the
same time complexity.

We are not aware of any explicit result for MaxCovR(P,m) for general m > 1.

1 They were mainly interested in the case where m is a constant. So the running
time becomes O(n(1/ε)O(

√
m)) (which is the bound claimed in their paper) and the

exponential dependency on m does not look too bad for m = O(1). Since we consider
the more general case, we make the dependency on m explicit.
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It is known [12] that the problem admits a PTAS via the standard shifting
technique [19]. 2

Our Results: Our main result is an approximation scheme for MaxCovR(P,m)
which runs in time

O

(
n

ε
log

1
ε

+ m

(
1
ε

)Δ
)

,

where Δ = O(min(
√

m, 1
ε )). Our algorithm can be easily extended to other

shapes. The algorithm for approximating approximating MaxCovD(P,m) can be
found in the full version of this paper. 3 The running time of our algorithm is

O

(
n
(1

ε

)O(1)

+ m
(1

ε

)Δ
)

.

Following the convention of approximation algorithms, ε is a fixed constant.
Hence, the second term is essentially O(m) and the overall running time is essen-
tially linear O(n). Our algorithm follows the standard shifting technique [19],
which reduces the problem to a smaller problem restricted in a constant size
cell. The same technique is also used in de Berg et al. [12]. They proceeded by
first solving the problem exactly in each cell, and then use dynamic programming
to find the optimal allocation for all cells. 4

Our improvement comes from another two simple yet useful ideas. First, we
apply the shifting technique in a different way and make the side length of grids
much smaller (O(1ε ), instead of O(m) in de Berg et al.’s algorithm [12]). Second,
we solve the dynamic program approximately. In fact, we show that a simple
greedy strategy (along with some additional observations) can be used for this
purpose, which allows us to save another O(m) term.

1.3 Other Related Work

There are many different variants for this problem. We mention some most
related problems here.

Barequet et al. [3], Dickerson and Scharstein [13] studied the max-enclosing
polygon problem which aims to find a position of a given polygon to cover
maximum number of points. This is the same as MaxCovR(P, 1) if a polygon
is a rectangle. Imai et al. [21] gave an optimal algorithm for the max-enclosing
rectangle problem with time complexity O(n log n).

MaxCovD(P,m) was introduced by Drezner [15]. Chazelle and Lee [9] gave
an O(n2)-time exact algorithm for the problem MaxCovD(P, 1). A Monte-Carlo

2 Hochbaum and Maass [19] obtained a PTAS for the problem of covering given points
with a minimal number of rectangles. Their algorithm can be easily modified into a
PTAS for MaxCovR(P, m) with running time nO(1/ε).

3 The full version of this paper can be found on CS arXiv.
4 In fact, their dynamic programming runs in time at least Ω(m2). Since they focused

on constant m, this term is negligible in their running time. But if m >
√

n, the
term can not be ignored and may become the dominating term.
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(1 − ε)-approximation algorithm for MaxCovD(P, 1) was shown in [1], where P is
an unweighted point set. Aronov and Har-Peled [2] showed that for unweighted
point sets an O(nε−2 log n) time Monte-Carlo (1 − ε)-approximation algorithm
exists, and also provided some results for other shapes. de Berg et al. [12] pro-
vided an O(nε−3) time (1 − ε)-approximation algorithm.

For m > 1, MaxCovD(P,m) has only a few results. For m = 2, Cabello et
al. [7] gave an exact algorithm for this problem when the two disks are disjoint in
O(n8/3 log2 n) time. de Berg et al. [12] gave (1−ε)-approximation algorithms that
run in O(nε−4m+4 log2m−1 (1/ε)) time for m > 3 and in O(nε−6m+6 log (1/ε))
time for m = 2, 3.

The dual of the maximum coverage problem is the classical set cover problem.
The geometric set cover problem has enjoyed extensive study in the past two
decades. The literature is too vast to list exhaustively here. See e.g., [6,8,10,16,
23,27] and the references therein.

2 Preliminaries

We first define some notations and mention some results that are needed in our
algorithm. Denote by Gδ(a, b) the square grid with mesh size δ such that the
vertical and horizontal lines are defined as follows

Gδ(a, b) =
{
(x, y) ∈ R

2 | y = b + k · δ, k ∈ Z
} ∪ {(x, y) ∈ R

2 | x = a + k · δ, k ∈ Z
}

Given Gδ(a, b) and a point p = (x, y), we call the integer pair (�x/δ�, �y/δ�) the
index of p (the index of the cell in which p lies in).

Perfect Hashing: Dietzfetbinger et al. [14] shows that if each basic algebraic
operation (including {+,−,×,÷, log2, exp2}) can be done in constant time, we
can get a perfect hash family so that each insertion and membership query takes
O(1) expected time. In particular, using this hashing scheme, we can hash the
indices of all points, so that we can obtain the list of all non-empty cells in O(n)
expected time. Moreover, for any non-empty cell, we can retrieve all points lies
in it in time linear in the number of such points.

Linear Time Weighted Median and Selection: It is well known that finding the
weighted median for an array of numbers can be done in deterministic worst-
case linear time. The setting is as follows: Given n distinct elements x1, x2, ..., xn

with positive weights w1, w2, ..., wn. Let w =
∑n

i=1 wi. The weighted median is
the element xk satisfying

∑
xi<xk

wi < w/2 and
∑

xi>xk
wi ≤ w/2. Finding the

kth smallest elements for any array can also be done in deterministic worst-case
linear time. See e.g., [11].

An Exact Algorithm for MaxCovR(P, 1): As we mentioned previously, Nandy
and Bhattacharya [24] provided an O(n log n) exact algorithm for the
MaxCovR(P, 1) problem. We are going to use this algorithm as a subroutine
in our algorithm.
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3 A Linear Time Algorithm for MaxCovR(P, 1)

Notations: Without loss of generality, we can assume that a = b = 1, i.e., all
the rectangles are 1×1 squares, (by properly scaling the input). We also assume
that all points are in general positions. In particular, all coordinates of all points
are distinct. For a unit square r, we use w(r) to denote the sum of the weights of
the points covered by r. We say a unit square r is located at (x, y) if the top-left
corner of r is (x, y).

Now we present our approximation algorithm for MaxCovR(P, 1).

3.1 Grid Shifting

Recall the definition of a grid Gδ(a, b) (in Section 2). Consider the following four
grids: G2(0, 0),G2(0, 1),G2(1, 0),G2(1, 1) with δ = 2. We can easily see that for
any unit square r, there exists one of the above grids that does not intersect
r (i.e., r is inside some cell of the grid). This is also the case for the optimal
solution.

Now, we describe the overall framework, which is similar to that in [26]. Our
algorithm differs in several details. MaxCovCell(c) is a subroutine that takes
a 2 × 2 cell c as input and returns a unit square r that is a (1-ε)-approximate
solution if the problem is restricted to cell c. We present the details of Max-
CovCell in the next subsection.

Algorithm 1. MaxCovR(P, 1)
wmax ← 0
for each G ∈ {G2(0, 0), G2(0, 1), G2(1, 0), G2(1, 1)} do

Use perfect hashing to find all the non-empty cells of G.
for each non-empty cell c of G do

r ← MaxCovCell(c).
If w(r) > wmax, then wmax ← w(r) and rmax ← r.

end for;
end for;
return rmax;

As we argued above, there exists a grid G such that the optimal solution is
inside some cell c� ∈ G. Therefore, MaxCovCell(c�) should return a (1-ε)-
approximation for the original problem MaxCovR(P, 1).

3.2 MaxCovCell

In this section, we present the details of the subroutine MaxCovCell. Now
we are dealing with the problem restricted to a single 2 × 2 cell c. Denote the
number of point in c by nc, and the sum of the weights of points in c by Wc. We
distinguish two cases, depending on whether nc is larger or smaller than

(
1
ε

)2.
If nc <

(
1
ε

)2, we simply apply the O(n log n) time exact algorithm. [24]
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Algorithm 2. Partition({x1, x2, ..., xn})
Find the weighted median xk (w.r.t. w-weight);
L = L ∪ {xk};
Generate S = {xi | wi < xk}, L = {xi | wi > xk};
If the sum of the weights of the points in S is lager than wd, run Partition(S);
If the sum of the weights of the points in L is lager than wd, run Partition(L);

The other case requires more work. In this case, we further partition cell c
into many smaller cells. First, we need the following simple lemma.

Lemma 1. Given n points in R
2 with positive weights w1, w2, ..., wn,

∑n
i=1 wi =

w. Assume that x1, x2, ..., xn are their distinct x-coordinates. We are also given
a value wd such that max(w1, w2, ..., wn) ≤ wd ≤ w, Then, we can find at most
2w/wd vertical lines such that the sum of the weights of points strictly between
(we do not count the points on these lines) any two adjacent lines is at most wd

in time O(n log(w/wd)).

Proof. See Algorithm 2. In this algorithm, we apply the weighted median algo-
rithm recursively. Initially we have a global variable L = ∅, which upon termi-
nation is the set of x-coordinates of the selected vertical lines. Each time we find
the weighted median xk and separate the point with the vertical line x = xk,
which we add into L. The sum of the weights of points in either side is at most
half of the sum of the weights of all the points. Hence, the depth of the recursion
is at most 	log(w/wd)
. Thus, the size of L is at most 2�log(w/wd)� ≤ 2w/wd, and
the running time is O(n log(w/wd)). ��

Now, we describe how to partition cell c into smaller cells. First we partition
c with some vertical lines. Let Lv to denote a set of vertical lines. Initially, L = ∅.
Let wd = ε·Wc

16 . We find all the points whose weights are at least wd. For each
such point, we add to Lv the vertical line that passes through the point. Then,
we apply Algorithm 2 to all the points with weights less than wd. Next, we add
a set Lh of horizontal lines in exactly the same way.

Lemma 2. The sum of the weights of points strictly between any two adjacent
lines in Lv is at most wd = ε·Wc

16 . The number of vertical lines in Lv is at most
32
ε . Both statements hold for Lh as well.

Proof. The first statement is straightforward from the description of the algo-
rithm. We only need to prove the upper bound of the number of the vertical lines.
Assume the sum of the weights of those points considered in the first (resp. sec-
ond) step is W1(resp. W2), W1 + W2 = Wc. The number of vertical lines in Lv

is at most

W1/

(
ε · Wc

16

)
+ 2W2/

(
ε · Wc

16

)
≤ 32

ε
.

The first term is due to the fact that the weight of each point we found in the
first step has weight at least ε·Wc

16 , and the second term directly follows from
Lemma 1. ��
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We add both vertical boundaries of cell c into Lv and both horizontal
boundaries of cell c into Lh. Now L = Lv ∪ Lh forms a grid of size at most
(32ε + 2) × ( 32ε + 2). Assume L = {(x, y) ∈ R

2 | y = yj , j ∈ {1, ..., u}} ∪ {(x, y) ∈
R

2 | x = xi, i ∈ {1, ..., v}}, with both {yi} and {xi} are sorted. L partitions c
into small cells. The final step of our algorithm is simply enumerating all the
unit squares located at (xi, yj), i ∈ {1, ..., u}, j ∈ {1, ..., v}, and return the one
with the maximum coverage. However, computing the coverage exactly for all
these unit squares is expensive. Instead, we only calculate the weight of these
unit square approximately as follows. For each unit square r, we only count the
weight of points that are in some small cell fully covered by r. Now, we show
this can be done in O

(
nc log

(
1
ε

)
+

(
1
ε

)2) time.
After sorting {yi} and {xi}, we can use binary search to identify which small

cell each point lies in. So we can calculate the sum of the weights of points at
the interior, edges or corners of all small cells in O(nc log

(
1
ε

)
) times.

Thus searching the unit square with the maximum (approximate) coverage
can be done with a standard incremental algorithm in O

(
1
ε

)2 time. Due to space
constraints, we omit the details which can be found in the full version of this
paper.

Putting everything together, we conclude that if nc ≥ (
1
ε

)2, the running time

of MaxCovCell(c) is O
(
nc log

(
1
ε

)
+

(
1
ε

)2)
. We can conclude the main result

of this section with the following theorem.

Theorem 1. Algorithm 1 returns a (1-ε)-approximate answer forMaxCovR(P, 1)
in O(n log

(
1
ε

)
) time.

Proof. We only show the proof of the approximation guarantee of the algorithm.
The complete proof can be found in the full version of this paper. We only need
to prove that MaxCovCell(c) returns a (1-ε)-approximation for cell c. The
case nc <

(
1
ε

)2 is trivial since we apply the exact algorithm. So we only need to
prove the case of nc ≥ (

1
ε

)2.
Suppose the optimal unit square is r. Denote by Opt the weight of the optimal

solution. The size of c is 2 × 2, so we can use 4 unit squares to cover the entire
cell. Therefore, Opt ≥ (Wc

4 ). Suppose r is located at a point p, which is in the
strict interior of a small cell B separated by L. 5 Suppose the index of B is (i, j).
We compare the weight of r with I(i, j) (which is the approximate weight of the
unit square located at the top-left corner of B). By the rule of our partition,
the weight difference is at most 4 times the maximum possible weight of points
between two adjacent parallel lines in L. So I(i, j) ≥ Opt−4 · ε·Wc

16 ≥ (1− ε)Opt.
This completes the proof. ��

5 If p lies on the boundary of B, the same argument still works.
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4 Linear Time Algorithms for MaxCovR(P,m)

4.1 Grid Shifting

For general m, we need the shifting technique [19]. Consider grids with a
different side length: G6/ε(a, b). We shift the grid to 6

ε different positions:
(0, 0), (1, 1), ...., (6ε − 1, 6

ε − 1). (For simplicity, we assume that 1
ε is an integer

and no point in P has an integer coordinate, so points in P will never lie on the
grid line. Let

G =
{
G6/ε(0, 0), ..., G6/ε(6/ε − 1, 6/ε − 1)

}
.

The following lemma is quite standard. The proof can be found in the full version
of this paper.

Lemma 3. There exist G� ∈ G and a (1− 2ε
3 )-approximate solution R such that

none of the unit squares in R intersects G�.

We present a subroutine in section 4.4 which can approximately solve the
problem for a grid, and apply it to each non-empty grid in G. Then, in order
to compute our final output from those obtained solutions, we apply a dynamic
programming algorithm or a greedy algorithm which are shown in the next two
sections.

4.2 Dynamic Programming

Now consider a fixed grid G ∈ G. Let c1, . . . , ct be the cells of grid G and Opt be
the optimal solution that does not intersect G. Obviously, (6ε )2 unit squares are
enough to cover an entire 6

ε × 6
ε cell. Thus the maximum number of unit squares

we need to place in one single cell is mc = min{m, ( 6ε )2}.
Let Opt(ci, k) be the maximum weight we can cover with k unit squares

in cell ci. For each nonempty cell ci and for each k ∈ [mc], we find a (1 − ε
3 )-

approximation F(ci, k) to Opt(ci, k). We will show how to achieve this later. Now
assume that we can do it.

Let OptF(m) be the optimal solution we can get from the values F(ci, k).
More precisely,

OptF(m) = max
k1,...,kt∈[mc]

{
t∑

i=1

F(ci, ki)
∣∣∣

t∑

i=1

ki = m

}
(1)

We can see that OptF(m) must be a (1− ε
3 )-approximation to Opt. We can easily

use dynamic programming to calculate the exact value of OptF(m). Denote by
A(i, k) the maximum weight we can cover with k unit squares in cells c1, c2, ..., ci.
We have the following DP recursion:

A(i, k) =
{

maxmin(k,mc)
j=0 {A(i − 1, k − j) + F(ci, j)} if i > 1

F(c1, k) if i = 1
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The running time of the above simple dynamic programming is O(m2 · mc).
One may notice that each step of the DP is computing a (+,max) convolu-
tion. However, existing algorithms (see e.g., [5,28]) only run slightly better than
quadratic time. So the improvement would be quite marginal. But in the next
section, we show that if we would like to settle for an approximation to OptF(m),
the running time can be dramatically improved to linear.

4.3 A Greedy Algorithm

We first apply our MaxCovR(P, 1) algorithm in Section 3 to each cell ci, to
compute a (1 − ε2

9 )-approximation of Opt(ci, 1). Let f(ci, 1) be the return val-
ues. 6 This takes O(n log 1

ε ) time. Then, we use the selection algorithm to find
out the m cells with the largest f(ci, 1) values. Assume that those cells are
c1, ..., cm, cm+1, ..., ct, sorted from largest to smallest by f(ci, 1).

Lemma 4. Let Opt′ be the maximum weight we can cover using m unit squares
in c1, ..., cm. Then Opt′ ≥ (1 − ε2

9 )Opt

Proof. Let k be the number of unit squares in Opt that are chosen from
cm+1, . . . , ct. This means there must be at least k cells in {c1, . . . , cm} such
that Opt does not place any unit square. Therefore we can always move all k
unit squares placed in cm+1, . . . , ct to these empty cells such that each empty
cell contains only one unit square. Denote the weight of this modified solution
by A. Obviously, Opt′ ≥ A. For any i,j such that 1 ≤ i ≤ m < j ≤ t, we have
Opt(ci, 1) ≥ f(ci, 1) ≥ f(cj , 1) ≥ (1 − ε2

9 )Opt(cj , 1). Combining with a simple
observation that Opt(ci, k) ≤ kOpt(ci, 1), we can see that A ≥ (1 − ε2

9 )Opt.
Therefore, Opt′ ≥ (1 − ε2

9 )Opt. ��
Hence, from now on, we only need to consider the first m cells {c1, ..., cm}.

We distinguish two cases. If m ≤ 324(1ε )4, we just apply the dynamic program to
c1, ..., cm. The running time of the above dynamic programming is O((1ε )O(1)).

If m > 324(1ε )4, we can use a greedy algorithm to find a answer of weight at
least (1 − ε2

9 )OptF(m).
Let b = (6ε )2. For each cell ci, we find the upper convex hull of 2D points

{(0,F(ci, 0)),(1,F(ci, 1)), . . . , (b,F(ci, b))}. See Figure 1. Suppose the convex
hull points are {(ti,0,F(ci, ti,0)), (ti,1,F(ci, ti,1)), ... , (ti,si

,F(ci, ti,si
))}, where

ti,0 = 0,ti,si
= b. For each cell, since the above points are already sorted from

left to right, we can compute the convex hull in O(b) time by Graham’s scan[18].
Therefore, computing the convex hulls for all these cells takes O(mb) time.

For each cell ci, we maintain a value pi representing that we are going to
place ti,pi

squares in cell ci. Initially for all i ∈ [m], pi = 0. In each stage, we
find the cell ci such that current slope (the slope of the next convex hull edge)

F(ci, ti,pi+1) − F(ci, ti,pi
)

ti,pi+1 − ti,pi

6 Both f(ci, 1) and F(ci, 1) are approximations of Opt(ci, 1), with slightly different
approximation ratios.
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Fig. 1. F(ci, k) (left) and F̂(ci, k) (right)

is maximized. Then we add 1 to pi, or equivalently we assign ti,pi+1 − ti,pi
more

squares into cell ci. We repeat this step until we have already placed at least
m − b squares. We can always achieve this since we can place at most b squares
in one single cell in each iteration. Let m′ the number of squares we have placed
(m = b ≤ m′ ≤ m). For the remaining m − m′ squares, we allocate them
arbitrarily. We denote the algorithm by Greedy and let the value obtained be
Greedy(m′). Having the convex hulls, the running time of the greedy algorithm
is O(m).

Now we analyze the performance of the greedy algorithm.

Lemma 5. The above greedy algorithm computes an (1 − ε2/9)-approximation
to OptF(m).

Proof. Define an auxiliary function F̂(ci, k) as follows: If k = ti,j for some j,
F̂(ci, k) = F (ci, k). Otherwise, suppose ti,j < k < ti,j+1, then

F̂(ci, k) = F (ci, ti,j) +
F (ci, ti,j+1) − F (ci, ti,j)

ti,j+1 − ti,j
× (k − ti,j).

Intuitively speaking, F̂(ci, k)(See Figure 1) is the function defined by the upper
convex hull at integer points. 7 Thus, for all i ∈ [m], F̂(ci, k) is a concave function.
Obviously, F̂(ci, k) ≥ F(ci, k) for all i ∈ [m] and all k ∈ [b].

Let Opt
̂F(i) be the optimal solution we can get from the values F̂(ci, k) by

placing i squares. By the convexity of F̂(ci, k), the following greedy algorithm
is optimal: as long as we still have budget, we assign 1 more square to the cell
which provides the largest increment of the objective value. In fact, this greedy
algorithm runs in almost the same way as Greedy. The only difference is that
Greedy only picks an entire edge of the convex hull, while the greedy algorithm
here may stop in the middle of an edge (only happen for the last edge). Since
the marginal increment never increases, we can see that Opt

̂F(i) is concave.
By the way of choosing cells in our greedy algorithm, we make the following

simple but important observation:

Greedy(m′) = Opt
̂F(m

′) = OptF(m
′).

7 At first sight, it may appear that F(ci, k) should be a concave function. However,
this is not true. A counter-example is provided in the full version of this paper.
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So, our greedy algorithm is in fact optimal for m′. Combining with m − m′ ≤ b
and the concavity of Opt

̂F, we can see that

Opt
̂F(m

′) ≥ m − b

m
Opt

̂F(m) ≥
(

1 − ε2

9

)
OptF(m).

The last inequality holds because Opt
̂F(i) ≥ OptF(i) for any i. ��

4.4 Computing F(c, k)

Now we show the subroutine MaxCovCellM for computing F(c, k). We use a
similar partition algorithm as Section 3.2. The only difference is that this time we
need to partition the cell finer so that the maximum possible weight of points
between any two adjacent parallel partition lines is ( ε3Wc

864 ). After partitioning
the cell, we enumerate all the possible ways of placing k unit squares at the grid
point. Similarly, for each unit square r, we only count the weight of points that
are in some cell fully covered by r.

We can adapt the algorithm in [12] to enumerate these possible choices in
O((1ε )Δ) time where Δ = O(min(

√
m, 1

ε )). The details can be found in the full
version of this paper. Now we prove the correctness of this algorithm.

Lemma 6. MaxCovCellM returns a (1 − ε
3 ) approximate answer for

Opt(ci, k).

Proof. We can use ( 6ε )2 unit squares to cover the entire cell, so Opt(ci, k) ≥
kε2Wc

72 . By the same argument as in Theorem 1, the difference between Opt(ci, k)
and the answer we got are at most 4k times the maximum possible weight of
points between two adjacent parallel partition lines. Therefore, the algorithm
returns a (1 − ε

3 )-approximate answer of Opt(ci, k). ��
Now we can conclude the following theorem.

Theorem 2. Let P be a set of n weighted point, for any 0 < ε < 1 we can find
a (1 − ε)-approximate answer for MaxCovR(P,m) in time

O

(
n

ε
log

1
ε

+ m

(
1
ε

)Δ
)

,

where Δ = O(min(
√

m, 1
ε )).

The proof is similar to Theorem 1, and it is given in the full version of this paper.
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