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Abstract
Adevice-independent dimension test for a Bell experiment aims to estimate the underlyingHilbert
space dimension that is required to produce givenmeasurement statistical data without any other
assumptions concerning the quantum apparatus. Previous workmostly deals with the two-party
version of this problem. In this paper, we propose a very general and robust approach to test the
dimension of any subsystem in amultiparty Bell experiment. Our dimension test stems from the study
of a newmultiparty scenariowhichwe call prepare-and-distribute. This is like the prepare-and-
measure scenario, but the quantum state is sent tomultiple, noncommunicating parties. Through
specific examples, we show that our test results can be tight. Furthermore, we compare the
performance of our test to results based on known bipartite tests, andwitness remarkable advantages,
which indicates that our test is of a truemultiparty nature.We conclude by pointing out thatwith
some partial information about the quantum states involved in the experiment, it is possible to learn
other interesting properties beyond dimension.

1. Introduction

Supposewe have an unknown quantum system andwewant to assess its quantumproperties. Oneway to tackle
this problem is by using only classical information obtained by interacting with the target system classically and
thus no (possibly unrealistic) assumptions need to bemade concerning the quantum states and/or
measurements involved. For this purpose, oftenwhat people do is choose differentmeans/settings tomeasure
the system, then collect the corresponding statistical data, which is of course classical. It is well-known, on the
other hand, that if onewants to describe a quantum system completely using only classical information, the
amount of information neededwill increase exponentially with the size of the quantum system, which is usually
muchmore thanwhat is collected throughmeasurements [1]. Therefore, it would seem that we cannot infer any
useful information about the quantum state using a limited amount of statistical data alone.

Interestingly, these tasks are indeed possible in some cases, and the information inferred is said to be device-
independent [2, 3]. Clearly, they are attractive not onlymathematically, but also from an application standpoint.
For example, when a businessmanwants to sell a quantumproduct, it would help if he can convince potential
clients that the product is behaving as advertised. Instead of taking themachine apart piece by piece and trying to
convince the buyer that there is nothing funny going on, e.g. somethingmaliciously entangledwith his company
laboratory, he can choose to interact with it viameasurements to obtain a small number of outcome statistics,
and invoke device-independent results from the literature.

Bell experiments are typical settings to demonstrate phenomena of device-independence [4]. In such a
setting, a number of spatially separated parties share a quantum state and each party chooses one local
measurement from a finite selection tomeasure his/her subsystem. The statistical data for all possible choices of
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measurements is recorded as a correlation. For bipartite cases of Bell experiments, it has been shown that the
dimension of each party can be estimated in a device-independentmanner [4, 5] (see also [6]). This problem is
motivated as follows. It is well-known thatHilbert space dimension is a valuable resource in quantumprocessing
tasks. Therefore, for any quantum correlation that is generated in a quantum setting, we often prefer the
dimension required to produce this correlation to be as small as possible. Thus, being able to estimate the
underlyingHilbert space dimension device-independently is very useful.

In particular, to solve this fundamental problem, using the fact that some entangled quantum states can
produce correlations violating certain Bell inequalities [7], the concept of dimensionwitnesswas proposed to
estimate the underlying dimension, where the key idea is to build a relation between dimension and the extent
that Bell inequalities are violated [4]. The approach of dimensionwitness requires sets of quantum correlations
to be convex, thus shared classical randomness is assumed. This approach is powerful, but it relies heavily on the
availability of a Bell inequality for the statistics being tested. Assuming that shared classical randomness is not a
free resource, i.e. it is absorbed into the entangled quantum state, a new easy-to-compute dimension bound for
this problemhas also been provided [5]. This bound is independent of any Bell inequalities, and thus it is very
convenient to use as it can be readily applied to any correlation data. Recently, the approach of [5]was used to
certify systemdimensionality in a newly proposed experimental platform formultidimensional quantum
systems [8]. Other examples of device-independence onBell experiments include assessing the amount of
entanglement in some bipartite cases [9], and even pinning down the underlying quantum states completely, a
task known as self-testing [10–14].

Thoughmore than one approach has been discovered to deal with device-independent dimension
estimation of bipartite Bell experiments,multipartite versions have not been found to the best of our knowledge.
This problem is not only important and realistic, but also interesting in its own right as the generalization from
bipartite tomultipartite cases enriches themathematics needed considerably as it ismuchmore complicated.
However, using the standard approach offinding dimensionwitnesses based onBell inequalities to address this
problem is a very difficult task as this requiresmuch knowledge of the complicated structures ofmultipartite
quantum correlations. Indeed, Bell inequalities in themultiparty setting are very hard tofind and are not that
well understood [15, 16], especially compared to the two-party case. To get around these difficulties, in this
paperwe develop a general technique for this problemwhich results in an easy-to-compute lower bound for the
underlying dimension of any subsystem in a generalmultiparty Bell experiment. To this end, we define a
multiparty quantum scenario called prepare-and-distribute, and then propose an efficient way to estimate the
distances between quantum states in this scenario based onmeasurement statistical data only. This allows us to
identify device-independently a desired lower bound for the target dimension in themultipartite Bell setting.
Through specific examples, we show that our result can be tight. At the same time, sincewe are interested in the
dimensions of individual parties, in principle we can also usemethods for bipartite cases (e.g. in [5]) to tackle our
problem. By a concrete example, we illustrate that our new result in this paper ismuch better than
generalizations fromknownbipartite results. This demonstrates that it is of a truemultiparty nature.We also
point out that withmore information on the target quantum state, it is possible to learn other quantum
properties beyond dimension in some circumstances.

2. Preliminaries

2.1.Multiparty Bell scenario
In amultiparty Bell scenario, we have k+1 physically separated parties, sharing a quantum state ρ acting on a
(k+1)-partiteHilbert space i

k d
1
1 i=

+⨂ , where di is the dimension of the ith subsystem. Each party has a local
measurement apparatus, which allows for variousmeasurement settingswhich can be applied to their
subsystems.

As not to be bound to 26 parties, we shall call one of themAlice, and the rest of the parties Bob-1, Bob-2, up
to Bob-k. Alicewill havemeasurement settings given by afinite setX andBob-jwill havemeasurement settings
from a finite setYj. Thus, when theymeasure the shared quantum state ρwith their chosen settings, the
probability that Alice gets outcome a (from afinite setA) andBob-j gets outcome bj (from afinite setBj) is given
by

p ab b xy y M NTr , 1k k a
x

j

k
j

b

y
1 1

1
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j r= Ä
=

 
⎛
⎝
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⎟⎟( ∣ ) ⨂( ) ( )

where M a A:a
x Î{ } is Alice’s local positive-operator valuedmeasure (POVM) and N b B:j

b

y
j jj

j Î{( ) } is Bob-jʼs
local POVM.A three-party Bell experiment is illustrated infigure 1. The set of all joint conditional probabilities
p ab b xy yk k1 1 ( ∣ ) is called a k 1+( )-correlation (or just correlationwhen k is clear from context).
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2.2. The prepare-and-distribute scenario
Wenowdefine a new (k+1)-party quantum scenario that is useful for the purposes of this paper. Suppose a
single party, say Paula, prepares a k-partite quantum state ρx, for some xäX, and distributes it to k different,
physically separated parties, whichwe call Roger-1,K, Roger-k. ThenRoger-jmeasures his corresponding
subsystemwith available local POVM indexed by yj and gets the outcome bj. Themeasurement settings and
outcomes share the same notation as in the previous discussion aboutmultiparty Bell experiments for reasons
thatwill be clear shortly. Like a (k+1)-party Bell correlation, a prepare-and-distribute correlation can be defined
as belowwith similar notations

p b b xy y NTr . 2k k
j

k
j

b

y
x1 1

1
j

j r=
=

 
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ∣ ) ⨂( ) ( )

Aprepare-and-distribute experiment involving three parties can be seen infigure 2. Later wewill discuss the
close relationship betweenmultiparty Bell scenarios and prepare-and-distribute scenarios.

3.Main results

3.1. Bounding distances between quantum states in a prepare-and-distribute scenario
In this subsection, we consider the following problem: Suppose we are given a prepare-and-distribute setting
and the corresponding correlation data p b b xy yk k1 1 ( ∣ ), canwe give a nontrivial estimation for the
distance between two arbitrary preparations ρx and xr ¢? The answer is affirmative.

In this paper, we choose the concept of fidelity tomeasure the distances between quantum states [1]. For two
quantum statesσ1 andσ2 acting on the sameHilbert space, their fidelity is defined as F ,1 2 1 2 1s s s s=  ( ) . A

Figure 1.Alice, Bob-1, and Bob-2 in a three-party Bell experiment.

Figure 2.Paula, Roger-1, andRoger-2 in a three-party prepare-and-distribute experiment.
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useful property offidelity is that for any two quantum states, if onemeasures themusing the samemeasurement,
then thefidelity between the two outcome distributions (as classical-quantum states) is no less than that between
the two original quantum states [1]. Therefore, by compositing all the local POVMs onRogers as awhole, we can
immediately get an upper bound for F ,x xr r ¢( ) as below:

p b b xy y p b b x y y . 3
b b

k k k k1 1 1 1
k1

å ¢   


( ∣ ) ( ∣ ) ( )

If wewant to optimize, we can indeed take theminimumover allmeasurement settings y1,K, yk and the bound
still holds.

As a crucial part of our discussion later, we introduce a newmethod to estimate F ,x xr r ¢( ), which has amuch
better performance than the simple bound above. To this end, we need the expansive property offidelity [1],
whichmeans that

F F, , 4r s r sF F( ( ) ( )) ( ) ( )

for any quantum states ρ,σ and any completely positive and trace-preserving (CPTP)mapΦ. TheCPTPmap of
relevance here is themap

p b xy b b , 5x
b

x y b1 1 1 1 , ,

1

1 1år r ñá Ä( ∣ ) ∣ ∣ ( )

where b b1 1ñá∣ ∣ is the quantum state of Roger-1, and x y b, ,1 1
r is the joint state of the rest of (unmeasured)Rogers.

Note that thismap effectivelymeasures Roger-1ʼs part of the state, obtains outcome b1 which he stores
classically, and then the rest of Rogers are left with the state x y b, ,1 1

r . Now, startingwith ρx and xr ¢, we have that

F ,x xr r ¢( ) is atmost p b xy p b x y F ,b x y b x y b1 1 1 1 , , , ,1 1 1 1 1
r rå ¢ ¢( ∣ ) ( ∣ ) ( ). Note that this bound is valid for any y1äY1, and

thuswe can take theminimumover y1, similar to the discussion after (3).
We can now continue this argument for each subsequentmeasurement one at a time. In the second step, we

consider Roger-2ʼs localmeasurement y2äY2 on x y b, ,1 1
r and x y b, ,1 1

r ¢ , which results in

p b b xy y p b b x y yF F, min , , 6x y b x y b
y b

x y b y b x y b y b, , , , 2 1 1 2 2 1 1 2 , , , , , , , ,1 1 1 1
2 2

1 1 2 2 1 1 2 2
 år r r r¢¢ ¢( ) ( ∣ ) ( ∣ ) · ( ) ( )

wherewe similarly define x y b y b, , , ,1 1 2 2
r as the quantum state of the other k−2Rogers after Roger-1 andRoger-2

performPOVMs y1 and y2, and get outcomes b1 and b2 respectively. Note that in (6)we included the
minimization over y2 explicitly. Continuing further in thismanner, we eventually end upwith the entire state
beingmeasured, and are left with the relation that

p b b b xy y p b b b x y yF , min . 7x y b y b x y b y b
y b

k k k k k k, , , , , , , , , , 1 1 1 1 1 1k k k k
k k

1 1 1 1 1 1 1 1
 år r ¢¼ ¢ ¼ - -

- - - -
   ( ) ( ∣ ) ( ∣ ) ( )

Then by the chain rule in probability theory, we obtain the following lemma. For simplicity, we define the
vectors b b bk1=


 and y y yk1=

  .

Lemma1. In a prepare-and-distribute experiment generating the correlation p b xy
 ( ∣ ), it holds that

p b xy p b x yF , AMS , 8x x y b,r r ¢¢

    ( ) ( ( ∣ ) ( ∣ ) ) ( )

where, for a function f y b,
 

( ), we define

f y b f y bAMS , min min min , . 9y b
y b y b y b

,
k k1 1 2 2

å å å=
 

  
 ( ( )) ( ) ( )

Here AMS is short for alternatingminimization and summation. Note that this bound is valid for any ordering of
the Rogers, so in (9) we also have the freedom to optimize over such orderings.

Clearly, the bound given by the above lemma is stronger than (3). Later wewill see that the gap can be very
large.

3.2.Dimension estimations in themultiparty Bell scenario
Wenow turn to themain problemof the current paper: in amultiparty Bell scenario, canwe test theHilbert
space dimension of a specific party in a device-independentmanner?We designate Alice as the party whose
Hilbert space dimensionwe are testing and, after fixingAlice, wemay assume that the shared quantum state ρ is
pure as one of the Bobs can hold the purification of ρ andmeasure it trivially to obtain the same correlation data.
In otherwords, though the result in the current subsection is proved for the case when ρ is pure, it is also true for
amixed state ρ.

Now let us explain the relation betweenmultiparty Bell scenarios and prepare-and-distribute scenarios that
wementioned earlier. Suppose Alicemeasures her subsystemwith any specificmeasurement x. Then different
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outcomes awill force the other subsystems to collapse onto different quantum states ρx, a, whichmeans she
essentially ‘prepares and distributes’ ρx, a on the other subsystemswith probability p a x( ∣ ).Meanwhile, since the
measurement onAlice’s systemdoes not affect the joint state of the other systems, for any x, we have that

p a xTr , 10
a

x a, år r=( ) ( ∣ ) ( )

where is Alice’sHilbert space. In this way, for any x x X, ¢ Î wehave that

p a x p a xTr Tr Tr . 11
a a

x a x a
2

,
, , år r r= ¢ ¢

¢
¢ ¢( ( ) ) ( ∣ ) ( ∣ ) ( ) ( )

Note that

FTr , . 12x a x a x a x a, , , ,
2r r r r¢ ¢ ¢ ¢( ) ( ) ( )

Then by lemma 1,we have that Tr Tr 2
 r( ( ) ) is upper bounded by

p a x p a x p b axy p b a x yAMS . 13
a a

y b
,

,
2å ¢ ¢ ¢ ¢

¢

    ( ∣ ) ( ∣ )( ( ∣ ) ( ∣ ) ) ( )

So far, what we have done is upper bound the purity of the joint state of the Bobs.We now argue how this
implies a dimension bound for Alice. Since ρ is pure, we have that

Tr Tr Tr Tr , 142 2
 r r=( ( ) ) ( ( ) ) ( )

where  is the combinedHilbert space of all the Bobs. Since Tr r( ) is a quantum state on, we have that

1

dim
Tr Tr , 152


 r

( )
( ( ) ) ( )

where dim ( ) is Alice’sHilbert space dimension. By combining (13)–(15), and using the chain rule of
probability theory (p ab xy p a x p b axy=

   ( ∣ ) ( ∣ ) ( ∣ )), we have themain result of this paper, below.

Theorem. In amultiparty Bell experiment generating the correlation p ab xy
 ( ∣ ), theHilbert space dimension of Alice

is at least

p ab xy p a b x ymin AMS . 16
x x a a

y b
, ,

,
2

1

å ¢ ¢
¢ ¢

-    
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ( ( ∣ ) ( ∣ ) )) ( )

Note that the dimension of any other subsystem can be tested similarly by defining that party to be Alice.

Remark 1.Note that atfirst glance, it seems that only onemeasurement of Bob is used in the bound.However,
since each yj is chosen based on themeasurement settings x x y, , i¢ and outcomes a a b, , i¢ , for i j< , and there is

a summation over themeasurement outcomes, it is likely the case thatmanymeasurement settings are used for
each Bob in the computation of the bound. If the choices of each yj were not allowed to depend on the outcomes,

then onewould obtain a boundmuch less powerful as it would not capture any of the nonlocal behavior of the
correlation.Note that even though themeasurement choices are adaptive in this regard, it does notmeanwe
allow signaling in the experiments. This is only for the calculation of the bound (done after the experiment
concludes) and does not have any physical interpretation.

3.3. Exampleswith tight results
Wenow exhibit examples showing that the result above can performwell. Before starting, wewould like to point
out that when restricted to the bipartite case, the theorem above gives the same result with [5], which already
performs verywell onmany nontrivial examples of bipartite quantum correlations.

For generalmultipartite cases, we first show that the result (16) can be tight on quantum correlations with
any underlying quantumdimension. Suppose k parties share a quantum state ii

d

d
k

1
1å ñ=

Ä∣ and perform aBell

experiment, where each party’smeasurement set includes one in the computational basis. Suppose somehow
most of the correlation data is lost and only the part corresponding to the computational basismeasurements
remain.We nowuse the partial data to calculate (16)which is weaker than the result obtained from the full data.
However, this already proves the dimension is at least d, meaning that in this case (16) is tight, and this works for
any number of parties and any dimension d. Note that even though this example is rather trivial, it illustrates that
our bound is not restricted in any sense to the actualminimal dimension or the number of parties involved.

Next we consider a nontrivialfinite-dimensional example. The GHZ correlation is generated by the k-qubit
quantum state
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GHZ
1

2
0 1 , 17k

k kñ ñ + ñÄ Ä∣ ≔ (∣ ∣ ) ( )

and each party hasmeasurement settings with binary outcomes described as the following:

X

Y i i

Pauli : , ,

Pauli : , ,

+ñ -ñ
+ ñ - ñ

‐ {∣ ∣ }
‐ {∣ ∣ }

where

i i

1

2
0 1 ,

1

2
0 1 ,

1

2
0 i 1 ,

1

2
0 i 1 ,

+ñ= ñ + ñ -ñ = ñ - ñ

+ ñ= ñ + ñ - ñ = ñ - ñ

∣ (∣ ∣ ) ∣ (∣ ∣ )

∣ (∣ ˆ∣ ) ∣ (∣ ˆ∣ )

and î is the imaginary unit. Thenwe have that

p ab xy
1 i

2
, 18

h ab h xy

k

2 2

1
=

+ +

+
( ∣ ) ∣ ˆ ∣ ( )

( ( ) ( )

where h denotes theHammingweight of a binary vector. It can be verified that if we choose x x0, 1= ¢ = and
y y 0k1 1= = =- , the lower bound for Alice’s dimension is 2 for any k, which is obviously tight. Note that in
this case, and the ones before, the bound is exactly tight, that is, we need not round up (noting dimension is
always an integer).

The lower bound given in (16) can also be infinite. If this is the case, the result implies that the corresponding
quantum correlation cannot be produced by anyfinite-dimensional quantum systems. For such an example, let
us examine the (k+1)-party PR-box [17, 18]where the correlation probability p ab b xy yk k1 1¼ ¼( ∣ ) can be
expressed as

a b y x
1

2
if , 0 otherwise. 19

k
i

k

i i
k

j
1

1Å = P
=

=⨁ ( ) · ( )

Then the bound (16) shows that Alice’s dimensionmust be infinite, which can be seen as follows.We choose
x x0, 1= ¢ = , thenwhen a a= ¢, let y


that optimizes (16) be 1L1, otherwise let it be 0L0. This proves that

thismultiparty PR-Box cannot be produced by anyfinite-dimensional Hilbert spaces.

3.4. Numerical tests
Wenow assess the performance of the lower bounds given in (16) on tripartite quantum correlations usingmany
examples generated by finite-dimensional quantum systems. To produce desired examples of quantum
correlations, wefix a particular tripartite shared quantum state and generate randommeasurements for Alice,
Bob, andCharlie. Specifically, when the dimension of each localHilbert space is d, each party has d different
measurement settings, and each of themeasurements is in the eigenbasis of a randomly sampled symmetric
matrix. This allows us to producemany valid sets of quantum correlation data by straightforward calculation,
each of which is generated using a finite-dimensional quantum system,where the dimension is a tuneable
parameter of our choosing. Our results are displayed in the tables below for various choices of tripartite states.
Even thoughHilbert space dimension is always an integer, we also put the exact values in the tables below. This is
done because it revealsmore information about the bound, but also the exact value is relevant if the correlation is
repeatedmany times in parallel.We see that the boundmultiplies in this case, and thus the exact case is essential
for this reason.

3.4.1. Example: high amount of entanglement
Table 1 is for the state iii

d i
d1

1å ñ= ∣ onwhichwe expect our bound to behavewell due to the large amount of

entanglement in the state.
Since each correlation is generated using d-dimensional localHilbert spaces, d is a natural upper bound on

the smallestHilbert space dimension. That being said, our lower bound performedwell by certifying this as the
minimumHilbert space dimension inmost cases. It performed near perfectly in smaller dimensions, andwell in

Table 1.The performance of our bound (both exact and rounded up)
averaged over 100 randomly generated tripartite quantum correlations using
the state iii

d i
d1

1å ñ= ∣ . Exact calculations truncated to 3 decimal places.

Dimension 2 3 4 5

Average of (16) (rounded up) 2.00 3.00 3.84 4.00

Average of (16) (exact) 1.876 2.538 3.138 3.575
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dimension 5.Note thatwhen testing larger dimensional correlations, itmight be the case that they are realizable
in a smallerHilbert space dimension, thusmaking our lower bound smaller in the process. On that note, itmight
also be possible that our bound is performing better thanwe can tell, and it is just hidden by the fact that we
cannot compute the exactminimumHilbert space dimension. This fact is the basis of the importance of the
work in this paper.

3.4.2. Example: small amount of entanglement
Table 2 is for the state i iiii

d
1å ñ= · ∣ (normalized) onwhichwe expect our bound to behave less well due to the

small amount of entanglement in the state.
As expected, our lower bound performs less well than the above case (which hadmore entanglement).

Nevertheless, it still performed decently by giving a rough estimate of d. Asmentioned above, it could be possible
that these correlations can be generated by a quantum state of small localHilbert space dimension.

3.4.3. Example: no entanglement
Table 3 is for themixed state iii iii

d i
d1

1å ñá= ∣ ∣onwhich the expected success of our bound is less certain. This is
because shared randomness is not a free resource in our setting and thus evenwith no entanglement the bound
can still be greater than 1.

We see that our bound is rather far from d for these correlations. It is perhaps an advantage of our bound that
it does not pick upHilbert space dimension arising from shared randomness aswell as it does from
entanglement. Since quantum entanglement is often viewed as amore interesting resource than shared
randomness, this advantage could be a hidden feature.

3.4.4. Example: three-party Dicke state
Lastly, we test our bound on the three-partyDicke state of localHilbert space dimension 3, as shownbelow:

1

6
012

1

6
021

1

6
102

1

6
120

1

6
201

1

6
210 . 20ñ + ñ + ñ + ñ + ñ + ñ∣ ∣ ∣ ∣ ∣ ∣ ( )

Belowwe present the numerical calculations in table 4.
We see that this is almost the same behavior as in table 1, where the state testedwas

1

3
000

1

3
111

1

3
222 . 21ñ + ñ + ñ∣ ∣ ∣ ( )

The numbers suggest that, at least in the case of three parties we choose, our bound does not change greatly when
theflavor of the entanglement changes in thismanner.

Remark 2.Note that we tested hundreds ofmultipartite correlations in the tables (and thousands in general)
without the need for any Bell inequalities. If we took the Bell inequality approach, wewould have to examine
each correlation on its own, thenfind a suitable Bell inequality that separates it from the set of local correlations
(if one even exists), then examine the extent towhich one can violate that inequality with quantum systems of
different dimensions. This is an extremely complicated and challenging task, whichwe avoid entirely with our
general, easy-to-compute lower bound.

Table 2.The performance of our bound (both exact and rounded up)
averaged over 100 randomly generated tripartite quantum correlations using
the state i iiii

d
1å ñ= · ∣ (normalized). Exact calculations truncated to 3 decimal

places.

Dimension 2 3 4 5

Average of (16) (rounded up) 2.00 2.00 3.00 3.00

Average of (16) (exact) 1.461 1.865 2.268 2.602

Table 3.The performance of our bound (both exact and rounded up)
averaged over 100 randomly generated tripartite quantum correlations using
the state iii iii

d i
d1

1å ñá= ∣ ∣. Exact calculations truncated to 3 decimal places.

Dimension 2 3 4 5

Average of (16) (rounded up) 2.00 2.00 2.00 2.00

Average of (16) (exact) 1.075 1.202 1.360 1.451
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3.5. Advantage over bipartite results
Thoughwe are focusing onmultiparty Bell scenarios in this paper, one could in principle apply bipartite results
by interpreting the correlation as a bipartite one by combining the Bobs into a single party. Since device-
independent dimension tests already exist for bipartite cases (for example [5]), this provides a simple solution for
our problem. In this situation, a natural question is whether the new result we provide in the current paper can
beat this bipartite approach. In fact, the following example shows that this is the case, andmoreover, the
advantage can be great.

Consider a three-party Bell experiment inwhich each party has two binary POVMs, and the correlation is
given as

x y b a b b
1

4
if , 0 otherwise. 222 1 1 2Å = Å Å· ( ) ( )

First thingwe note is that this correlation is nonsignaling, thus it is conceivable that we can produce it by a
quantum scheme. Suppose this is the case, andwe now focus on the dimension of Alice’s subsystem. By
straightforward calculation, one can verify that the lower bound provided by [5] is 4, while the lower bound
given by (16) is infinite. Thismeans that this correlation cannot be produced by anyfinite-dimensional quantum
system.Clearly, this example indicates that the result in the current paper is able to show facts that are not
revealed by the bipartite results in [5], and thuswe believe is of a truemultipartite nature.

It should be pointed out that the correlation (22) is also an example illustrating the fact that considering a
different ordering of the Bobs in our bound results in a different performance. In fact, if we switch the roles of
Bob-1 andBob-2 the dimension boundwill decay tofinite.

We nowperform again the numerical tests presented in table 1, but this time comparing our bound to that in
[5]. See table 5.

There are a few important points that the numerical results in table 5 show.Most importantly, there exist
many examples showing afinite separation between the two bounds. This illustrates that our bound is of a true
multipartite nature. These examples can be found in dimension 4 in the rounded case and any dimension in the
exact case.Moreover, in the exact case, we see that our bound almost always gives a greater value.Wewould have
liked to push these tests further, but they get computationally expensive as the dimension grows.On the other
hand, we can already infer something interesting even from a small gap size. Asmentioned earlier, if the same
correlation is repeatedmany times in parallel, we see that both boundsmultiply, thus even a small gap can be
amplified to arbitrarily large sizes. Thus correlations can be constructed in this waywhich have arbitrarily large
finite gap.

3.6. Purity and entanglement test
Going back to the proof of our theorem, we can see from (15) that the purity of Tr r( ) is the quantity that we
actually test. Recall that the purity of a quantum stateσ is defined as Tr 2s( ). It turns out that the purity contains

Table 4.The performance of our bound
(both exact and rounded up) averaged
over 100 randomly generated tripartite
quantum correlations using the state

012 021 1021

6

1

6

1

6
ñ + ñ + ñ∣ ∣ ∣

120 201 2101

6

1

6

1

6
+ ñ + ñ + ñ∣ ∣ ∣ .

Exact calculations truncated to 3 decimal
places.

Dimension 3

Average of (16) (rounded up) 3.00

Average of (16) (exact) 2.591

Table 5. Lower bound comparison averaged over 100 randomly generated tripartite quantum correlations using the state iii
d i

d1
1å ñ= ∣ (and

measurements described as in section 3.4). Exact calculations truncated to 3 decimal places.

Dimension 2 3 4 5

Average of (16) (rounded up) 2.00  3.00  3.90  4.00 
Average of [5] (rounded up) 2.00 3.00 3.51 4.00

Number of times (16) outperformed [5] 0 0 39 0

Average of (16) (exact) 1.881  2.527  3.134  3.590 
Average of [5] (exact) 1.867 2.458 3.006 3.435

Number of times (16) outperformed [5] (by at least 0.001) 41 81 92 94
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muchmore information than just a bound on the dimension. For example, for a bipartite pure state, the purity
of reduced densitymatrices can be used to lower bound the amount of entanglement. Unfortunately, in
multipartite cases the situation ismuchmore complicated. On one hand, the concepts of entanglement
measures have not yet been fully understood formultipartite quantum states, and on the other hand,
mathematical difficulties also arise in these cases [19]. However, in our setting if somehowmore information on
the structure of the shared quantum state is already known, it is possible to drawnontrivial conclusions on
entanglement ofmultiparty quantum states. As an example, suppose in addition to the correlation data, we are
told that the shared quantum state can be transferred to a state of the form a ii

m
i

n
1å ñ=

Ä∣ by local unitary
operations. Then like in bipartite cases [20], we can give a nontrivial estimation for the amount of entanglement
based on only the purity estimation of the reduced densitymatrices. It should be pointed out that because of the
need of extra (quantum) information, this would no longer be fully device-independent, but still could be
interesting nonetheless, as sometimes these assumptionsmay be reasonable. Rigorous device-independent
techniques to testmultipartite entanglement, for example [21, 22], rely onmultipartite Bell inequalities that
often involve complicated geometrical characterizations ofmultipartite quantum correlation sets.With these
extra assumptions thatwe discussed, our approach avoids suchmultipartite Bell inequalities whichwill be very
convenient for certain applications.

4.Discussions

In this work, we defined the prepare-and-distribute scenario, and developed an efficient technique for
estimating distances between quantumpreparations based only onmeasurement correlation data. This allowed
us to derive a device-independent lower bound for theHilbert space dimension of any given party in a
multiparty Bell scenario and gave examples showing that the result can be tight. Furthermore, by comparing the
performance of our boundwithmethods based on bipartite dimension bounds, we showed that our bound is
much stronger, revealing itsmultipartite nature.Moreover, our bound involves only simple functions of the
correlation data, thus being easy to calculate (all the examples in this paper can be computed by hand), and
allowing it to enjoy a robustness against experimental uncertainty during the process of gathering the correlation
data. Considering the difficulties of generalizing dimensionwitnesses tomultipartite cases due to the need for
multipartite Bell inequalities, we believe our approach has great potential for future applications. In particular,
like in the bipartite case (see the real-world application [8]), we hope it will prove itself useful in future quantum
experiments involving three ofmore parties.
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