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Abstract In this paper, we study the pointer jumping problem under the one-way
number-on-the-forehead (NOF) multiparty communication model. This problem is
widely considered to be a candidate for proving strong lower bounds under the NOF
model, and has applications to proving lower bounds for many other problems.

We investigate the maximum communication complexity of collapsing protocols
for pointer jumping, where each player sees all layers behind her and only the compo-
sition of layers ahead of her. We present a collapsing protocol in which every player
communicates at most n− 1

2 log2 n+1 bits, which tightly matches the lower bound of
n − 1

2 log2 n − 2 given by Brody and Chakrabarti (in Proc. 25th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), pp. 145–156, 2008). Actually,
in our protocol only three players need to communicate information: the first player
sends log2(n + 1) bits, the second to last player sends n − 1

2 log2 n + 1 bits, and the
last player just outputs the answer. A natural question is whether the log2(n + 1) bits
communicated by the first player is necessary for achieving a low maximum commu-
nication complexity. We make progress towards this question by proving that in any
collapsing protocol for the 3-player pointer jumping problem, if the first player only
sends one bit, then the second player must communicate at least n − 2 bits.
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Number-on-the-forehead model · Collapsing protocol · Total influence
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1 Introduction

Communication complexity has received a great amount of research attention since
its initiation by Yao [27]. The techniques and results in communication complexity
have been successfully applied to proving lower bounds for problems in a wide va-
riety of areas, including streaming algorithms [3, 12, 18], circuit complexity [7, 19],
data structures [2, 21], metric embedding [4], property testing [8], and proof com-
plexity [6]. See [20] for a comprehensive treatment of this area.

In this paper we consider the pointer jumping problem under the setting of mul-
tiparty communication complexity, which has strong relations with circuit lower
bounds. By the results of Beigel and Tarui [7], to show non-membership of a spe-
cific function in the complexity class ACC0, it suffices to prove a polynomial lower
bound for this function under the number-on-the-forehead (NOF) communication
model [13] with polynomially many players. The pointer jumping problem is widely
considered to be a good candidate for this task.

In the NOF multiparty communication model, there are k players PLR1, PLR2, . . . ,

PLRk , who will collaborate to compute a function f (x1, x2, . . . , xk), provided that the
ith player PLRi sees all xj ’s with j �= i but cannot see xi . (Just think of the ith input
token being written on the forehead of PLRi .) This model was introduced by Chandra,
Furst and Lipton [13]. Note that this model collapses to the normal two-party commu-
nication model when k = 2. We notice that, in this model, each player in fact grasps
a large amount of information, especially when k is large. Thus, intuitively, compu-
tation under this model should be easy, and proving lower bounds, on the contrary,
might be hard. This intuition has been well reflected during the past years of research.
Currently, no nontrivial lower bound has been proved for any explicit function with
ω(logN) players, where N is the size of the total input.

1.1 The Pointer Jumping Problem

The pointer jumping problem is widely considered to be a good candidate for proving
communication lower bounds under the NOF model. On its own right, the problem
also has many applications in proving lower bounds for other problems (see [14, 26]).
The k-party pointer jumping problem MPJnk is (informally) defined on a layered graph
with k + 1 layers. The first layer consists of a single vertex t , layers 2 through k each
contains n vertices, and layer k + 1 has two vertices labeled 0 and 1 respectively.
The inputs are the set of edges between consecutive layers. For each vertex v in the
first k layers, there is a directed edge from v to some vertex in the next layer. The
output of the problem is the (unique) label of the vertex in layer k + 1 reachable
from t through the directed edges. There are k players PLR1, PLR2, . . . , PLRk , where
each player PLRi sees all the graph except for the edges between the ith and (i + 1)th
layers. See Fig. 1 for an intuitive illustration. (Imagine that the edges between layers i

and i + 1 are drawn on the forehead of PLRi .) The players write messages on a public
blackboard in the order PLR1, PLR2, . . . , PLRk , where the message written by PLRk

is regarded as the output. Notice that this is a one-way communication model. Also
note that the order of players sending messages is important, since a trivial O(logn)

protocol exists whenever PLRi can send her message before PLRj for some i > j .
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Fig. 1 An illustrative instance of MPJ4
5, i.e., Pointer Jumping with n = 4 and k = 5. The output on this

instance should be 0

MPJn2 is actually equivalent to the one-way two-party communication problem
INDEXn, where player 1 holds a binary string s of length n and player 2 holds an
index i ∈ {1,2, . . . , n}, and player 1 needs to send a message to player 2 so that the
latter can determine the ith bit of s. Both deterministic and randomized commu-
nication complexity of the INDEX problem have been tightly characterized [1, 20].
Nevertheless, the complexity of MPJnk for larger k is not well understood. Wigderson
proved that MPJn3 requires Ω(

√
n) bits of communication based on the idea of [22].

This result is unpublished but was stated in [5]. This lower bound was generalized
by Viola and Wigderson [26], who showed that any randomized protocol for MPJnk
requires at least n1/(k−1)/kO(k) communication. The lower bound is nontrivial only
for small values of k, and no further improvements have been made up to now.

On the upper bound side, Pudlák, Rödl and Sgall [25] found an amazing sub-
linear protocol (more precisely O(n log logn/ logn)) for a special case of MPJn3 in
which the middle layer of edges form a permutation. This idea was extended by
Brody and Chakrabarti [11] who gave a protocol for general MPJnk (k ≥ 3) using

O(n(
k log logn

logn
)(k−2)/(k−1)) bits of communication. This result dashes the hopes for an

Ω(n) lower bound for constant k, as in the case k = 2.
Since proving stronger lower bounds for MPJnk seems to be rather difficult, several

restricted models and protocols have been considered with the hope that stronger
results should be easier to prove under these models, which may in turn inspire the
study of the original problem. In the myopic model of pointer jumping, introduced
by Gronemeier [17], PLRi only has a limited view of the layers ahead of her; to be
specific, she cannot see layers i + 2, . . . , k. Brody [9, 10] proved that in any myopic
protocol for MPJnk , at least n bits need to be communicated in total, and some player
must send at least n/2 bits. Protocols with matching upper bounds are also presented
in [9]. The conservative model was introduced by Damm, Jukna and Sgall [14], in
which each player sees the layers ahead of her and the composition of the layers
behind her. An Ω(n/k2) communication lower bound was proved in [14] for MPJnk
under the conservative model. Similarly, in the collapsing model introduced by Brody
and Chakrabarti [11], each player knows all the players behind her, but can only see
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the composition of the layers in front of her. They proved in [11] that in any collapsing
protocol for MPJnk , some player must communicate at least n− 1

2 log2 n− 2 bits. This
lower bound is in particular interesting, since in their sub-linear protocol for MPJnk
[11], all players except for PLR1 are collapsing, i.e., the information they send only
depend on the composition of layers ahead of them. Thus, the linear lower bound for
collapsing protocols actually shows that even one non-collapsing player can make the
problem much easier.

It is clear that n is an upper bound on the maximum number of bits that each
player must communicate in a collapsing protocol for MPJnk . However, to our knowl-
edge, no protocol with better-than-trivial maximum communication complexity has
been proposed for MPJnk in the literature. Since there is still a Θ(logn) gap between
the lower and upper bounds, it is interesting to investigate whether this gap can be
bridged, which motivates our study.

1.2 Our Contributions

In this paper, we present a collapsing protocol for MPJnk in which each player com-
municates at most n − 1

2 log2 n + 1 bits, which tightly matches the lower bound of
n − 1

2 log2 n − 2 given by [11] up to an additive constant. Actually, in our proto-
col only three players need to communicate information, namely PLR1, PLRk−1 and
PLRk . More specifically, PLR1 sends log2(n + 1) bits, PLRk−1 sends n − 1

2 log2 n + 1
bits, and PLRk outputs the correct answer. Our result shows that the collapsing model
allows nontrivial protocols.

Note that the total communication complexity of our protocol is roughly n +
1
2 log2 n, which is worse than that of the trivial protocol in which PLR1 sends n bits
indicating the destination of all the n possible starting pointers, and then any other
player can give the correct answer. Thus, one may ask whether we can achieve low
total and maximum communication complexity simultaneously. Towards this end, a
natural question is whether the log2(n + 1) bits communicated by PLR1 in our pro-
tocol is necessary. We make progress towards this question by proving that in any
collapsing protocol for MPJn3, if PLR1 sends only one bit, then PLR2 must commu-
nicate at least n − 2 bits. Although this result seems marginal, the proof technique
which uses tools from Boolean function analysis is interesting on its own and might
have further applications.

2 Preliminaries

For an integer m ≥ 1, let [m] denote the set {1,2, . . . ,m}. We use log to denote the
base 2 logarithm. Given a string s of length m, let s(i), 1 ≤ i ≤ m, denote the ith
character of s. Throughout this paper all characters of a string are positive integers,
and thus can be compared with each other. Given two strings a, b of the same length
m, we say a ≤ b if a(i) ≤ b(i) for all i ∈ [m], and a < b if a ≤ b and a(i) < b(i)

for some i ∈ [m]. Notice that this forms a partial order on the set of strings of certain
length. We identify a function f : [m] → A with the string sf ∈ Am, where sf (i) =
f (i) for all i ∈ [m]. For two functions f1, f2, let f1 ◦ f2 denote their composition,
that is, (f1 ◦ f2)(x) = f1(f2(x)).
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We next give the formal definition of the pointer jumping problem considered in
this paper. The pointer jumping function MPJnk : [n] × ([n]n)k−2 × {0,1}n → {0,1} is
defined as:

MPJnk(f1, f2, . . . , fk) = (fk ◦ fk−1 ◦ · · · ◦ f2)(f1),

where f1 ∈ [n], fi ∈ [n]n for 2 ≤ i ≤ k − 1, and fk ∈ {0,1}n. (Intuitively, we can
think of fi as the function induced by the set of edges between layers i and i + 1; see
Fig. 1 for a comparison.)

In the number-on-the-forehead multiparty communication model, there are k play-
ers PLR1, PLR2, . . . , PLRk . Each player PLRi , 1 ≤ i ≤ k, knows {fj | j �= i}. In a (de-
terministic) protocol for MPJnk , the players write messages on a public blackboard
(i.e., messages are seen by all players) in the order PLR1, PLR2, . . . , PLRk ; the last
player, PLRk , should correctly write down MPJnk(f1, f2, . . . , fk). We also use MPJnk to
denote the problem. The maximum communication complexity of a protocol for MPJnk
is the maximum number of bits written by any player in the protocol, over all possible
instances. As in conventional settings of communication complexity, we assume that
players have unlimited computation power, i.e., they can compute any computable
function, and the time and space consumed by their local computation are not taken
into consideration.

In a protocol for MPJnk , a player PLRi is called collapsing if her message depends
only on f1, f2, . . . , fi−1, and fk ◦ fk−1 ◦ · · · ◦ fi+1. We can equivalently regard PLRi

as only knowing f1, f2, . . . , fi−1, and fk ◦ fk−1 ◦ · · · ◦ fi+1. A protocol is called
collapsing if all players in it are collapsing. All protocols considered in this paper are
deterministic, and we always assume that k ≥ 3.

3 An Optimal Collapsing Protocol

In this section we design a collapsing protocol for MPJnk whose maximum commu-
nication complexity tightly matches the lower bound given in [11], up to a small
additive constant.

Let S = {s1, s2, . . . , sr} ⊆ {0,1}n be a set of n-bit binary strings. We call S a chain
if we there exists a permutation of [r], say (o1, o2, . . . , or ), such that soi

< soi+1 for
all 1 ≤ i < r . We will use the following theorem from combinatorics:

Theorem 1 (Sperner’s Theorem; see e.g. [15]) The set {0,1}n of n-bit binary strings
can be partitioned into

(
n


n/2�
)

disjoint chains.

We assume without loss of generality that all the players know a fixed partition of
{0,1}n into

(
n


n/2�
)

disjoint chains. (This can be done since every player has unlimited
computation power, and they can all compute the smallest partition under some or-
derings on the partitions.) Also, assume these chains are indexed by 1,2, . . . ,

(
n


n/2�
)
,

which is known to all players. For each i ∈ [k], let gi = fk ◦ fk−1 ◦ · · · ◦ fi+1. We
now give our protocol CHAIN for MPJnk as follows.
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Protocol CHAIN:

1. PLR1 writes |{i | g1(i) = 1;1 ≤ i ≤ n}| on the blackboard using �log(n + 1)
 bits.
(Recall that g1 = fk ◦ fk−1 ◦ · · · ◦ f2 ∈ {0,1}n.)

2. PLRk−1 writes the index of the chain which contains fk ∈ {0,1}n on the black-
board, using �log

(
n


n/2�
)
 ≤ n− 1

2 logn+ 1 bits. (The upper bound estimation can

be done by Stirling’s formula; see e.g. [16].)
3. PLRk utilizes the information on the blackboard, as well as f1, . . . , fk−1, to output

the correct answer. (Details of this process will be specified later in the proof.)

Theorem 2 The above protocol, CHAIN, is a collapsing protocol for MPJnk in which
each player communicates at most n − 1

2 logn + 1 bits.

Proof Clearly CHAIN is a collapsing protocol for MPJnk with maximum communica-
tion complexity max{�log(n+1)
, n− 1

2 logn+1} = n− 1
2 logn+1 for all n ≥ 1. We

next prove the correctness of this protocol. It suffices to show that PLRk can correctly
output the answer.

Since PLRk knows f2, . . . , fk−1, she can compute h := fk−1 ◦ fk−2 ◦ · · · ◦ f2 ∈
[n]n. For every 1 ≤ i ≤ n, define

Pi = h−1(i) := {
j | h(j) = i;1 ≤ j ≤ n

}
and αi = |Pi |.

Intuitively, Pi can be seen as the set of vertices in the second layer that, following the
directed edges, can reach the ith vertex in the kth layer. Denote

T = {i | αi ≥ 1;1 ≤ i ≤ n}.
Thus T is the image set of h, which can also be regarded as the set of vertices in the
kth layer that are reachable from some vertex in the second layer.

Remember that the message sent by PLR1, denoted by R, is the number of 1’s in
g1 = fk ◦ h ∈ {0,1}n. We have

R = ∣∣{j | (fk ◦ h)(j) = 1;1 ≤ j ≤ n
}∣∣

=
∑

i:fk(i)=1;1≤i≤n

∣∣{j | h(j) = i;1 ≤ j ≤ n
}∣∣

=
∑

i:fk(i)=1;1≤i≤n

αi

=
∑

i∈T :fk(i)=1

αi

=
∑

i∈T

fk(i)αi .

Recall that PLRk knows T and all αi ’s, but does not know fk . Regarding
{fk(i) | i ∈ T } as the set of unknowns (with value 0/1), let PLRk try to solve the



Theory Comput Syst (2014) 54:13–23 19

following equation:
∑

i∈T

αifk(i) = R. (1)

PLRk knows all the coefficients in Eq. (1). In addition, she knows the chain con-
taining fk , say C, which is written by PLRk−1. Thus, we can put an additional re-
quirement on Eq. (1), stating that the solution must be consistent with some string
in C, that is, there exists some string s ∈ C such that fk(i) = s(i) for all i ∈ T . We
know that there exists at least one solution to the equation (which is the restriction of
fk on T ). We will show that there can be at most one solution to the equation. This
will complete the proof of Theorem 2, since PLRk can just exhaustively search for
the unique solution {fk(i) | i ∈ T }. As she also sees f1, she can compute the correct
answer

(fk ◦ fk−1 ◦ · · · ◦ f2)(f1) = fk

(
h(f1)

)
,

using the fact that h(f1) ∈ T . (Note that PLRi might not uniquely determine fk(i) for
i /∈ T ; nonetheless, these values are useless to her.)

We now prove the uniqueness of the solution of Eq. (1). Assume to the contrary
that there exist two distinct solutions, say f ′ and f ′′, to Eq. (1). Assume without loss
of generality that f ′(r) = 0 and f ′′(r) = 1 for some r ∈ T . Since both f ′ and f ′′ are
consistent with some string in the chain C, by the definition of a chain we have

f ′(i) ≤ f ′′(i) for all i ∈ T .

Therefore,

0 = R − R

=
∑

i∈T

αif
′′(i) −

∑

i∈T

αif
′(i)

=
∑

i∈T

αi

(
f ′′(i) − f ′(i)

)

≥ αr

≥ 1,

which is a contradiction. Hence, Eq. (1) can have at most one solution. Since we
know that it has at least one solution, the claim is proved and Theorem 2 follows. �

4 Lower Bound for Restricted Collapsing Protocols

Note that in our protocol CHAIN, the first player needs to send logn bits of informa-
tion. It is natural to ask whether the logn bits communicated by PLR1 is necessary for
achieving a low maximum communication complexity. In this part we make progress
towards this question by proving the following theorem.
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Theorem 3 In any collapsing protocol for MPJn3 , if PLR1 sends only one bit, then
PLR2 must communicate at least n − 2 bits.

We will utilize tools from Boolean function analysis to prove the theorem. For a
function f : {0,1}n → {0,1}, the total influence of f , denoted by I (f ), is defined as:

I (f ) = 1

2n

∑

x∈{0,1}n

∣∣{y ∈ {0,1}n|y is a neighbor of x and f (y) �= f (x)
}∣∣,

where y is a neighbor of x if and only if x and y differ in exactly one bit. Clearly
I (f ) ≤ n. It is well known that I (f ) = n if and only if f is the PARITY function or
the complement of the PARITY function. See, e.g., [23, 24] for some basic results in
Boolean function analysis.

We now prove Theorem 3.

Proof of Theorem 3 The proof is by a reduction from the two-party communica-
tion problem INDEX. In the problem INDEXn, player 1 sees a string s ∈ {0,1}n and
player 2 sees an integer p ∈ [n]. In a protocol for INDEXn, player 1 first sends a mes-
sage to player 2, and then player 2 needs to correctly output s(p). It is well-known
that in any deterministic protocol for INDEXn, player 1 needs to send at least n bits
(see e.g. [20]).

Consider any collapsing protocol for MPJn3 in which PLR1 sends one bit. What
PLR1 sees is g1 = f3 ◦ f2 ∈ {0,1}n. Thus, the behavior of PLR1 can be viewed as a
function h : {0,1}n → {0,1}, which means that, upon seeing the string (composed
function) g1 ∈ {0,1}n, she writes one bit h(g1) on the blackboard.

Now consider I (h), the total influence of the Boolean function h. We distinguish
two cases.

– Case 1: I (h) < n. In this case we know that there exists an index i ∈ [n] and a set of
binary values {aj ∈ {0,1} | j ∈ [n] \ {i}}, such that h(a1a2 . . . ai−10ai+1 . . . an) =
h(a1a2 . . . ai−11ai+1 . . . an). In other words, if the j th input bit of h is fixed to aj

for every j ∈ [n] \ {i}, the function h will degenerate to a constant function, i.e., it
does not depend on the ith input bit (even if this input bit is not fixed).

We now present a reduction from INDEXn−2 to MPJn3 . Let I be an instance of
INDEXn−2 in which player 1 sees s ∈ {0,1}n−2 and player 2 sees p ∈ [n − 2].
Create an instance (f1, f2, f3) of MPJn3 as follows:

Let f1 = i (recall that i is the “irrelevant” index of h mentioned before); let

f3(j) =
⎧
⎨

⎩

s(j) if 1 ≤ j ≤ n − 2;
0 if j = n − 1;
1 if j = n,

and

f2(j) =
⎧
⎨

⎩

p if j = i;
n − 1 if j ∈ [n] \ {i} and aj = 0;
n if j ∈ [n] \ {i} and aj = 1.
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It is easy to check that f3(f2(f1)) = s(p), and that for every j ∈ [n] \ {i},
g1(j) = f3(f2(j)) = aj . Hence, as argued before, h is fixed as a constant function
regardless of the value of g1(i), and thus the message of PLR1 is a fixed bit regard-
less of p and s. Therefore, both players in INDEXn−2 knows this message. (The
knowledge about h can be regarded as known to both players, since we are con-
sidering a fixed protocol for MPJn3 .) Notice that player 1 in INDEXn−2 also knows
f1 and f3, and player 2 knows f1 and f2. Thus they can simulate the collapsing
protocol for MPJn3, with player 1 emulating PLR2, and player 2 emulating PLR3.
Since f3(f2(f1)) = s(p), player 2 will correctly output the answer. The number
of bits that player 1 communicates is exactly that sent by PLR2 in the protocol for
MPJn3. However, we know that in any protocol for INDEXn−2, player 1 must send at
least n − 2 bits. Therefore, in the protocol for MPJn3, PLR2 must also send at least
n − 2 bits.

– Case 2: I (h) = n. In this case h is either PARITY (i.e., the exclusive OR of all its
input bits) or its complement. We assume that h is PARITY, and the other case is
very similar to prove. We perform a similar reduction as in Case 1. Further consider
two subcases:
– n is even. The reduction is from INDEXn to MPJn3, where f1 = 1, f3 = s, and

f2(j) = p for all j ∈ [n]. It is easy to check that f3(f2(f1)) = s(p), and that h

becomes a constant function (since it is the XOR of an even number of identical
bits). By a similar analysis as in Case 1, we know that in any collapsing protocol
for MPJn3, PLR2 must communicate at least n bits.

– n is odd. The reduction is from INDEXn−1 to MPJn3, where f1 = 1,

f3(j) =
{

s(j) if 1 ≤ j ≤ n − 1;
0 if j = n,

and

f2(j) =
{

p if j ∈ {1,2};
n if j ∈ [n] \ {1,2}.

It is easy to check that f3(f2(f1)) = s(p), and that h becomes a constant func-
tion (since it is the XOR of two s(p)’s and n− 2 zeros). By a similar analysis as
in Case 1, we know that in any collapsing protocol for MPJn3, PLR2 must com-
municate at least n − 1 bits.

The proof of Theorem 3 is thus complete. �

5 Conclusions

In this paper, we have investigated collapsing protocols for the pointer jumping prob-
lem under the NOF multiparty computation model. We presented a collapsing proto-
col for the problem with maximum communication complexity n− 1

2 logn+1, which
matches the lower bound given in [11] up to an additive constant. We also prove that
in any collapsing protocol for MPJn3, if the first player only sends one bit, then the
second player must send at least n − 2 bits.
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There are many problems in this area that deserve further explorations. A big open
question is whether the gap between upper and lower bounds for the total commu-
nication complexity of MPJnk can be bridged, even for small values of k. Another
question is to strengthen the result of Theorem 3 by allowing the first player to send
more bits.

It is also interesting to consider randomized collapsing protocols for MPJnk . The
following public-coin randomized collapsing protocol for MPJnk was suggested by an
anonymous reviewer of an early draft of this paper. First, the players use the pub-
lic coins to randomly select k − 1 subsets of [n] of size 2n/k, say S1, S2, . . . , Sk−1.
Then, for each i ∈ [k − 1], PLRi sends gi(j) for all j ∈ Si . Note that each of the first
k − 1 players sends 2n/k bits. For each i ∈ [k − 1], it holds with probability 2/k

that (fi ◦ · · · ◦ f2)(f1) ∈ Si . Thus, with probability at least 1 − (1 − 2/k)k−1 > 0.7,
there exists i′ ∈ [k − 1] such that (fi′ ◦ · · · ◦ f2)(f1) ∈ Si′ . Then PLRk , who knows
fi′ , . . . , f1, can obtain the correct answer via PLRi′ ’s message. By increasing the size
of the chosen subsets, we can get a collapsing protocol with maximum communica-
tion complexity Θ(n/k) that succeeds with probability at least 1 − ε for any fixed
ε > 0. This shows that randomness does help in terms of maximum communica-
tion complexity. However, the total communication complexity of the protocol is still
Θ(n). This motivates the following question: is there a randomized collapsing proto-
col for MPJnk with total communication complexity o(n)?
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