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Abstract

In this paper, we study the stochastic combinatorial multi-armed bandit (CMAB)
framework that allows a general nonlinear reward function, whose expected value
may not depend only on the means of the input random variables but possibly
on the entire distributions of these variables. Our framework enables a much
larger class of reward functions such as the max() function and nonlinear utility
functions. Existing techniques relying on accurate estimations of the means of
random variables, such as the upper confidence bound (UCB) technique, do not
work directly on these functions. We propose a new algorithm called stochasti-
cally dominant confidence bound (SDCB), which estimates the distributions of
underlying random variables and their stochastically dominant confidence bound-
s. We prove that SDCB can achieve O(log T') distribution-dependent regret and
O(\/T ) distribution-independent regret, where 7" is the time horizon. We apply
our results to the K-MAX problem and expected utility maximization problems.
In particular, for K-MAX, we provide the first polynomial-time approximation
scheme (PTAS) for its offline problem, and give the first O(v/T') bound on the
(1 — e)-approximation regret of its online problem, for any ¢ > 0.

1 Introduction

Stochastic multi-armed bandit (MAB) is a classical online learning problem typically specified as a
player against m machines or arms. Each arm, when pulled, generates a random reward following an
unknown distribution. The task of the player is to select one arm to pull in each round based on the
historical rewards she collected, and the goal is to collect cumulative reward over multiple rounds as
much as possible. In this paper, unless otherwise specified, we use MAB to refer to stochastic MAB.

MAB problem demonstrates the key tradeoff between exploration and exploitation: whether the
player should stick to the choice that performs the best so far, or should try some less explored
alternatives that may provide better rewards. The performance measure of an MAB strategy is its
cumulative regret, defined as the difference between the cumulative reward obtained by always
playing the arm with the largest expected reward and the cumulative reward achieved by the learning
strategy. MAB and its variants have been extensively studied in the literature, with classical results
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such as tight ©(log T") distribution-dependent and ©(+/T) distribution-independent upper and lower
bounds on the regret in 7" rounds [17} 2} [1]].

An important extension to the classical MAB problem is combinatorial multi-armed bandit (CMAB).
In CMARB, the player selects not just one arm in each round, but a subset of arms or a combinatorial
object in general, referred to as a super arm, which collectively provides a random reward to the
player. The reward depends on the outcomes from the selected arms. The player may also observe
partial feedbacks from the selected arms to help her in decision making. CMAB has wide applications
in online advertising, online recommendation, wireless routing, dynamic channel allocations, etc.,
because in all these settings the action unit is a combinatorial object (e.g. a set of advertisements, a
set of recommended items, a route in a wireless network, and an allocation between channels and
users), and the reward depends on unknown stochastic behaviors (e.g. users’ click through behaviors,
wireless transmission quality, etc.). Therefore CMAB has attracted a lot of attention in online learning
research in recent years [11} 8] 20} 13714, 16, [15 21} 9]

Most of these studies focus on linear reward functions, for which the expected reward for playing a
super arm is a linear combination of the expected outcomes from the constituent base arms. Even for
studies that do generalize to non-linear reward functions, they typically still assume that the expected
reward for choosing a super arm is a function of the expected outcomes from the constituent base
arms in this super arm [8} [15]]. However, many natural reward functions do not satisfy this property.
For example, for the function max(), which takes a group of variables and outputs the maximum
one among them, its expectation depends on the full distributions of the input random variables,
not just their means. Function max() and its variants underly many applications. As an illustrative
example, we consider the following scenario in auctions: the auctioneer is repeatedly selling an item
to m bidders; in each round the auctioneer selects K bidders to bid (due to capacity constraint, and
also a typical practice in online auctions); each of the K bidders independently draws her bid from
her private valuation distribution and submits the bid; the auctioneer uses the first-price auction to
determine the winner and collects the largest bid as the paymentﬂ The goal of the auctioneer is
to gain as high cumulative payments as possible. We refer to this problem as the K-MAX bandit
problem, which cannot be effectively solved in the existing CMAB framework.

Beyond the K-MAX problem, there is a large class of expected utility maximization (EUM) problems
studied in stochastic optimization literature [24} 18, [19, |4]. The problem can be formulated as
maximizing E[u(}_, ¢ X;)] among all feasible sets .S, where X;’s are independent random variables
and u(-) is a utility function. For example, X; could be the random delay of edge ¢; in a routing
graph, S is a routing path in the graph, and the objective is maximizing the utility obtained from any
routing path, and typically the shorter the delay on the path, the larger the utility. The utility function
u(+) is typically nonlinear to model risk-averse or risk-prone behaviors of users (e.g. a concave utility
function is often used to model risk-averse behaviors). The non-linear utility function makes the
objective function much more complicated: in particular, it is no longer a function of the means of
the underlying random variables X;’s. Thus, when the distributions of X;’s are unknown, we can
turn EUM into an online learning problem where the distributions of X;’s need to be learned over
time from online feedbacks, and we want to maximize the cumulative reward in the learning process.
Again, this is not covered by the existing CMAB framework since only learning the means of X;’s is
not enough.

In this paper, we generalize the existing CMAB framework with semi-bandit feedbacks to handle
general reward functions, where the expected reward for playing a super arm may depend more than
just the means of the base arms, and the outcome distribution of a base arm can be arbitrary. This
generalization is non-trivial, because all prior work on CMAB relies on estimating the expected
outcomes from base arms, which can be made accurate using standard tools such as Chernoff bound.
In our case, we need an estimation method and an analytical tool to accurately estimate a distribution,
not just its mean, which seems not readily available for us. We tackle this problem in two steps.
First, for discrete random variables with known finite supports, we turn the problem into estimating
the cumulative distribution function (CDF) value at each supported point. We use a stochastically
dominant confidence bound (SDCB) to obtain a distribution that stochastically dominates the true
distribution with high probability, and hence we also name our algorithm SDCB. We are able to show

O(log T') distribution-dependent and O(+/T) distribution-independent regret bounds in 7" rounds.

'We understand that the first-price auction is not truthful, but this example is only for illustrative purpose for
the max() function.



Second, we handle general bounded random variables by a discretization technique, and we also show
O(logT) distribution-dependen and O(/T) distribution-independent regret bounds. Our regret
bounds are tight with respect to the dependency on 7" (up to a logarithmic factor for distribution-
independent bounds). To make our scheme work, we make a few reasonable assumptions, including
boundedness, monotonicity and Lipschitz continuity of the reward function, and independence among
base arms. We apply SDCB to the K-MAX and EUM problems, and solve them efficiently with
concrete regret bounds. Along the way, we also provide the first polynomial time approximation
scheme (PTAS) for the offline -MAX problem, which is formulated as maximizing E[max;cs X;]
subject to a cardinality constraint |[S| < K, where X;’s are independent nonnegative random
variables.

To summarize, our contributions include: (a) generalizing the CMAB framework to allow a general
reward function whose expectation may depend on the entire distributions of the input random
variables; (b) proposing the SDCB algorithm to achieve efficient learning in this framework with
near-optimal regret bounds, even for arbitrary outcome distributions; (c) giving the first PTAS for the
offline K-MAX problem. Our general framework treats any offline stochastic optimization algorithm
as an oracle, and effectively integrates it into the online learning framework.

Related Work. As already mentioned, most relevant to our work are studies on CMAB frameworks.
Among them, [[11} 14,16, 9] focus on linear reward functions, while [8} [15] look into non-linear
reward functions. In particular, Chen et al. [8] look at general non-linear reward functions and Kveton
et al. [15] consider specific non-linear reward functions in a conjunctive or disjunctive form, but
both papers require that the expected reward of playing a super arm is determined by the expected
outcomes from base arms.

The only work in combinatorial bandits we are aware of that does not require the above assumption on
the expected reward is [[13], which is based on a general Thompson sampling framework. However,
they assume that the joint distribution of base arm outcomes is from a known parametric family and
only the parameters are unknown. They also assume the parameter space to be finite. In contrast, our
general case is non-parametric, where we allow arbitrary distributions. Although in our known finite
support case the distribution can be parametrized by probabilities on all support values, our parameter
space is continuous. Moreover, it is unclear how to efficiently compute posteriors in their algorithm,
and their regret depends on two complicated problem-dependent coefficients which may be very large
for many combinatorial problems. They also provide a result on the K-MAX problem, but they only
consider Bernoulli outcomes from base arms, much simpler than our case where general distributions
are allowed.

There are extensive studies on the classical MAB problem, for which we refer to a good survey on
this area by Bubeck and Cesa-Bianchi [3]. There are also some studies on adversarial combinatorial
bandits, e.g. [23,16]. Although it bears conceptual similarities with stochastic CMAB, the techniques
used are different.

Expected utility maximization (EUM) encompasses a large class of stochastic optimization problems
and have been well studied in the operation research and computer science community (e.g. 24} 18,
19,4]). To the best of our knowledge, we are the first to study the online learning version of these
problems, and we provide a general solution to systematically address all these problems as long as
there is an available offline (approximation) algorithm.

2 Setup and Notation

Problem Formulation. We model a combinatorial multi-armed bandit (CMAB) problem as a tuple
(E,F,D,R), where E = [m] = {1,2,...,m} is a set of m (base) arms, F C 2 is a set of subsets
of E, D is a probability distribution over [0, 1]™, and R is a reward function defined on [0, 1]™ x F.

The arms produce stochastic outcomes X = (X7, Xs, ..., X,,,) drawn from distribution D, where
the i-th entry X; is the outcome from the i-th arm. Each feasible subset of arms .S € F is called a
super arm. Under a realization of outcomes = = (1, . .., Z,,), the player receives a reward R(zx,.S)

when she chooses the super arm S to play. Without loss of generality, we assume the reward value to
be nonnegative. Let K = maxger |:S| be the maximum size of any super arm.

*The O(log T') distribution-dependent regret bound for general random variables only holds for sufficiently
large T'.



Let X X® be an iid. sequence of random vectors drawn from D, where xX® =
(X 1(t), e 7X,(,ﬁ)) is the outcome vector generated in the ¢-th round. In the ¢-th round, the play-

er chooses a super arm Sy € F to play, and then the outcomes from all arms in Sy, { X i(t) |i € St}
are revealed to the player. According to the definition of the reward function, the reward value in the

t-th round is R(X ®), S¢). The expected reward for choosing a super arm S in any round is denoted
by TD(S) = IEX,\,D[}%()(7 S)}

We also assume that for a fixed super arm S € F, the reward R(x, S) only depends on the revealed
outcomes xg = (x;);cs. Therefore, we can alternatively express R(z, S) as Rg(zs), where Rg is a

function defined on [0, 1]*I.

A learning algorithm A for the CMAB problem selects which super arm to play in each round
based on the revealed outcomes in all prev10us rounds. Let SA be the super arm selected by A
in the ¢-th round The goal is to maximize the expected cumulatrve reward in 71" rounds, which

isE {Zt:l R(X® ,S,g“)] = Zt:l [7p(S7')]. Note that when the underlying distribution D is

known, the optimal algorithm .4* chooses the optimal super arm S* = argmaxgc z{7p(S)} in every
round. The quality of an algorithm A is measured by its regret in T rounds, which is the difference
between the expected cumulative reward of the optimal algorithm .4* and that of .A:

T
RegA(T) =T - rp(S*) ZE o SA
t=1

For some CMAB problem instances, the optimal super arm S* may be computationally hard to find
even when the distribution D is known, but efficient approximation algorithms may exist, i.e., an
a-approximate (0 < e < 1) solution S” € F which satisfies rp(S”) > o - maxge #{rp(S)} can be
efficiently found given D as input. We will provide the exact formulation of our requirement on such
an a-approximation computation oracle shortly. In such cases, it is not fair to compare a CMAB
algorithm .4 with the optimal algorithm .4* which always chooses the optimal super arm S*. Instead,
we define the a-approximation regret of an algorithm A as

T
Regg’a(T) =T -a-rp(S*) — ZE [rp(S
t=1

As mentioned, all previous work on CMAB requires that the expected reward r 5 (S) of a super arm
S depends only on the expectation vector & = (1, . .., fim,) Of outcomes, where 1; = Ex.p[X;].
This is a rather strong restriction that cannot be satisfied by a general nonlinear function Rg and a
general outcome distribution D. The main motivation of this work is to remove this restriction.

Assumptions. Throughout this paper, we make several assumptions on the outcome distribution D
and the reward function R.

Assumption 1 (Independent outcomes from arms). The outcomes from all m arms are mutually
independent, i.e., for X ~ D, X1, Xs,..., X, are mutually independent. We write D as D =
Dy X Dy X -+ X Dy, where D; is the distribution of X;.

Assumption 2 (Bounded reward value). There exists M > 0 such that for any x € [0, 1]™ and any
SeF wehave 0 < R(z,S5) <M

Assumption 3 (Monotone reward function). If two vectors x,x’ € [0,1]™ satisfy x; < x} (Vi € [m]),
then for any S € F, we have R(x,S) < R(x',S).

Assumption 4 (Lipschitz-continuous reward function). There exists C' > 0 such that for any S € F
and any z,z’ € [0,1]™
|R(z,8) = R(2', 9)| < Cllrs — 2],

where ||zg — xg|l1 = Y, c g |Ti — 2]

3Note that S7* may be random due to the random outcomes in previous rounds and the possible randomness
used by A.



Algorithm 1 SDCB-FSD (SDCB for finitely supported distributions) with parameter A > 0
1: // Initialization
2: fori =1tomdo
3:  // Action in the i-th round )
4:  Play a super arm .S; that contains arm %, observe the outcome X i(z
such that XV = v;
6: F;+0 V1<j<k-1
7: T, + 1
8: end for
9
0
1

) from arm 4, and find k € [si]

cfort=m+1,m+2,...do

1 // Action in the ¢t-th round

11: fori=1,2,...,mdo

12: EL]' «— max{ﬁ'i,j — A/ 31§§?t),0} V1 S j S S; — 1
13: Ei75i —1

14:  end for

15:  Play the super arm S; < Oracle(F), where F' = (I ;)ic[m],je[s:]
16: foralli € S; do

17: Observe the outcome X, i(t) from arm ¢, and find k € [s;] such that X Z-(t) = Uk
18: th — % Vk S] <s;

19:  Fyje s Vi<j<k-1

20: Ty« T 41

21:  end for

22: end for

Computation Oracle for Discrete Distributions with Known Finite Supports. We require that
there exists an a-approximation computation oracle (0 < « < 1) for maximizing rp(S), when
each D; (i € [m]) has a known finite support. In this case, we suppose the support of D; is
supp(D;) = {vi1,vi2,. ..,V } (0 € [m]). Then D; can be fully described by a set of its cumulative
distribution function (CDF) values F}"; = Prx,~p, [Xi < vi;] (j € [s]). We define the CDF vector

of Das FP = (Fﬁ)ie[m} ,je[s:]- The oracle takes the CDF vector F’ D (which describes D) as input,

and can output a super arm S’ € F such that rp(S’) > o - maxge#{rp(5)}.

3 Discrete Distributions with Known Finite Supports

In this section, we consider the special case in which each outcome distribution D; (¢ € [m]) has a
known finite support. Let supp(D;) = {v; 1,vi.2, ..., Vi, }. and let s be a finite upper bound on the
support size of all D;’s, i.e., s; = |supp(D;)| < s (Vi € [m]). Weassume 0 < v;1 < v;0 < --- <
v;.5; < 1foreach i € [m]. We do not require Assumptionin this section. That assumption will be
used for the general distribution case (in Section 4.

3.1 Algorithm

We present our algorithm stochastically dominant confidence bound (SDCB) in Algorithm (1| and
refer to it as SDCB-FSD (SDCB for finitely supported distributions). The algorithm starts with m
initialization rounds in which each arm is played at least onceﬂ (lines 2-8). Throughout the algorithm,
we maintain the empirical probability of {X; < v; ;} (for each i € [m],j € [s;]) based on the
observed outcomes from arm ¢ so far, which we denote as 13‘2 j- We also store, in a variable Tj, the
number of times the outcomes from arm 7 are observed so far. In the ¢-th round (¢ > m), the algorithm
consists of three steps. First, it calculates a lower confidence bound F; ; on each CDF value FlD] (lines
11-14). Weensure 0 < F 1 < Fjo <--- < Fy 5, = 1(Vi € [m]), 50 F' = (F j)icim],je[s;] is @ valid

*Without loss of generality, we assume that each arm 4 € [m] is contained in at least one super arm.



CDF vector of some distribution D = D; X --- X D,,. We remark that while F; ; is a numerical
lower confidence bound on the CDF value Fi]?j, at the distribution level, D; serves as a “stochastically
dominant (upper) confidence bound” on D;. The second step is to call the a-approximation oracle
with the CDF vector F' as input (line 15), and thus the super arm S; output by the oracle satisfies

rp(St) > a - maxge 7{rp(S)}. Finally, the algorithm chooses the super arm S; to play, observes
the outcomes from all arms in Sy, and updates F,-y ;’s and T;’s accordingly (lines 16-21).

The idea behind our algorithm is the optimism in the face of uncertainty principle, which is the
key principle of UCB-type algorithms. Our algorithm ensures that with high probability each D;
has first-order stochastic dominance over D;. Then from the monotonicity property of R(zx,.S)
(Assumption [3) we know that rp(S) > 7p(S) holds for all S € F with high probability. Therefore
D provides an “optimistic” estimation on the expected reward from each super arm.

Note that we use a parameter A to control the confidence radius (line 12) which controls the degree of
exploration. In this section we can just set \ to be a constant (e.g. A = 1). For the general distribution
case in Section[d] it will be chosen more carefully to work with discretization.

3.2 Regret Bounds

We prove O(log T') distribution-dependent and O(v/T In T') distribution-independent upper bounds
on the regret of SDCB-FSD (Algorithm[I)) with any constant parameter A > 0.

We call a super arm S bad if rp(S) < « - rp(S*). For each super arm S, we define
Ag = max{a - rp(S*) —rp(9),0}.
Let Fg = {S € F | Ag > 0}, which is the set of all bad super arms. Let Eg C [m] be the set of
arms that are contained in at least one bad super arm. For each i € E, we define
Ajmin = min{Ag | S € Fp,i € S}.
Recall that M is the upper bound on the reward value (Assumption and K = maxger |5].

Theorem 1. Suppose the outcome distribution D; of each arm i € [m] has a known finite support
of size at most s. Then a distribution-dependent upper bound on the a-approximation regret of
SDCB-FSD in T rounds is

21 2
MK Y 0 o) + <7;)\3(s 1)+ 1> aMm,
i€Ep 1, min

and a distribution-independent upper bound is

2
93M \/mET In(\T) + (7;)\_3(3 — 1)+ 1) aMm.

The proof of Theorem [I]is given in Appendix [A.T] The main idea is to reduce our analysis to the
one in [16] which deals with the summation reward function R(z, S) = ;g v;. We are able to
generalize to any reward function that satisfies Assumptions[2]and 3]

Applying Our Algorithm to the Previous CMAB Framework. Although our focus is on general
reward functions, we note that when SDCB-FSD (with A = 1) is applied to the previous CMAB
framework where the expected reward depends only on the means of the random variables, it can
achieve almost the same regret bounds as the previous combinatorial upper confidence bound (CUCB)
algorithm in e.g., [8,[16]], in the finite support case.

Let y; = Ex~p[X;] be arm ¢’s mean outcome. In each round CUCB calculates (for each arm ¢) an
upper confidence bound ji; on u;, with the essential property that p; < f; < u; + A; holds with
high probability, for some A; > 0. In SDCB-FSD, we use D; as a stochastically dominant confidence
bound of D;. We show that u; < Ey,..p,[Y;] < p; + A; holds with high probability, with the same
interval length A; as in CUCB. (The proof is given in Appendix[A.2]) Hence, the analysis in [8l[16] can
be applied to SDCB-FSD, resulting in the same regret bounds for the term containing 7" (the constant
term will have an extra factor of s due to a union bound for all support values). We further remark
that in this case we do not need the four assumptions in Section [2| (in particular the independence
assumption on X;’s): the summation reward case just works as in [16] and the nonlinear reward case
relies on the properties of monotonicity and bounded smoothness used in [8]].



Algorithm 2 SDCB-GDT (SDCB for general distributions with known time horizon) with parameter
n>0
Input: T
1: s Tt
2: Invoke SDCB-FSD (Algorithm 1) with supp(D;) = {1, 2,...,1} (Vi € [m]) and A = s/2 for
T rounds, with the following change: whenever observing an outcome z (from any arm), find
Jj € [s] such that z € I;, and regard this outcome x as %

Algorithm 3 SDCB-GD (SDCB for general distributions, without knowing the time horizon) with
parameter n > 0

1: q < [logym]

2: Inrounds 1,2,...,29, invoke SDCB-GDT (Algorithm [Z)) with input 7" = 29 and parameter 7
3:fork=q,q+1,q+2,...do

4:  Inrounds 2F +1,2F +2,..., 2%*! invoke SDCB-GDT with input 7' = 2* and parameter 7
5: end for

4 General Distributions

In this section, we consider the general case where each outcome distribution D; is an arbitrary
distribution over [0, 1]. We propose two algorithms based on the combination of a discretization step
and SDCB-FSD (Algorithm I, one of which knows the time horizon 7" in advance and the other does
not. We will make use of the Lipschitz condition given as Assumption [ which was not used in the
last section.

4.1 Algorithms

We first describe the algorithm when the time horizon 7' is known, which we call SDCB-GDT (SDCB
for general distributions with known time horizon). We perform a discretization on the distribution
D =Dy x---x D,, to obtain a discrete distribution D= D1 X oo X Dm such that (i) for X ~ D
X1, X m are also mutually independent, and (ii) every D; is supported on a set of equally-spaced
values {S, 2,...,1}, where s is a positive integer to be determined. Spemﬁcally, we partition [0, 1]

into s intervals: 11 =100,1),I,=(%,2],.. . Loy = (52, =) I, = (1,1], and define D; as

Pr [X;=j/s]= _Pr_ [X;€lj, j€s].
X;~D; Xi~D;

Since each D; has a known finite support, SDCB-FSD (Algorithm can be applied to the discretized
CMAB problem ([m], F, D, R). For the original CMAB problem ([m], 7, D, R), our algorithm
“pretends” that the outcomes are drawn from D instead of D, by replacing any outcome z € I; by 2
(Vj € [s]), and then applies SDCB-FSD to the problem ([m)], F, D, R). We summarize our algorithm
in Algorithm[2]

In Algorithm 2] the discretization parameter s depends on the time horizon 7', which is why it has to
know T in advance. Algorithm [3|uses the doubling trick to avoid the dependency on T'. We refer to
this algorithm as SDCB-GD (SDCB for general distributions).

4.2 Regret Bounds

We now present the regret bounds of SDCB-GDT and SDCB-GD. The full proofs are given in Appendix [B}
Recall that C' is the coefficient in the Lipschitz condition in Assumption ]

Theorem 2. Suppose the time horizon T is known in advance. Then a distribution-independent
upper bound on the a-approximation regret of SDCB-GDT (with parameter 1 > 0) in T rounds is

20K
54M /(4 4+ n)mKTInT + 5aMm + T




Wfor alli € Eg (6 > 0), then a distribution-dependent upper

bound on the a-approximation regret of SDCB-GDT (with parameter 1 > 0) in T' rounds is
712(4 142/ 4CK

Ai,min lnT + 5aMm + W

Moreover, if we have T' >

i€ by

Proof Sketch. The regret consists of two parts: (i) the regret for the discretized CMAB problem

([m], F, D, R), and (ii) the error due to discretization. The first part is analyzed in the discrete
distribution case in Section[3] For the second part, a key step is to show that for any S € F, we have

Irp(S) —r5(S)| < CK/s (see Appendix B.1). O

Theorem 3. For any time horizon T' > 2, the a-approximation regret of SDCB-GD (with parameter
n > 0) in T rounds is at most

20K
o —1°

185M /(4 +n)mKTInT + 1laMmInT +

5 Applications

We describe the K-MAX problem and the class of expected utility maximization problems as
applications of our general CMAB framework.

The K-MAX Problem. In this problem, the player is allowed to select at most K arms from the
set of m arms in each round, and the reward is the maximum one among the outcomes from the
selected arms. In other words, the set of feasible super arms is 7 = {S C [m] | |S| < K}, and
the reward function is R(z, S) = max;ecg x;. It is easy to verify that this reward function satisfies
Assumptions 2] Bland[d] with M = C = 1.

Now we consider the corresponding offline problem of selecting at most K arms from m arms, with
the largest expected reward. It can be implied by a result in [[12] that finding the exact optimal solution
is NP-hard, so we resort to approximation algorithms. We can show, using submodularity, that the
simple greedy algorithm can achieve a (1 — 1/e)-approximation. Furthermore, we give the first PTAS
for this problem. Our PTAS can be generalized to constraints other than the cardinality constraint
|S| < K, including s-t simple paths, matchings, knapsacks, etc. The algorithms and corresponding
proofs are given in Appendix

Theorem 4. There exists a PTAS for the offline K-MAX problem. In other words, for any constant
€ > 0, there is a polynomial-time (1 — €) factor approximation algorithm for the K-MAX problem.

We can apply our SDCB algorithm to the K-MAX bandit problem and obtain O(log T') distribution-
dependent and O(\/T) distribution-independent regret bounds according to Theorems and

Streeter and Golovin [23] study an online submodular maximization problem in the oblivious
adversary model. In particular, their result can cover the stochastic K-MAX bandit problem as a
special case, and an O (K +/mT log m) upper bound on the (1 — 1/e)-regret can be shown. While
the techniques in [23]] can only give a bound on the (1 — 1/e)-approximation regret for K-MAX, we
can obtain the first O(v/T") bound on the (1 — €)-approximation regret for any constant e > 0, using
our PTAS as the offline oracle. Even when we use the simple greedy algorithm as the oracle, our
experiments show that SDCB performs significantly better than the algorithm in [23]] (see Appendix D).

Expected Utility Maximization. Our framework can also be applied to reward functions of the
form R(x,S) = u(d_,.q ®i), where u(-) is an increasing utility function. The corresponding offline
problem is to maximize the expected utility E[u(}_, ¢ x;)] subject to a feasibility constraint S € F.
Note that if « is nonlinear, the expected utility may not be a function of the means of the arms in
S. Following the celebrated von Neumann-Morgenstern expected utility theorem, nonlinear utility
functions have been extensively used to capture risk-averse or risk-prone behaviors in economics (see
e.g., [10]), while linear utility functions correspond to risk-neutrality.

Li and Deshpande [18] obtain a PTAS for the expected utility maximization (EUM) problem for
several classes of utility functions (including for example increasing concave functions which typically



indicate risk-averseness), and a large class of feasibility constraints (including cardinality constraint,
s-t simple paths, matchings, and knapsacks). Similar results for other utility functions and feasibility
constraints can be found in [24}[19] 4]]. In the online problem, we can apply our SDCB algorithm,
using their PTAS as the offline oracle. Again, we can obtain the first tight regret bounds on the
(1 — €)-approximation regret for any € > 0, for the class of online EUM problems.
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Appendix

A Missing Proofs form Section 3]

A.1 Proof of Theorem /1]

We present the proof of Theorem|[T]in 3 steps. In Section[A.T.1] we introduce the L; distance between
two distributions and present a property of it. In Section |A.1.2] we present and prove some key
technical lemmas. Then we complete the proof of Theorem|I|in Section[A.T.3]

A.1.1 The L, Distance between Two Probability Distributions

For simplicity, we only consider distributions with finite supports - this will be enough for our purpose
in this section.

Let P be a probability distribution. For any z, let P(z) = Prxp[X = x]. We write P = P; X Py X
- X P, if the (multivariate) random variable X ~ P can be written as X = (X1, Xs,..., X,,),
where X7, ..., X,, are mutually independent and X; ~ P; (Vi € [n]).

For two distributions P and @), their L, distance is defined as
x

where the summation is taken over = € supp(P) U supp(Q).

The L, distance has the following property. It is a folklore result and we provide a proof for
completeness.

Lemmal. Let P = P, X Py X - X P, and Q = Q1 X Q2 X - - - X Qy, be two probability distributions.
Then we have

Li(P,Q) <Y Li(P;, Qi) (1)
i=1

Proof. We prove (I)) by induction on n.

When n = 2, we have

Li(P,Q) =Y |P(z,y) - Qz,y)|
=Y > |IPi(@)Pa(y) — Qu(=)Qa(y)]
<Y (1Pi(@)Pa(y) — Pi()Q2(y)] + [P () Q2 (y) — Q1(2)Qa(y)])

=3 Pi@) Y 1B(y) — Qe + 3 Qaly) S IP () — Qu (o)

=1-Li(P,Q2) +1-Li(P1,Qn)

10



2
= ZLl(PiaQi)'
i—1

Here the summation is taken over « € supp(Py) U supp(Q1) and y € supp(Ps) U supp(Q2).

Suppose (1)) is proved for n = £ — 1 (k > 3). When n = k, using the results forn = k — 1 and
n = 2, we get
k—2
Li(P,Q) <> Li(P;, Qi) + Li(Pr—1 X P, Qu1 x Qi)

i=1
k—2

< ZLI(PiaQi) + Li(Pr—1,Qr—1) + L1(Pr, Q)

i=1
k
= Li(P;, Q).
i=1
This completes the proof. O

A.1.2 Technical Lemmas

Recall that we have supp(D;) = {vi1,vi2,...,0i5,} (0 < v;1 < -+ < v, < 1D ands; =
supp(D;)| < s (Vi € [m]). Let

Z:{P:Pl XP2><"'XP»,,L|SUpp(Pi)g{'Ui717.-.,1}7;,s,i},7;:1,2,-.-,m},

which is the set of all possible outcome distributions. Recall that for any distribution P € ¥, we

define its CDF vector as F'”" = (F}".)ic{m},je(s,]» Where 7 = Prx, p,[X; < v; ).

The following lemma describes some properties of the expected reward rp(S) = Ex.p[R(X, S)].

Lemma 2. Let P =Py X --- X Py, and P' = P{ x --- x P! be two probability distributions in 3.
(i) If for any i € [m],j € [s;] we have Ff;' < Ffj, then for any super arm S € F, we have

rp (S) > rp(S).

(ii) Ifforanyi € [m],j € [s;] we have Flpj — Fi{)jl < A; (A; > 0), then for any super arm S € F,
we have
rp(S) = rp(S) <2M Y A,

€S

Proof. It is easy to see why (i) is true. If we have Ff;/ < FIPJ for all 4, j, then for all ¢, P/ has

first-order stochastic dominance over P;. When we change the probability from P into P’, for each
i € [m] we are moving some probability mass from smaller values to larger values. Recall that the
reward function R(z, S) has a monotonicity property (Assumption : if x and 2’ are two vectors in
[0, 1]™ such that z; < 2 for all ¢ € [m], then R(x,S) < R(z',S) for all S € F. Therefore we have
rp(S) <rp/(S)forall S € F.

Now we prove (ii). Without loss of generality, we assume S = {1,2,...,n}(n < m). Let
P" =P/ x ---x P/ € ¥ be adistribution whose CDF vector is the following:

" (i € [m]) 2

1,y

P _ maX{FiIZ —A;,0} 1<j<s—1
1 j:Sj,.

It is easy to see that 0 < Ff}" < ... < F'" = 1foralli € [m] and that F," < F/ for all
i € [m],j € [s;]. Then from the result in (i) we have

rp () < rpr(S). @)

11



Let P = Py x Py X --- x P,, and define P and P similarly. Recall that the reward function
R(z, S) can be written as Rg(zs) = Rg(x1,...,zy). Then we have

TPII(S)—TP(S>
= Z Rs(z1,. .. 2n)PE(x1,. .. 20) — Z Rs(z1, .-, 2n)Ps(x1,...,20)

L1geeny Tn Llyenny Tn

= > Rs(w1,....xn) (P4(x1,...,2n) = Ps(z1,...,70))
L1,y Tm

< > M-|PY(xr,... xn) — Ps(ar,... z)]

b2 N %

=M - Li(P¢, Ps),

where the summation is taken over x; € {vi1,...,vis, }(Vi € S). Then using Lemma [I| we obtain
rpn(S) — rp(S) < M- 3 Li(P! P, )
=

Now we give an upper bound on L (P/’, P;). Let F}; = ng " = 0. Then we have
Li(P!',P) = _|P(vi;) — Pi(vi;)|

j=1

:Z}(FZIE *Fiﬁ—l)*(Fii‘ *Fi{;—ﬁ’ 5)
j=1
j=1

Note that for all 1 < j < s;, we have Y, — FI" > FF. | — FP" | To see this, consider two cases:

(FF, —F5) = (P~ FLL)|.

o If B < Ay, thenwe have F; | < F. < A;. By definition (2) we have Ffj” =k =

]
P P’ _ P P _ pP P
0. Thus FY, — FF' = FF. > FF_ = FF,_ — FF" .

o If Ffj > A, then by definition (2) we have FZPJ — Ffj” =A, > Ffjfl — Ffjl;l.
Then (5) becomes
Si—l
Li(P! Py = Y (B = By = (B = FEL) ) + |- ) = (FE, = B
j=1
= FiI,Ds,-,—l - Filjsi—l + Fil,psi—l - Fii,-—l’ 6)
=2 (Fil;ﬁl - Fii,,:fl)
< 2sz
where the last inequality is due to (2).
We complete the proof of the lemma by combining (3), (@) and (6):
rpi(S) = rp(S) <rpu(S) —rp(S) < M- Li(P/,P) <2M > A;. O
i€S icS

The following lemma parallels Lemma 1 in [[16]. We will use some additional notation:
e Fort > m+1andi € [m], let T}, be the value of counter T right after the ¢-th round of

SDCB-FSD. In other words, T; ; is the number of observed outcomes from arm ¢ in the first ¢
rounds.

12



e Let S; be the super arm selected by SDCB-FSD in the ¢-th round.
Lemma 3. Define an event in each roundt (m +1 <t <T):

H, = {o <As, <4M- Y 3IHW)}. 7

2T+
i€s, 2,t—1

Then the a-approximation regret of SDCB-FSD in T rounds is at most

T

Z H{Ht}ASt

t=m+1

E

2
+ (3/\_3(5 -1)+ 1) aMm.

Here we use 1{-} to denote the indicator function, i.e., 1{H} = 1 if an event H happens, and 0 if it
does not happen.

Proof. For simplicity, we let F' = F'P be the CDF vector of D.

Let F; ;; be the value of the empirical probability F; ; in SDCB-FSD after [ observations of arm , and

form+1<t<T,let
31n(At)
2T 11

be the event that there exists an empirical probability Fm‘ which is an “inaccurate” estimate of the

true CDF value I} ; at the beginning of the t-th round. Note that we always have 13',;78“1 =F, =1
forall i € [m],1 > 1.

Recall that we have S* = argmaxg 7{rp(S5)} and Ag = max{a - rp(S*) —rp(S),0}(S € F).
We bound the a-approximation regret of SDCB-FSD as

. T
Reg0B-F30 ):ZE[Q.TD(S —rp(Sy)] Z [As,]

&= {there exists ¢ € [m], j € [s;] such that Fi,j,Ti,tfl - F ;| >

m T T (®)
=E lZASt +E| Y L&A [+E| Y 1{=&}As, |,
t=1 t=m-+1 t=m+1
where —&; is the complement of event &;.
We separately bound each term in (8).
(a) the first term
The first term in (8) can be trivially bounded as
E ZA& < rp(S*) <m-aM. )
t=1 t=1

(b) the second term

By Chernoff-Hoeffding bound, for any i € [m],j € [s; — 1],1 > 1,t > m + 1 we have

Pr Fi,j,l — Fi,j > 31112(l>\t)‘| < 26721'31n2(l”) = 26731n(>\t) = 2(/\15)73
Therefore
T T m s;—1t—1
< 31In( At
SRS 9 9 h ot LI HENETES
t=m-+1 i

1i=1 j=1 [=1
Si—

Z Z X_:Q(At)*“
14=1 j=1 I=1

IN

T
t=m+

T
t=m+

13



[}

< 7T—)\_?’m(s - 1),

and then the second term in (8)) can be bounded as

T 2 2
E l > 1{&}As | < %A*’m(s —1)-(a-rp(S%)) < %x3m(s —1)-aM. (10
t=m+1
(c) the third term
We fix t > m and first assume —&; happens. Let ¢; = ngIZ(t)i) for each i € [m]. Since —&; happens,
we have R
Fi’j,Ti,t—l — Fi’j < ¢ Vi € [m],j S [Sl] (11)
Let F' = (Ei,j ic[m),j€lsi] be the input to the oracle in round ¢, which is the CDF vector of a
distribution D € .. By definition, we have
D << s —
L j = {IlnaX{FZ'J’TI’t_l @01 ; _ i,f b (i € [m]) (12)

From (T1) and (I2) we know that F; ; < F; ; < F; ; + 2¢; forall i € [m],j € [s;]. Thus, from
Lemma[2](i) we have
'I"D(S)S’I“Q(S) VSE]‘-, (13)

and from Lemma[2] (ii) we have
rp(S) <rp(S)+2M Y 2¢;  VSEF. (14)
=
Also, from the fact that the algorithm chooses S; in the ¢-th round, we have
rp(Se) 2 a-max{rp(5)} = a - rp(S7). (15)

From (T3), (T4) and (T5) we have
a-rp(S*) < a-rp(S*) <rp(S:) <rp(St) +2M Z 2¢;,
€S,
which implies
Ag, < 4M Z ¢
1€Sy

Therefore, when —&; happens, we always have Ag, < 4M > ies, Ci- In other words,

31n(\t) }

ﬁgt:>{ASt§4MZ T
it—

i€ES
This implies

3In(A\t
{=&, A5, >0} = {O < Ag, <4M E 2;( )} =H,.
i€Sy it—1

Hence, the third term in (8] can be bounded as

T T T
E l S 1{=&}As, | =E| D 1{~&,As >0}As, | <E l > 1{Hi}As, |- (16)
t=m-+1 t=m+1 t=m+1
Finally, by combining (8), (9), (I0) and (I6) we have
T 2
RegBO ™™ (T) <E | > 1{H:}As, | + (7;/\3(5 —1)+ 1) aMm,
t=m+1
completing the proof of the lemma. O
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A.1.3 Finishing the Proof of Theorem ]|

Lemma [3]is very similar to Lemma 1 in [16]. We now apply the counting argument in [16] to finish
the proof of Theorem [T}

From Lemmal we know that it remains to bound E [Zt ma1 HH A s,], where H, is defined
in (7).
Define two decreasing sequences of positive constants
1=00>p1>p02>...
] > 0 > ...

such that limy_, o a = limg_y0 B = 0. We choose {«y } and {8} as in Theorem 4 of [L6], which
satisfy

ﬁm5k71_5k<1 17
;7m < (17)

and
Z - < 267. (18)

Forte{m+1,...,T}and k € Z,, let

2
i {ak (BL) W) Ay >0,

“+00 AS,, =0,

and
A ={1€ 8¢ | Tip1 < myy}

Then we define an event

Gt = {|Akt] > BLK Y,
which means “in the ¢-th round, at least 35, K arms in .Sy had been observed at most my, ; times.”

Lemma 4. In the t-th round (m + 1 <t <T), if event H, happens, then there exists k € Z, such
that event Gy, + happens.

Proof. Assume that H, happens and that none of Gy ;, G2 ¢, . .. happens. Then |Ay, ;| < 85K for all
keZ,.

Let Ag; = S; and Ak,t = S\ A for k € Z4 U{0}. Itis easy to seeglk._u C flk,t forallk € Z.
Note that limj_,o, my+ = 0. Thus there exists N € Z such that A, = S; forall K > N, and

then we have S; = [J;~; (A, \ Ak—1,). Finally, note that for all i € Ay, ;, we have T; 1 > my;.
Therefore

ZﬁZZ m<ZZ

_ ‘ Mt
1ESy k=1licAp \Ak_1, k=1ic A \Ak_1, ’

_ 0 Ak \ A1yt Z\Ak 1,6\ Ag ¢ Z|Ak 1e| —
1 VAL R 1 Vet 1 V1t

= 1 1
| +2Akt|( )
VALLIW VAL ES Y \/mk,t
K

= 1 1
S BK ( - )
mizt ;ﬁk VM1t AVALLI R
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Note that we assume H; happens. Then we have

In(\¢
Ag, <4M -y 3 B o 6In(ZT) -
i€S, Ti— i€S: Ti—
(Br-1— Be) K — Be-1— Bk
< 2M~+/6In(AT) - el PR 6 ——— - Ag, <Ag,,
IRGT) 3 B -
where the last inequality is due to (I7). We reach a contradiction here. The proof of the lemma is
completed. O
By Lemma 4] we have
T 00 T
Z ]l{Ht}ASt S Z Z ]l{gk,t; ASt > O}ASt'
t=m+1 k=1t=m+1

Fori € [m],k € Z,,t € {m+1,...,T}, define an event
Gikt =G AN{i € S, Ty i1 <myy}
Then by the definitions of Gy, ; and G; 1, ; we have

1
1{Grs A5, > 0} < g > 1{Gis, As, > 0},

i€Ep
Therefore
T As
)DRTUSIED 3 oib SR TCRFERRTE -
t=m+1 i€ebg k=1t=m+1
For each arm i € Ep, suppose i is contained in N; bad super arms Sp;, 572, ..., Sy, . Let

A= AS*BZ (I € [N;]). Without loss of generality, we assume A; 1 > A; 2 > ... > A, y,. Note

2
that A; n, = A; min- For convenience, we also define A; g = +00, i.e., oy, (ZA”K) = (. Then we

have
T

Z ﬂ{Ht}ASt

t=m+1

<3S S S t{Gua S =SB

1€ER k=1t=m+1 [=1

Ast

[e's) T N;
< Z Z Z Z]l{Ti,t—l < M, Se = S 5;]’(
i€Ep k=1t=m-+1 =1
oS} T N;
i A,
:ZZ Z]l{zt 1<0¢k( >1n)\T)S S} Il(
i€Bp k=1t=m+1 I=1 Bk
0o T N; 1 2
- IMK A,
- Z Z]l{ak< n(AT) < T4 < g A > ln(AT),StS”} Il(
i€Ep k=1t=m+11=1 j—1 irj Bk

=

M8

IA
NE
Il [l I Il
HNEEINGEIING RN
=
hERINE
= =
—
Q Q

=
m
S
W
ko
Il
—
o~
Jun
Il
e
<
Il
i

n(AT) < Tj -1 < oy

<2MK

z]l

o
m
S
w
£
Il
—
o~
_
Il
-
<
Il
—

2MK\? A
k( ) n(AT) < T4 1§ak( ) 1n(/\T)75t=5§l} =
i,j—1 /
M

z

- IMK \* IMK\* A;
< Z 14 ag In(A\T) < Tj4—1 < oy In(\T) p —=L
. i,j—1 ’ A; B K
i€Ep k=1t 1j5=1 »J »J
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i€ER k=1 j= (2] ij—1
) a N; 1 1
k
=4AM’K (Z ) ImAT)- Y Y (Az, A2 ) Aij
k=1 k i€bp j=1 %, i,j—1
Y1 1
2
<1068M°K In(AT) - Z Z (A?. - AZ») Aij,
i€bp j=1 Y 2,]

where the last inequality is due to (T8).
[jian: it may be useful to explain the second to last inequality. ]

Finally, for each ¢ € Eg we have

N1 1 R |
> (Az - A2> Aij= Av T Z Az (Bij = Qi)

j=1 1,J i,j—1 34V j=1 ]
1 A 1
Ai,Ni AN, T
2 1
B AN, Ain
< 2
Ai,min
It follows that
- 2 2 2 2136
> 1{H}As, < 1068MK In(AT) - > =M’K In(AT). (19
t=m+1 icEp i,min i€Ep i,min

Combining (T9) with Lemma 3] the distribution-dependent regret bound in Theorem I]is proved.

To prove the distribution-independent bound, we decompose Z?:m 11 1{H.}Ag, into two parts:

T T T
SO {HIAs, = Y U{Hi A, <e}Ag, + > 1{Hi Ag, > }Ag,
t=m-+1 t=m-+1 t=m-+1 (20)

T
<€l + Z ]l{,Ht’AS,, > E}Agt,
t=m+1
where € > 0 is a constant to be determined. The second term can be bounded in the same way as in
the proof of the distribution-dependent regret bound, except that we only consider the case Ag, > e.
Thus we can replace (I9) by

T
> 1{Hi, As, > }As, < MPK > 2136

t=m+1 2§ min>€

In(\T) < M2 R 2238 In(AT). (21)
€

i, min

It follows that

T
Z 1{H:}Ag, < T + M2 R 2230 In(\T).
€

t=m+1

Finally, let e = w, and then we have

T

> 1{H}As, < 2¢/2136M2KmT In(AT) < 93M \/mKT In(AT).

t=m+1

Combining this with Lemma 3] we conclude the proof of the distribution-independent regret bound
in Theorem[I] O
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Algorithm 4 CUCB [8,[16]]

1: For each arm ¢, maintain: (i) /1;, the average of all observed outcomes from arm i so far, and (ii)
T;, the number of observed outcomes from arm ¢ so far.

/[ Initialization
fori=1tomdo

/I Action in the ¢-th round

Play a super arm .S; that contains arm ¢, and update /i; and 7;.
end for

fort=m+1,m+2,...do
// Action in the t-th round

9:  [; < min{j; + @, 1} Vi € [m]

10:  Play the super arm Sy < Oracle(fx), where i = (fi1, .- ., fim)-
11:  Update j1; and T; for all 7 € S;.

12: end for

A.2 Analysis of Our Algorithm in the Previous CMAB Framework

We now give an analysis of SDCB-FSD (with A = 1) in the previous CMAB framework, following
our discussion in Section |3} We consider the case in which the expected reward only depends on the
means of the random variables. Namely, 7 (.S) only depends on y;’s (i € S), where ; is arm ’s
mean outcome. In this case, we can rewrite p(S) as r,,(.S), where pp = (1, .. ., ftm,) i8 the vector
of means. Note that the offline computation oracle only needs a mean vector as input.

We no longer need the four assumptions given in Section [2] In particular, we do not require
independence among outcome distributions of all arms (Assumption [I)). Although we cannot write D
asD =D x---x D,,, we still let D; be the outcome distribution of arm 7. In this case, D; is the
marginal distribution of D in the ¢-th component.

We summarize the CUCB algorithm [} [16] in Algorithm 4] It maintains the empirical mean fi; of the
outcomes from each arm 7, and stores the number of observed outcomes from arm ¢ in a variable 7;.
In each round, it calculates an upper confidence bound (UCB) ji; of p;, Then it uses the UCB vector
1 as the input to the oracle, and plays the super arm output by the oracle. In the ¢-th round (¢ > m),
each UCB [i; has the key property that

3lnt
2T 1

i < g < py+2 (22)

holds with high probability. (Recall that T} ;_; is the value of T; after ¢ — 1 rounds.) To see this, note

that we have |p; — fi;| < 4/ 273117‘;: with high probability (by Chernoff bound), and then (22)) follows

from the definition of fi; in line 9 of Algorithm 4]

We prove that the same property as (22)) also holds for SDCB-FSD. Consider a fixed ¢ > m, and
let F' = (F; ;) be the CDF vector used as the input to the oracle in the ¢-th round of SDCB-FSD.

Let D; be the distribution corresponding to the CDF values (£} ;) j€[s:]» 1-€., D; takes values from
{vii,...,vis, } and Pry,op,[Yi < v, ;| = F; j forall j € [s;]. Let v; = Ey,p, [Y;]. We can think
that SDCB-FSD uses the mean vector v = (v4, . .., 1y, ) as the input to the oracle used by CUCB. We

now show that for each ¢, we have

3Int
7 < T > Mg 2 23
Mi S Vi S g+ 2T, 1 (23)
with high probability.
To show (23)), we first prove the following lemma.
Lemma 5. Let P and P’ be two distributions taking values from the set {vi,va,...,vs} where

0 < v <wvy < - < wvs < 1. Consider two random variables Y ~ P andY' ~ P'. Let
Fy =PrlY <wj|and F] = Pr[Y' < wvj, for each j € [s].

(i) If for all j € [s| we have Fj < Fj, then we have E[Y] < E[Y"].
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(ii) Ifforall j € [s] we have Fj — F; < A (A > 0), then we have E[Y'] < E[Y] + A.

Proof. Let Iy = 0. We have

s s—1
ZUJ PrlY = v = Y 0j(Fj — Fj) = ) F(vj — vj1) + 0
j=1 j=1
= Z F Uj+]_ + Vs.
Similarly, we have
s—1
E[Y’] = ZFj(U — 1}]+1) + Vg
j=1
Therefore, we have
s—1
E[Y'] - E[Y] = Y (F) - F))(vjs1 - vy). (24)
j=1

() If F} < F} forall j € [s], then form 24) we have E[Y'] — E[Y] > ZS.;% 0 (vj41 —v;) =0.
(i) If F; — I < Aforall j € [s], then form (24) we have E[Y’] — E[Y] < Z* ! 1A (w41 —vy) =
Alvg —v1) <A O

Now we prove (23). Note that F; ; used by SDCB-FSD is a lower confidence bound on the CDF value
F, ; = Prx,~p,[Xi < v; ;] of the true outcome distribution D;. Specifically, we have

3Int
Fj—2 <F,;<F; 25
sJ 211117,‘,—1 — =17 sJ ( )

with high probability for all ¢ € [m],j € [s;]. Suppose (23] holds for all 7, j, then for any i, the two
distributions D; and D; satisfy the two conditions in Lemma with A = 2,/ ;’,l‘zt then from

Lemma we know that y1; < v; < p; + 2,/ 520 It Hence we have shown that (23)) holds with high
probability.

The fact that (23) holds with high probability means that the mean of D; is also a UCB of p; with
the same confidence interval length as in CUCB. With this property, the analysis in [8} 16] can also be
applied to SDCB-FSD, resulting in essentially the same regret bounds. The only difference is that the
failure probability bound of (23] in SDCB-FSD is larger than the failure probability bound of 22) in
CUCB by a factor of s, due to a union bound for all s; support values; thus the constant term (i.e., the
term not containing 7") in the regret bounds of SDCB has an extra term of s. The term containing 7" in
the regret bounds of CUCB and SDCB-FSD will be exactly the same.

B Missing Proofs from Section [

B.1 Analysis of the Discretization Error

The following lemma gives an upper bound on the error due to discretization.

Lemma 6. Forany S € F, we have
CK

ro(8) —rp(S) <

To prove Lemma [6] we show a slightly more general lemma which gives an upper bound on the
discretization error of the expectation of a Lipschitz continuous function.

19



Lemma 7. Let g(x) be a Lipschitz continuous function on [0, 11" such that for any x,x’ € [0,1]",
we have |g(z) — g(z')| < C||lz — 2'||1, where ||z — 2'||y = > |v; — a}|. Let P =Py x --- x P,
be a probability distribution over [0, 1]™. Define another distribution P = Py X - -- x P, over [0, 1]"

as follows: each P; (i € [n]) takes values in %, %, ..., 1}, and
"?Nrﬁi[Xi =j/s] = XRrPi [(X; € 1], Jj€ls],
where I, = [0, 1], I, = (1, 2],... I,y = (222, =4] I, = (521, 1). Then
- C-n
Ex~plg(X)] -Ex plg(X)]| = — (26)

Proof. Throughout the proof, we consider X = (X1,...,X,) ~ P and X = ()~(1, cey Xp) ~ P
(Vi € [n]).

Letv; =% (j=0,1,...,s) and

Pij = PT[X,L = ’Uj] = PI'[)(Z S I]] 1€ [n],] S [S]
We prove (26)) by induction on n.
(1) When n = 1, we have

E[g(X1)] = Z pij - Elg(X1)| X1 € L] @7
J€[s],p1,;>0

Since g is continuous, for each j € [s] such that p; ; > 0, there exists ; € [v;_1, v;] such that
Elg(X1)|X1 € I;] = 9(§)

From the Lipschitz continuity of g we have

C
l9(v;) = 9(&)] < Clvj = & < Cloj —vj-a] = —.
Hence
Elg(X1)] — E[Q(Xl)]‘ =1 Y pyEgX)XieLl—- > puioglvy)
je[S],[)11]'>O jE[s],p1,j>O
=1 > pig&) - > pyi-gy)
je[s],p11j>0 jE[s],p1,j>0
< Y puelelg) = g(v)l
J€l[s],p1,;>0
C
< Z P 5
je[s]ﬁpl,j>0
_¢
o S

This proves (26) for n = 1.

(i1) Suppose (26) is correct forn = 1,2,...,k — 1. Now we prove it forn = k (k > 2).

We define two functions on [0, 1]

hz1,...,xp-1) = Ex, [9(z1, .- s 2r—1, Xi)]

and

h’(xh .- 'azk—l) = EX,C [g(zla v axk—lan)]'

20



For any fixed z1,...,25,_1 € [0,1], the function g(x1,...,25_1,2) on z € [0,1] is Lipschitz
continuous. Therefore from the result for n = 1 we have

‘h(mh...,xk,l) - h(xl,...@k,l)} < % Va1, ... x5 € [0,1].
Then we have
E[g(X)] — Elg(X)]|
= [Ex,...xs [E9(O1X0, o Xioa]] = Elg(X)]|
= By, (X, K1) = Elg(X)

< |Exy,oxe M Xy Xem1)] = Exy oxp o [R(X - 7Xk—1)])

_|_

By 5900 Xior, X)) — Elg(X)]|

8. o N 5 .
<Ex,, . .x,, [8} + ’]EXk [E[Q(Xla“-an—lan)|Xk] *E[Q(le--,Xk—l,Xk)|Xk}]’

C L . - .
< " +Ex, HE[Q(XL ooy X1, X)) | Xi] — E[g(Xq, . .. ,qu,Xk)le]H
C - -
=5 Z Dk,j * ‘E[Q(Xla e Xpm1,v5)] — Efg(X, - ,Xk—lavj)]’ :
j€ls],pk,; >0
(28)
For any j € [s], the function g(z1, . ..,Tx—1,vj) on (z1,...,2k—1) € [0, 1]~ is Lipschitz contin-

uous. Then from the induction hypothesis at n = k& — 1, we have

‘E[Q(Xh s X, vp)] — Elg(X, - ,Xk_l,vj)]’ L C-1)

From (28)) and (29) we have

J€ls],pk,; >0
LCk-1)

viels. (29

This concludes the proof for n = k. O
Now we prove Lemmal6]

Proof of Lemma[6] We have
rp(S) = Ex~p[R(X,5)] = Ex~p[Rs(Xs)] = Exsops[Rs(Xs)],
where Xg = (X;)ies and Dg = (D;);cs. Similarly, we have

rp(S) =Ex,. p,[Rs(Xs)]-

According to Assumption Ié-_tL the function Rg defined on [0, 1]I5! is Lipschitz continuous. Then from
Lemma[7] we have
5 c-|S| C-K
rp(S) = 5(S)| = [Exsmns [Rs(Xs)] - Ex,p, [Rs(Xs)]| < = < .
This completes the proof. O
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B.2 Proof of Theorem2]

Let S* = argmaxg. {rp(S)} and S* = argmaxg.{r;(S)} be the optimal super arms in

problems ([m], F, D, R) and ([m], F, D, R), respectively. Suppose SDCB-GDT (Algorithm selects
super arm Sy in the ¢-th round (1 < ¢ < T'). Then its a-approximation regret is bounded as

Re SDCB- GDT(T)

:T.a(rD(S*)—TD(S*))—i—ZE[ 5(S:) —rp(SH)] + (T a-rp(5%) = Elrp St)]>
T
<T-a(rp(S*) —r5(S") + D E[rs(S) — rp(Si)] + Reghor F(T).

where the inequality is due to 5 (S*) > 7(S*).
Then from Lemma[6] we have
K K
RegSDCB GDT(T) < T - Cf _|_ T 07 + RegSDCB FSD(T)

(30)
< Reg®® FSD( )+ 2CKT5‘1.

B.2.1 Distribution-Independent Bound

Proof of the distribution-independent bound in Theorem[2] Plugging the distribution-independent
bound in Theorem|I]into (30), we have

Reghw ®N(T) < 93M+/mKT In(AT) + ( (s—1)+ 1) aMm +2CKTs™"

Recall that we have s = T'+7 and A = s/3 = T(1+/3 in Algorithm[2} Therefore

2 2CK
Regh o ®N(T) < 93MVmKT In TA0/3 4 <7;51(5 —1)+ > aMm + 0K

Tn
My ——mKTInT
< 93 \/ 3 m n +(3 ) T

20K
Tn

< 54M /(4 +n)mKTInT + 5aMm +

B.2.2 Distribution-Dependent Bound

Recall the following definitions given in Section [3}

e Ag =max{a rp(S*) —rp(S),0}(S € F);
Fp ={S € F| Ag > 0} is the set of all bad super arms;

Ep = {i € [m] | there exists S € Fp such thati € S} is the set of arms contained in at
least one bad super arm;

A min = min{Ag | S € Fp,i € S}(i € Eg).

We now define these terms similarly with respect to distribution D:

e Ag =max{a-r5(S*) —r5(5),0}(S € F);
o fBZ{SE.}—‘A5>O};
e Ep = {i € [m] | there exists S € Fp such thati € S};
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° Ai,min = min{AS | S e j:B,Z' S S}(Z S EB)

According to (30), we need an upper bound on RegSDCB FSD(T'). Here we do not apply the distribution-

dependent bound in Theorem T]directly. Instead, we use the results in (20) and 1), which give us
(combined with Lemma 3]

21 2
RegSDCB FD(T) < €T + M?K Z 2136 In(AT) + (7;/\3(5 1)+ 1) aMm (1)

7, min

:A; min>e
for any € > 0.

The next step is to show that Ai’min and A; min are close to each other when Ai,min is not too small.
‘We have the following lemma.

Lemma 8. Ifi € Fgp satisfies A; ‘min > 2CK  then we have i € FEg and Ay min < A i QC;K.

Proof. Suppose ALmin = Asr, where ST € F,i e S.
By definitions of S* and S* and Lemma|§|we have

- - CK
rp(S*) > rp(S*) > rp(S*) — —
and
CK
rp(S*) > rp(S*) > rp(S*) — -

Hence we have |rp(S*) —r5(S*)| < €£. From Lemma|§|we also have |rp(ST) —rp(ST)| < €£.

Therefore
o rp(S7) —rp(S) > a (r;;(SW) - CK) - (’”ﬁ(ST) - OSK)

S
< CK 2CK CK
:AST_(I—FQ)T >T—(1+O()T > 0.

This means Agt = - rp(S*) — rp(ST) > 0,i.e., ST € Fg. Since i € ST, we know i € E.
On the other hand, we have

Ai.,min < AST = TD(S*) - TD(ST)

<a- <r,j(§*) + CSK) - (rﬁ(sf) - OK)

S
< CK
= Agi +(1+a) ==

2CK
ot

S Ai,rﬂin +

The proof of the lemma is completed. O

. . . . . _ QCK .
Proof of the distribution-dependent bound in Theorem[2} Choosing ¢ = .

2CKT 2136 2
Regh o ™(T) < +MK Y - In(\T) + (”A—?’(s —1)+ 1) aMm.
y i:Ai,min>Zc_TK t;min 3
(32)
For A min > QCSK from Lemmalwe have i € Ep and Aimin > A min — 2CSK . Note that we have
=7T> 7(2”)0}( , which means A; i, — 265 > 2+5 Aj min, 50 we have A; in > %Ai,min > 0.
Then from (]3_7[) we have
2CKT

Re gSDCB FSD(T)

2
e S 250 o)+ <7;)\3(s 14 1> aMm.

5 i€Ep 2+5 i,min
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Plugging in s = T'" and A = s'/3 = T(1+1/3 we obtain

20K 2136(1 + 2 2
RegD % (T < K vk > 2360 +2/9) | T/ 4 (SS—l(s— 1)+ 1) aMm

T Al min
i€FEp
712(4 +n)(1 +2/9) 2CK
2
<MK62E: v InT +5aMm + ==
i€ER
(33)
Finally, combining (30) and (33)) we have
712(4 4+ n)(1 + 2/9) 4CK
Regho ®(T) < M?K InT + 5aM
e ( ) Z A’L min + 5 " + T
i€ FEp
completing the proof. O

B.3 Proof of Theorem[3

Proof of Theorem[3| Let n = [log, T']. If n < ¢ = [logym], then T < 2m and the regret in T
rounds is at most 2m - M. The regret bound holds trivially.

Now we assume n > ¢ + 1. Using Theorem 2] we have
RegSDCB -GD (T)
< Reg(2")
n—1
= Regl2 T (21) + Y Reg2 N (2)
k—q

< RegSDCB -GDT 2m + Z Re SDCB GDT )

n—1

20K
<2m - aM—&—kZ (54M\/4+n mK 28 In2% + saMm + = )
q
n—1 n—1
<2aMm + 54M+/(4 + n)mK In 271 kZW+ (n—1)- 5aMm+2C’KZ S
1
V2r 20K
n—1 ., _ .
<54M+/(4 +n)mK In2 ﬁ— o+ 7(n—1)-aMm + 51
20K
<B5AMA/(4+n)mKInT - +7log2T onerQUC 1
20K
<185M+\/(4+n)mKTInT + 1laMmInT + w1
Note that we have used 2"~ ! < T. O

C The Offline KX-MAX Problem

In this section, we consider the offline K-MAX problem. Recall that we have m independent random
variables { X }ic[m]. X; follows the discrete distribution D; with support {v; 1,...,v; s} C [0,1],
and D = Dy X --- x D,, is the joint distribution of X = (X1, ..., X,,). Let p, ; = Pr[X; = v; 4].
Define 7p(S) = Ex~p[max;es X;] and OPT = maxg. g—x rp(S). Our goal is to find (in
polynomial time) a subset S C [m)] of cardinality K such that rp(S) > a.- OPT (for certain constant
Q).

First, we show that rp(S) can be calculated in polynomial time given any S C [m]. Let
S = {i1,42,...,i,}. Note that for X ~ D, max;cs X; can only take values in the set
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Algorithm 5 Greedy-K-MAX
S+ 0
2: fori=1to K do
30 k< argmax;cp,\ s o(SU{j})
4. S+ Su{k}
5: end for
Output: S

V(8) = U,cgsupp(D;). For any v € V(S), we have

Pr {max X, = U:|
€S

X~D

= XPr [Xi, =v, X, <o, X, <0
+ Pr (X, <v,Xi, =0, X, S0, X, S0 (34)
+ e

+ Pr [X;, <wv,...,X;
X~D

tn—1

<v,X;

in

=)

Since X, ..., X;, are mutually independent, each probability appearing in (34) can be calculated

in polynomial time. Hence for any v € V(S), Prx.p [max;cs X; = v] can be calculated in
polynomial time using (34). Then rp(S) can be calculated by

E v Pr {maxX —v}
X~D
veV(S

in polynomial time.

C.1 (1 - 1/e)-Approximation

We now show that a simple greedy algorithm (Algorithm can find a (1 — 1/e)-approximate solution.
Lemma 9. Algorithm[3|can output a subset S such that rp(S) > (1 —1/e) - OPT.

Proof. For any = € [0,1]™, let f,(S) = max;cs x; be a set function defined on 2(™). (Define
f=(0) = 0.) We can verify that f,.(.5) is monotone and submodular:

e Monotonicity. Forany A C B C [m], we have f,(A) = max;ca z; < max;epx; =
fx(B).
o Submodularity. For any A C B C [m] and any k € [m] \ B, there are three cases (note that
maX;e A T; < MaX;ep T5):
(i) If 7, < max;ea x4, then fr(AU{k}) — fo(A) =0= f.(BU{k}) — fo(B).
(i) If max;c 4 ¢; < xp < max;ep 2, then fL(AU{k}) — fo(A) = xp — max;eq x; >
0= fx(B U {k}) - fac(B)
(i) If xp > max;ecp i, then fr(A U {k}) — fo(4A) = xp — maxeax; > ap —
max;cp T; = fz(BU{k}) — fu(B).

Therefore, we always have f, (AU {k}) — f.(4) > f.(BU{i}) — f.(B). The function
f=(S) is submodular.

For any S C [m] we have

=% S oo [T o
=1

J1=1j2=1 Jm=1
Since each set function f(,, ; 4, ; 1(S) is monotone and submodular, 7 (5) is a convex combi-
nation of monotone submodular functions on 2[™!. Therefore, 7 (S) is also a monotone submodular
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function. According to the classical result on submodular maximization [22]], the greedy algorithm
can find a (1 — 1/e)-approximate solution to maxgcm,|s|<x{rp(S)}

C.2 PTAS

Now we provide a PTAS for the K-MAX problem. In other words, we give an algorithm which,
given any fixed constant 0 < & < 1/2, can find a solution S of cardinality | K| such that rp(S) >
(1 —¢€) - OPT in polynomial time.

We first provide an overview of our approach, and then spell out the details later.

1. (Discretization) We first transform each X;; to another discrete distribution X, such that all
X;’s are supported on a set of size O(1/2).

2. (Computing signatures) For each X;, we can compute from X;a signature Sig(X;) which
is a vector of size O(1/e?). For a set S, we define its signature Sig(S) tobe 3, ¢ Sig(X;).
We show that if two sets S; and S have the same signature, their objective values are close

(Lemma [T2).

3. (Enumerating signatures) We enumerate all possible signatures (there are polynomial number
of them) and try to find the one which is the signature of a set of size K, and the objective
value is maximized.

C.2.1 Discretization

We first describe the discretization step. We say that a random variable X follows the Bernoulli
distribution B(v, q) if X takes value v with probability ¢ and value O with probability 1 — ¢. For any
discrete distribution, we can rewrite it as the maximum of a set of Bernoulli distributions.

Definition 1. Let X be a discrete random variable with support {v1,va, ..., vs}(v; < vy < -+ <
vs) and Pr[X = v;] = p;. We define a set of independent Bernoulli random variables { Z;} jc[s) as

P
Zi~Blv, P )
7 <j Z]’S]pjl>

We call {Z;} the Bernoulli decomposition of X;.

Lemma 10. For a discrete distribution X and its Bernoulli decomposition {Z;}, max;{Z;} has the
same distribution with X.

Proof. We can easily see the following:

Pr[m]ax{Zj} = v;] = Pr[Z; = v{] H Pr[Z; = 0]

i'>i
P Pn
<D g (1 - thghph’>
_ Pi Eh/gh—l DPr
B Zi’gip’i/ h>i Zh’ghph’ -
Hence, Primax;{Z;} = v;] = Pr[X = v;] forall i € [s]. O

Now, we describe how to construct the discretization X; of X; for all i € [m]. The pseudocode can
be found in Algorithm@ We first run Greedy-K-MAX to obtain a solution S¢. Let W = rp(Sg).
By Lemma 9] we know that W > (1 — 1/e)OPT. Then we compute the Bernoulli decomposition
{Z, ;}; of X;. For each Z, ;, we create another Bernoulli variable Zi, ; as follows: Recall that v; ;
is the nonzero possible value of Z;;. We distinguish two cases. Case 1: If v; ; > W/e, then we let

Z—,j~~ B (%,E[Z”}%) It is easy to see that E[Z,;] = E[Z;;]. Case 2: If v; ; < W/, then we

let Z; ; = Lf(/\; |eW. We note that more than one Zij’s may have the same support, and all Z;;’s

are supported on DS = {0,eW, 2eW, ..., W/c}. Finally, we let X; = max;{Z;;}, which is the
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Algorithm 6 Discretization

1: We first run Greedy-K-MAX to obtain a solution Sg and let W = rp(S¢).
2: fori=1tomdo
3:  Compute the Bernoulli decomposition {Z; ;}; of X.

4 for all Z; ; do

5 Create another Bernoulli variable Z; ; as follows:
6: if v; ; > W/e then

7 Let Z; j ~ B (Y,E[Z; ;]&); (Case 1)

8 else 4

9: Let Z; j = | S |eW; (Case 2)

10: end if

11:  end for

12 Let X; = max;{Z;;};

13: end for

discretization of X;. Since X ; 18 the maximum of a set of Bernoulli distributions, it is also a discrete
distribution supported on DS. We can easily compute Pr[X; = v] for any v € DS.

Now, we show that the discretization only incurs a small loss in the objective value. The key is to

show that we do not lose much in the transformation from Z; ;’s to Z; ;’s. We prove a slightly more
general lemma as follows.

Lemma 11. Consider any set of Bernoulli variables {Z; ~ B(a;,p;)}1<i<n. Assume that
E[maxze[n] Z;] < cW, where c is a constant such ce < 1/2. For each Z;, we create a Bernoulli

variable Z; in the same way as Algorlthm@ Then the following holds:
E[max Z;] > E[max Z;] > E[max Z;] — (2¢ + 1)eW.

Proof. Assume a; is the largest among all a;’s.
If a; < W/e, all ZZ are created in Case 2. In this case, it is obvious to have that
E[max Z;] > E[max Z;] > E[max Z;] — eW.

If a; > W/e, the proof is slightly more complicated. Let L = {i | a; > W/e}. We prove by
induction on 7 (i.e., the number of the variables) the following more general claim:

E[max Z;] > E[max Zi] > E[max Z;] — eW — CZ EQ;P;. (35)
i€l
Consider the base case n = 1. The lemma holds immediately in Case 1 as E[Z;] = E[Z,].
A~ssuming the lemma is true for n = k, we show it also holds for n = k 4+ 1. Recall we have
Zy ~ B(¥,eE[Z,]/W). Thus

E[I?Zalx Z;) — E[Iflzalx Z;) =a1p1 + (1 — pl)E[I%azx Zi) —aipr — (1 — EE[Zﬂ/W)E[r?ZaZX Zi]

>(1 = p1)E[max Zi] - (1 - eB[Z:]/W)E[max Zi]
=(carp1 /W — p1)Elmax Z] > 0,

where the first inequality follows from the induction hypothesis and the last from a; > W/e. The
other direction can be seen as follows:
E[max Zi] - E[max Z;] =aip1 + (1 — ¢E[Z1]/W)E[max Zi] = (arpr + (1 — p1E[max Z;])
>(1— eE[Zl]/W)IE[m>a2X Z;] - (1 —pl)E[maxZ | —eW—c¢ Z €a;p;
= ieL\{1}

>(—eE[Z1]/W)E [maxZ] —eW-—c¢ Z €a;p;
i€L\{1}
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> —eW — CZEGiPi,
icL

where the last inequality holds since E[max;>2 Z;] < ¢W. This finishes the proof of (33).

Now, we show that Zie 1 a;p; < 2W. This can be seen as follows. First, we can see from Markov
inequality that
Prmax Z; > W/e] < ce.

Equivalently, we have [ ], (1 — p;) > 1 — ce. Then, we can see that
1
W > Zai H(l —pj)pi > (1 —ce) Zaipi > 3 Z%pr
i€l J<t i€l i€L
Plugging this into (33), we prove the lemma. O

Corollary 1. For any set S C [m], suppose E[max;cs X;] < ¢W, where c is a constant such that
ce < 1/2. Then the following holds:

E[max X;] > E[max X;] > E[max X;] — (2¢ + 1)eW.
i€Ss €S i€S

C.2.2 Signatures

For each X;, we have created its discretization )N(i = maxj{Zij}. Since )N(i is a discrete distribution,
we can define its Bernoulli decomposition {Y; } jc[n) where h = |DS|. Suppose Y;; ~ B(jeW, g;;).
Now, we define the signature of X; to be the vector Sig(X;) = (Sig(X;)1, ..., Sig(X;)n) where

Sig(X;); :minq_ln(l_‘“j)J, Vn(l/&)D 2 e [A].

et/m et/m m

For any set .S, define its signature to be

Sig($) =) _ Sig(X5).

icS
Define the set SG of signature vectors to be all nonnegative h-dimensional vectors, where each
coordinate is an integer multiple of */m and at most mIn(1/e*). Clearly, the size of SG is
0 ((me—:’4 log(h/ez))hfl) = O(mou/g?))’ which is polynomial for any fixed constant ¢ > 0
(recall h = |DS| = O(1/&?)).
Now, we prove the following crucial lemma.
Lemma 12. Consider two sets S1 and Ss. If Sig(S1) = Sig(S2), the following holds:

‘E[max X;] — E[max X;]| < O(e)W.

€851 1€S7

Proof. Suppose {Y;} ;e[ is the Bernoulli decomposition of X;. For any set S, we define Y}, (S) =
max;ecs Yi (it is the max of a set of Bernoulli distributions). It is not hard to see that Y% (.5) has a
Bernoulli distribution B(keW, pi.(S)) with pi(S) = 1 — [[,cq(1 — qir). As Sig(S1) = Sig(S2),
we have that

Pk (S1) = pr(S2) = | [T (1 = aa) = [T (1 = @in)

1€S1 i€Ss

exp <Z In(1 - qik)) — exp (Z In(1 — qz’k)) ‘

1€S1 i€Sy
<2*  Vkelh).

Noticing max;cg X, = maxg Y% (S), we have that

E[max XZ} — E[max Xl]
1€S 1€Ss

= ’E[mkaXYk(Sl)} - E[m}?x Yk(SQ)]’
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Algorithm 7 PTAS-K-MAX

LU+ 0

2: for all signature vector sg € SG do

3:  Find a set S such that |S| = K and Sig(S) = sg;
4:  ifrp(S) > rp(U) then

5: U+S
6: endif
7: end for
Output: U
w
S? <Z lp(51) —Pk(52)>
k
<4he®W = O(e)W
where the first inequality follows from Lemmal[I] O

For any signature vector sg, we associate to it a set of random variables {Bj ~ B(keW,1 —
e‘sgk)}z:1 Define the value of sg to be Val(sg) = E[max;¢[x) Br).

Corollary 2. For any feasible set S with Sig(S) = sg, |E[max;cs X;] — Val(sg)| <
Moreover, combining with Corollary[l} we have that |E[max;cs X;] — Val(sg)| < O()W.

O(g)W.

C.2.3 Enumerating Signatures

Our algorithm enumerates all signature vectors sg in SG. For each sg, we check if we can find a set .S

of size K such that Sig(.S) = sg. This can be done by a standard dynamic program in O(mo(l/ 52))
time as follows: We use Boolean variable R[i][4][sg’] to represent whether signature vector sg’ € SG
can be dominated by ¢ variables in set { X1, ..., X;}. The dynamic programming recursion is

Rli[j][s¢'] = Ri]lj — 1[sg’] A R[i — 1][j — 1][sg’ — Sig(X;)].

If the answer is yes (i.e., we can find such .5), we say sg is a feasible signature vector and S is a
candidate set. Finally, we pick the candidate set with maximum 7 (.S) and output the set. The
pseudocode can be found in Algorithm

Now, we are ready to prove Theorem 4] by showing Algorithm [7)is a PTAS for the K-MAX problem.

Proof of TheoremH] Suppose S* is the optimal solution and sg* is the signature of S*. By Corol-
lary[2] we have that [OPT — Val(sg*)| < O(e)W.

When Algorithmis enumerating sg*, it can find a set S such that Sig(.S) = sg* (there exists at least
one such set since S* is one). Therefore, we can see that
E X;|—E X;]| < |Val(sg*) — X;|+|Val(sg®) — E X < W.
[E[max X;] — E[max X;]| < |Val(sg”) — max X;| + |Val(sg”) — E[max X;]| < O(e)
Let U be the output of Algorithm[7} Since W > (1 — 1/e)OPT, we have rp(U) > rp(S) =
Elmax;cs X;] > (1 — O(e))OPT.

The running time of the algorithm is polynomial for a fixed constant € > 0, since the number of
signature vectors is polynomial and the dynamic program in each iteration also runs in polynomial
time. Hence, we have a PTAS for the K-MAX problem. O

Remark. In fact, Theorem [ can be significantly generalized in the following way: instead of the
cardinality constraint |S| < K, we can have more general combinatorial constraint on the feasible
set S. As long as we can execute line 3 in Algorithm[7]in polynomial time, the analysis wound be
the same. Using the same trick as in [18]], we can extend the dynamic program to a more general

> It is not hard to see the signature of maxge(n) Bk is exactly sg.
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Algorithm 8 Online Submodular Maximization [23]]
1: Let Ay, Ao, ..., Ax be K instances of Exp3.

2: fort=1,2,...do
3:  // Action in the ¢-th round

4: fori=1to K do

5: Use A; to select an arm a; ; € [m)].

6:  end for

7:  Play the super arm Sy +— Uii{:l{at’i}.

8: fori=1to K do )

9: Feed back fi(U;—;{as,;}) — ft(U;;ll {at,;}) as the payoff A; receives for choosing ay ;.
10:  end for
11: end for

class of combinatorial constraints where there is a pseudo-polynomial time for the exact VersiorE] of
the deterministic version of the corresponding problem. The class of constraints includes s-t simple
paths, knapsacks, spanning trees, matchings, etc.

D Empirical Comparison between SDCB and Online Submodular
Maximization on the K-MAX Problem

We perform experiments to compare the SDCB algorithm with the online submodular maximization
algorithm in [23]], on the K-MAX problem.

Online Submodular Maximization. We briefly describe the online submodular maximization
problem considered in [23]] and the algorithm therein. At the beginning, an oblivious adversary
sets a sequence of submodular functions fi, fa, ..., fr on 2", where f, will be used to determine
the reward in the ¢-th round. In the ¢-th round, if the player selects a feasible super arm Sy, she
will receive a reward f;(S;). This model covers the K-MAX problem as an instance: suppose

X® = (X 1(t), . ,Xr(,f)) ~ D is the outcome vector sampled in the ¢-th round, then the function
ft(S) = max;es X i(t) is submodular and will determine the reward in the ¢-th round. We summarize
the algorithm in Algorithm[8] It uses K copies of the Exp3 algorithm (see [3] for an introduction).
For the K-MAX problem, Algorithm achieves an O(K+/mT log m) upper bound on the (1 —1/e)-
approximation regret.

Setup. Wesetm =9 and K = 3, i.e., there are 9 arms in total and it is allowed to select at most
3 arms in each round. We compare the performance of SDCB and the online submodular maximiza-
tion algorithm on four different distributions. Here we use the greedy algorithm Greedy-K-MAX
(Algorithm 3)) as the offline oracle in SDCB.

Let X; ~ D;(i € [m]). We consider the following distributions. For all of them, the optimal super
arm is S* = {1, 2, 3}.

e Distribution 1: All D;’s have the same support {0,0.2,0.4,0.6,0.8,1}.
Fori € {1,2,3}, Pr[X; = 0] = Pr[X; = 0.2] = Pr[X; = 04] = Pr[X; = 0.6] =
Pr[X; = 0.8] = 0.1 and Pr[X; = 1] = 0.5.
Fori € {4,5,6,...,9}, Pr[X; = 0] = 0.5 and Pr[X; = 0.2] = Pr[X; = 0.4] = Pr[X; =
0.6] = Pr[X; = 0.8] = Pr[X; = 1] = 0.1.

e Distribution 2: All D;’s have the same support {0,0.2,0.4,0.6,0.8,1}.
Fori € {1,2,3}, Pr[X; = 0] = Pr[X; = 0.2] = Pr[X; = 04] = Pr[X; = 0.6] =
Pr[X; = 0.8] = 0.1 and Pr[X; = 1] = 0.5.
Fori € {4,5,6,...,9}, Pr[X; = 0] = Pr[X; = 0.2] = Pr[X; = 0.4] = Pr[X; = 0.6] =
Pr[X; = 0.8] = 0.12 and Pr[X; = 1] = 0.4.

% In the exact version of a problem, we ask for a feasible set S such that total weight of S is exactly a given
target value B. For example, in the exact spanning tree problem where each edge has an integer weight, we
would like to find a spanning tree of weight exactly B.
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e Distribution 3: All D;’s have the same support {0, 0.2,0.4,0.6,0.8,1}.

Fori € {1,2,3}, Pr[X; = 0] = Pr[X; = 0.2] = Pr[X; = 0.4]
Pr[X; = 0.8] = 0.1 and Pr[X; = 1] = 0.5.
Fori € {4,5,6}, Pr[X; = 0] = Pr[X; = 0.2]
Pr[X; = 0.8] = 0.12 and Pr[X; = 1] = 0.4.
For i € {7,8,9}, Pr[X; = 0] = Pr[X; = 0.2]
Pr[X; = 0.8] = 0.16 and Pr[X; = 1] = 0.2.

e Distribution 4: All D,’s are continuous distributions on [0, 1].

Fori € {1,2,3}, D, is the uniform distribution on [0, 1].
Fori € {4,5,6,...,9}, the probability density function (PDF) of X; is

i) = {1.2 z €10,0.5],

I
-

=
s
[

0.6] =

Pr[X; = 0.4] = Pr[X; = 0.6] =

08 € (0.5,1].

These distributions represent several different scenarios. Distribution 1 is relatively “easy” because
the suboptimal arms 4-9’s distribution is far away from arms 1-3’s distribution, whereas distribution
2 is “hard” since the distribution of arms 4-9 are close to the distribution of arms 1-3. In distribution
3, the distribution of arms 4-6 is close to the distribution of arms 1-3’s, while arms 7-9’s distribution
is further. Distribution 4 is an example of continuous distribution for which we need to perform
discretization.

We use SDCB-FSD for distributions 1-3, and SDCB-GDT for distribution 4. Figure E] shows the
regret of SDCB and the online submodular maximization algorithm in 10,000 rounds. We plot the
1-approximation regret instead of the (1 — 1/e)-approximation regret, since the greedy oracle usually
performs much better than its (1 — 1/e)-approximation guarantee. We can see from Figure that
SDCB achieves much lower regret in all the examples.
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Figure 1: Regret of SDCB and Algorithm [§Jon the K-MAX problem, for distributions 1-4. The regret
is averaged over 20 independent runs.
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