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Resonator-assisted quantum bath engineering of a flux qubit
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We demonstrate quantum bath engineering for preparation of any orbital state with the controllable phase
factor of a superconducting flux qubit assisted by a microwave coplanar waveguide resonator. We investigate
the polarization efficiency of the arbitrary direction rotating on the Bloch sphere, and obtain an effective Rabi
frequency by using the convergence condition of the Markovian master equation. The processes of polarization
can be implemented effectively in a dissipative environment created by resonator photon loss when the spectrum
of the microwave resonator matches with the specially tailored Rabi and resonant frequencies of the drive.
Our calculations indicate that state-preparation fidelities in excess of 99% and the required time on the order
of magnitude of a microsecond are in principle possible for experimentally reasonable sample parameters.
Furthermore, our proposal could be applied to other systems with spin-based qubits.
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I. INTRODUCTION

One of the most promising achievements from the explo-
ration of the hybrid quantum circuits is harnessing the advan-
tages of the different quantum systems to discover the new
qualities that are not acquirable for either independent system
[1,2]. An exemplification is photon-participated initialization
of atom, spin, and superconducting qubits. Manipulation
of genuine quantum systems requires that they should be
effectively prepared into a well-defined quantum state, which
is not only important for quantum error correcting of quantum
information processors [3,4] but is also of significance for the
applications in enhancing quantum memories [5,6].

In theory, any qubit can be prepared into its minimal energy
state, i.e., ground state, when cooling to so low temperature that
thermal excitation energy is much less than the energy splitting
of the qubit. Consequently, low temperature environment is
bound to slow down systems to reach the thermodynamic
equilibrium, which retards the operations in quantum informa-
tion processors [7]. More effective cooling schemes have been
studied extensively in the context of Doppler and Sisyphus
cooling [8,9], algorithmic cooling [10,11], cavity cooling
[12–14], etc. The method of cavity cooling (say, for atomic
gases [14,15], mechanical objects [16,17], spins [13,18], etc.)
that utilizes the way to dissipate the kinetic energy in open
environment created by cavity photon loss in a controlled
manner has been investigated. Currently, it was demonstrated
that a superconducting transmon qubit may be prepared in
any pure state of the Bloch sphere with high fidelity assisted
by a microwave cavity [19]. However, the phase factor of the
prepared state is uncontrollable.

We present in this paper a scheme for preparation of any or-
bital state with the controllable phase factor of a superconduct-
ing flux qubit including three mesoscopic Josephson junctions
arranged in a superconducting loop assisted by a single-mode
coplanar waveguide (CPW) resonator. In particular, we inves-
tigate the polarization efficiency of the arbitrary rotations on
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the Bloch sphere and obtain an effective Rabi frequency which
depends on its polarization direction by using the convergence
condition of the Markovian master equation. The processes
of polarization can be implemented rapidly enough in the
direction where the spectrum of resonator matches with the
specially tailored Rabi and resonant frequencies of the drive,
which is essential for the state preparation of a superconducting
flux qubit by adjusting system parameters. Our calculations
indicate that state preparation fidelities in excess of 99% and
the required time on the order of magnitude of a microsecond
are in principle possible with currently achievable sample
parameters, which is significantly shorter than the thermal
relation time for the low-temperature superconducting flux
qubit [20,21]. Furthermore, our scheme could be applied to
other kinds of superconducting qubits, as well as to other
physical systems.

II. PHYSICAL MODEL

We here consider a superconducting flux qubit comprising
three mesoscopic Josephson junctions in a loop [depicted in
Fig. 1(a)] threaded by an induced magnetic field [22]. The flux
qubit couples to a CPW resonator via the induced magnetic
field [23,24]. As shown in Fig. 1(b), two computational
basis states of the flux qubit carry opposite macroscopic
persistent currents. The flux qubit can be described by the
effective Hamiltonian HSC = − (Bzσ̃z + Bxσ̃x) /2, where σ̃z,x

are the Pauli matrices, Bx is the level repulsion, Bz is the
dc energy bias, and the rewritten qubit levels |0〉 and |1〉
have energies ∓ 1

2ωsc (ωsc = √
B2

x + B2
z ), respectively (� = 1

is used throughout this paper). In the presence of a microwave
drive, Rabi oscillations between energy levels |0〉 and |1〉 are
induced near resonance. The total Hamiltonian of the joint
system is taken as H = H0 + Hd + Hr with

H0 = ωca
†a + ωsc

2
σz, (1)

Hd = �σ−ei�Lt + �̃σ−e−i�Lt + H.c., (2)

Hr = g(a + a†)σx, (3)

1050-2947/2015/91(1)/013825(10) 013825-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.013825


ZHANG, SHEN, YIN, WU, AND YANG PHYSICAL REVIEW A 91, 013825 (2015)

FIG. 1. (Color online) (a) A superconducting flux qubit is coupled to a CPW resonator via the induced magnetic field. The blue sinusoidal
curves describe the microwave drive. (b) The superconducting flux qubit is labeled with the new eigenstates |0〉 and |1〉 with the energy splitting
ωsc. (c) Bloch sphere diagrams indicate that polarization direction z (pink arrow) defined by an around-z-axis rotation with angle φ − Rz(φ)
followed by an around-y-axis rotation with angle θ − Ry(θ ), is determined by the rate of the detuning of the drive (blue arrow), the real part
(red arrow), and the imaginary part (green arrow) of the Rabi frequency [as illustrated by Eq. (20)].

where a(a†) are the annihilation (creation) operators of the
CPW resonator with frequency ωc and linewidth κ,� and �̃

are the rotating and counter-rotating Rabi frequencies of the
drive with frequency �L, and g is the light-qubit coupling
constant. Here we use the Pauli operators σı(ı = x,y,z,±) for
the flux qubit (with the qubit ground and excited states, |0〉 and
|1〉), σ± are the raising (lowering) operators, and σx,y,z are the
x,y,z Pauli operators.

In the interaction picture with the rotating Hamiltonian
H1 = H0 − δωa†a − δ�σz/2, the Hamiltonian of the com-
posite system within the standard rotating wave approximation
(RWA) is

H̃1 = ga†σ− + gaσ+ + δωa†a + δ�

2
σz

+ Re(�)σx + Im(�)σy, (4)

with δ� = ωsc − �L and δω = ωc − �L. This RWA is
enforced in the parameter regime ωc,�L,ωsc � g,κ,�,�̃.

Assume that the flux qubit should be prepared in any arbi-
trary superposition of ground and excited states on demand:

|−〉 = cos

(
θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉, (5)

with θ ∈ [0,π ] and φ ∈ [0,2π ), which is the eigenstate of the
Pauli operator component,

σz = − sin θ cos φσx + sin θ sin φσy + cos θσz, (6)

with eigenvalue −1. While the other eigenstate with
eigenvalue +1 is |+〉 = sin( θ

2 ) |0〉 − eiφ cos( θ
2 ) |1〉. Through

weakly coupling to a resonator as well as to a microwave
drive, the qubit can be polarized to the |+〉 or |−〉 state.

To investigate the polarization efficiency, we introduce a
unitary transformation, R(θ,φ), for Pauli operators:⎡
⎣σx

σy
σz

⎤
⎦ =

⎡
⎣ cos θ cos φ −cos θ sin φ sin θ

sin φ cos φ 0
−sin θ cos φ sin θ sin φ cos θ

⎤
⎦

⎡
⎣σx

σy

σz

⎤
⎦ . (7)

As illustrated in Fig. 1(c), this unitary transformation cor-
responds to a space rotation of Pauli operation defined by
an around-z-axis rotation with angle φ − Rz(φ) followed
by an around-y-axis rotation with angle θ − Ry(θ ). From
here, the bold subscripts x,y,z indicate the space basics

after the rotation. After moving into the interaction frame of
H2 = �̄σz + δωa†a, the Hamiltonian (4) transforms to

H̃2(t) = (Az − �̄)σz + H̃�̄(t) + H̃z(t) + H̃−(t) + H̃+(t), (8)

H̃�̄(t) = (Ax − iAy)ei2�̄tσ
(z)
+ + H.c., (9)

H̃z(t) = �ze
iδωtga†σz + H.c., (10)

H̃−(t) = �+ei(δω−2�̄)t ga†σ (z)
− + H.c., (11)

H̃+(t) = �−ei(δω+2�̄)t ga†σ (z)
+ + H.c., (12)

with

[Ax,Ay,Az]T = R[Re(�),Im(�),δ�/2]T, (13)

[�x,�y,�z]T = R[1/2, − i/2,0]T , (14)

�± = �x ± i�y, (15)

which are specified in the appendix, where �̄ is the effective
Rabi frequency that will be obtained by using the convergence
condition of the Markovian master equation, and σ

(z)
± =

(σx ± iσy)/2 are the ladder operators in the z basis.
There is no preference in the σz direction for the dynamics

of H̃z(t) and H̃�̄(t) at the thermal equilibrium, while those
of H̃±(t) would drive the flux qubit to the 〈σz〉 = ±1 state,
respectively [13]. We may set � = δω − 2�̄ to be close to
zero, so that the absolute value of � is small as compared
to those of δω,2�̄. After making the second RWA in the
interaction frame of H2, the interaction Hamiltonian reduces
to

HI (t) = (Az − �̄)σz + �+ei�tga†σ (z)
− + �∗

+e−i�tgaσ
(z)
+ .

(16)

The RWA used here is satisfied when the absolute values of
δω and �̄ are large compared to the time scale of interest
(|δω|,|2�̄| � κ,|Ax ± iAy|,|g�z|,|g�|).

III. MARKOVIAN MASTER EQUATION WITH
MULTIFREQUENCY COMPONENTS

To obtain the Markovian master equation for the driven
flux qubit, we assume the bad resonator condition κ � g. The
reduced dynamics of the flux qubit in the interaction frame
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of the dissipator is given to the second order by the time-
convolutionless master equation (see appendix and Ref. [13]):

̇(t) =
∫ ∞

0
dτ trc[eτD

†
c (L[HI (t)])L[HI (t − τ )](t) ⊗ ρeq],

(17)

where L is the superoperator L[X]ρ(t) = −i[X,ρ(t)],(t) =
trc[ρ(t)] is the reduced state of the flux qubit and ρeq is the
equilibrium state of the resonator.

Using the algebraic transformation of the dissipator Dc

[13]: etD
†
c [I] = I,etD

†
c [a] = e−κt/2a,etD

†
c [a†] = e−κt/2a†, the

master equation (17) reduces to

̇(t) =
∫ ∞

0
{e−κτ/2trc[L[H̃−(t)]L[H̃−(t − τ )](t) ⊗ ρeq]

+L[(Az − �̄)σz]L[(Az − �̄)σz](t)}dτ, (18)

where the cross-terms for the second-order TCL master
equation have been removed with the properties of our
resonator equilibrium state: trc[aρeq] = trc[a†ρeq] = 0. We
find that the last term of the master equation (18) will not be
convergent unless the constant of the component Hamiltonian,
Az − �̄, becomes zero. Therefore, we obtain the effective Rabi
frequency,

�̄ = −Re(�) sin θ cos φ + Im(�) sin θ sin φ + δ�

2
cos θ.

(19)

Considering the RWA condition |2�̄| � |Ax ± iAy|, we
obtain the parameter relationships,

− sin θ cos φ

Re(�)
≈ sin θ sin φ

Im(�)
≈ 2 cos θ

δ�
. (20)

The controllable phase factor of the prepared state, determined
by the σx and σy parts of the Pauli operator component σz, is
actually manipulated by the phase of Rabi frequency; while
the state populations, tailored by the σz part, ultimately rely on
the rate of δ�/|�|. Therefore, the preparation of arbitrarily
specified coherent superposition of the ground and excited
states of a flux qubit can be implemented by adjusting system
parameters [Re(�),Im(�),δ�/2].

The most efficient polarization for the target state with
〈σz〉 = −1 happens when the effective Rabi frequency is
matched to the spectrum of the resonator, i.e., δω = 2�̄, where
the effective polarization rate becomes

�z = g2κ(1 + cos θ )2

κ2 + 4�2
, (21)

and the master equation (18) reduces to a rate equation for the
state populations:

d

dt
�P (t) = �zM �P (t), (22)

with

M =
[−n̄ n̄ + 1

n̄ −(n̄ + 1)

]
. (23)

Here n̄ is the average photon number at equilibrium, the di-
agonal matrix elements Pm(t) = 〈m| (t) |m〉 (m = ±1) of the
reduced density operator (t) corresponds to the expectation

value of the projection operator |m〉 〈m| at the arbitrary time t ,
and �P (t) = (P−1(t),P1(t))T is defined.

At the thermodynamic equilibrium, the state of the driven
flux qubit satisfies ∂t

�PJ (∞) = 0 and can be given by ρJ,eq =∑
m=±1 Pm(∞)m, where

P−1(∞) = 1

e−ωc/kBTc + 1
, (24)

P1(∞) = e−ωc/kBTc

e−ωc/kBTc + 1
. (25)

The expectation value of the Pauli operator component σz for
the equilibrium state is

〈σz〉eq = e−ωc/kBTc − 1

e−ωc/kBTc + 1
. (26)

In the ideal case where the resonator is cooled to its ground
state (Tc → 0), the probability of the qubit being in state 〈σz〉 =
−1 at equilibrium is given by P−1  1 and the final expectation
value of the Pauli operator component σz is approximately
〈σz〉eq  −1.

Assume that the flux qubit is taken to be maximally
mixed in the basis {Pm(0) = 1/2, for m = ±1}. The simulated
expectation value of 〈σz(t)〉 for the temperature of bath ranging
from n̄ = 0 to n̄ = 0.5 is shown in Fig. 2(a), normalized by
−1 to obtain a maximum value of 1. When the processes of
polarization are carried out at Tc = 100 mK, the corresponding
expectation value of the number operator at equilibrium
approximates null (n̄ ≈ 0) for ωsc/2π = 6 GHz. Obviously,
there is almost no effect of thermal relaxation being observed.

The expectation value 〈σz(t)〉 for the ideal case may be fitted
to an exponential function to derive an effective polarization
time constant Tz [13],

−〈σz(t)〉 = 1 − exp

(
− t

Tz

)
, (27)

with

Tz  1

�z
= κ2 + 4�2

g2κ(1 + cos θ )2
, (28)

showing that the most efficient polarization happens when
the polarization is in the σz direction (cos θ = 1). For the
case cos θ < 0, we may change the matching to δω + 2�̄ =
0, so that the polarization time is always less than κ/g2.
Effective dissipation rate in the units of g2/κ = 1 versus the
dimensionless parameters �/κ and θ is shown in Fig. 2(b).
Apparently, the effective dissipation rate increases rapidly,
when the Stokes photons are on resonance with the resonator.

In our paper, reasonable sample parameters are required
to validate the Markov approximation (κ � g), and adhere
to the two RWAs, i.e., the first one made to remove the
time-dependent terms of the interaction Hamiltonian (4)
(ωc,�L,ωsc � g,κ,�,�̃) and the second used to isolate the
exchange term of the flux qubit and resonator of Eq. (16)
(|δω|,|2�̄| � κ,|Ax ± iAy|,|�z|,|�−|). Assume that the
flux qubit should be prepared in the ground states of the
σx(σy,σz) eigenbasis, the RWA condition |2�̄| � |Ax ± iAy|
requires that |2Re [�] |2 � | δ�

2 |2 + |Im [�] |2(|2Im [�] |2 �
| δ�

2 |2 + |Re [�] |2,|δ� |2 � |Re [�] |2 + |Im [�] |2). Under

013825-3



ZHANG, SHEN, YIN, WU, AND YANG PHYSICAL REVIEW A 91, 013825 (2015)

FIG. 2. (Color online) (a) Normalized expectation value −〈σz〉 of the flux qubit as a function of the dimensionless parameter �zt for various
equilibrium temperatures of the resonator ranging from n̄ = 0 to n̄ = 0.5. (b) Effective dissipation rate in the units of g2/κ = 1 versus the
dimensionless parameters �/κ and θ . (c) The infidelity of the generated state as a function of the dimensionless parameters �R = δRe(�)/Re(�)
and �I = δIm(�)/Im(�) at equilibrium, i.e., IFz vs �R and �I , for parameters [Re(�),Im(�),δ�/2]/2π = [100,100,100]/

√
3 MHz and

[θ,φ] = [arccos(1/
√

3),3π/4]. (d) The evolution of the fidelity of the ground state of σz = (σx + σy + σz)/
√

3 for different deviations of
parameters �R and �I , where the deviation situations of [�R,�I ] = [0.0,0.0],[−0.2, + 0.2],[+0.2, − 0.2], which respond to red, green, and
blue curves, respectively, almost overlap. The dimensionless parameter τ = 2�̄t is defined, while other parameters are the same as (c). Here k

means 103.

the experimentally reasonable parameters listed in Table I, the
polarization time of the original x,y,z-axis directions is about
1/�x  0.8μ(1/�y  0.8μ,1/�z  0.2 μs) for the ideal
case (Tc = 0), which is significantly shorter than the intrinsic
energy relaxation time (and the pure dephasing time) for
low-temperature flux qubit up to 20 μs (10 μs) [20,21]. On
the other hand, the effective Rabi frequency which depends on
the polarization direction, the Rabi and resonant frequencies
of the microwave drive, allows a fruitfully adjustable range
for experimental parameters.

The purity of the generated state with an arbitrary phase
factor, which is related to the Rabi frequency character-
istic of the model, might be polluted by its fluctuation.
To measure the reliability of the prepared state, we de-
fine the fidelity Fz(t) = 〈−| (t) |−〉 and plot the infidelity
defined by IFz(t) = 1 − Fz(t) in Fig. 2(c) as a func-
tion of the dimensionless parameters �R = δRe(�)/Re(�)
and �I = δIm(�)/Im(�) at equilibrium for the polar-
ization in σz = (σx + σy + σz)/

√
3 direction with param-

eters [Re(�),Im(�),δ�/2]/2π = [100,100,100]/
√

3 MHz
and [θ,φ] = [arccos(1/

√
3,3π/4]. It shows that, for a 20%

deviation of parameters �R and �I , there is less than 1%
reduction in fidelity [27]. Thus the fidelity is slightly affected
by the fluctuation of the Rabi frequency of the drive. However,
we can obviously find that the polarization efficiency reduces
when the unavoidable fluctuation of the Rabi frequency causes
the deviation of |�| (i.e., � �= 0). As depicted in Fig. 2(d),
for the cases [�R,�I ] = [−0.2, − 0.2],[+0.2, + 0.2], the
polarization time is apparently longer than the other three
situations, where the dimensionless parameter τ = 2�̄t is
introduced.

TABLE I. Typical energy scales (in 2π MHz) that we consider.
The polarization time of the original x,y,z-axis directions is Tx,Ty ,
and Tz is about 0.8 μs, 0.8 μs, and 0.2 μs, respectively. Here we
set g/2π = 2 MHz, κ/2π = 20 MHz, 2�̄/2π = 200 MHz, and
ωsc/2π = 6 GHz (validating the approximation g � κ � 2�̄).

σx Re(�) = 100 Im(�) = 0 δ� = 0 δω = 200
σy Re(�) = 0 Im(�) = 100 δ� = 0 δω = 200
σz Re(�) = 0 Im(�) = 0 δ� = 200 δω = 200

IV. INFLUENCE OF THE QUBIT DISSIPATION
AND THE RELATED REMARKS

Until now, just the resonator decay is considered. Having
included the spontaneous emission and dephasing of the flux
qubit, the total system and its environment can be described
by the Lindblad master equation,

d

dt
ρ(t) = L[H̃1]ρ(t) + Dcρ(t) + �s

2
D[σ (z)

− ]ρ(t)

+ �p

2
D[σz]ρ(t), (29)

where D[A]ρ = 2AρA† − {A†A,ρ},�s is the decay rate for
the spontaneous emission, and �p is the phase relaxation rate.
During the numerical simulation, �s = �p = � is assumed,
and the parameters γ = �/2�̄,η = g/2�̄, and ζ = κ/2�̄ are
introduced. The polarization process for the flux qubit can
be optimized by properly selecting the parameters η and ζ

for each combination (θ,φ,γ ). Figures 3(a) and 3(b) plot the
fidelity of the generated state as a function of the dimensionless
parameters (a) γ = �/2�̄ and θ (for η = 0.52,ζ = 0.30, and
φ = π ), and (b) θ and φ (for η = 0.25,ζ = 0.17, and γ =
0.02). The results illustrate that the fidelity can exceed the
value 99% for an optional range of the parameters. Assume the
effective Rabi frequency �̄ = 2π × 100 MHz, with the choice
of τ = 500, the polarization time in the z axis is less than
0.4 μs, for parameters η = 1/9,ζ = 1/3. The evolution of the
fidelity of the ground states of σx and σy for various dissipative

FIG. 3. (Color online) (a) The fidelity of the prepared state of
the flux qubit, at equilibrium, versus the dimensionless parameters
γ = �/2�̄ and θ , i.e., Fz vs γ and θ , for η = 0.52,ζ = 0.30, and
φ = π ; (b) Fz vs θ and φ, for η = 0.25,ζ = 0.17, and γ = 0.02.
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FIG. 4. (Color online) The evolution of the fidelity of the ground
state of σz and σx,y (inset) for various dissipative decay rates of the
flux qubit ranging from γ = 0 to γ = 0.05, corresponding to the
enclosed optimized parameters η and ζ . Here k means 103.

decay rates of the flux qubit ranging from γ = 0 to γ = 0.05 is
depicted in the inset of Fig. 4. It is shown that the quality of the
ground-state polarization is affected by the qubit dissipation,
and the case is aggravated with the increase of the intrinsic
energy relaxation or pure dephasing for the qubit, especially
for the state (5) approaching the equator on the surface of
the Bloch sphere (see Fig. 3). In fact, according to the recent
experimental data reported in [20,21], approximately perfect
qubit polarization based upon the proposed method can be
achieved. As the energy relaxation time 1

�s
and pure dephasing

time 1
�p

are up to 20 μs and 10 μs [20,21], corresponding to

the relatively slight γ ∼ �/2�̄  8 × 10−5, within which the
fidelity of the prepared state is almost unaffected, as shown
in Fig. 3(a). Consequently, our scheme is in principle feasible
with experimentally reasonable sample parameters.

V. CONCLUSION

Two main assumptions should be made in the presented
theoretical model. First, we have neglected the effects of
thermal relaxation of the superconducting system. No effect
of thermal relaxation is observed at Tc = 40 mK (with ωT =
Tc/hkB  0.13 × 2π GHz � ωsc = 6 × 2π GHz) [20,21].
Second, the derivation of the Markovian master Eq. (18)
assumes the bad resonator condition, which can be valid when
the resonator dissipation rate is much larger than the coupling
strength between the flux qubit and resonator in the lowest
excitation manifold [13].

In conclusion, we have demonstrated the initialization
of a superconducting flux qubit assisted by a microwave
resonator. The proposed technique allows any orbital state
of the Bloch sphere with the arbitrary phase factor of the
flux qubit to be prepared by adjusting the Rabi frequency and
the detunings of the drive and resonator. State preparation
fidelities in excess of 99% and the required time on the order
of magnitude of a microsecond are in principle possible for
experimentally reasonable system parameters. Such a type of
resonator-assisted qubit initialization method could find many
applications in the future quantum technologies.
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APPENDIX: DERIVATION OF MARKOVIAN MASTER
EQUATION AND ANALYSIS OF APPROXIMATIONS

1. System Hamiltonian

We here show all details on the derivation of the Markovian
master equation and the analysis of approximations. Let us
begin with the calculation of the interaction Hamiltonian
(8). After moving into the interaction frame of H2 = �̄σz +
δωa†a, the Hamiltonian (4) transforms to

H̃2(t) = [geitH2 (a†σ−)e−itH2 + H.c.] + eitH2

[
Re(�)σx

+ Im(�)σy + δ�

2
σz − �̄σz

]
e−itH2

= [eitδωa†aa†e−itδωa†aeit�̄σz [�xσx + �yσy

+�zσz]e−it�̄σz + H.c.]

+ eit�̄σz [Axσx + Ayσy + (Az − �̄)σz]e−it�̄σz

= [eiδωta†[�xe
it�̄σzσxe

−it�̄σz + �ye
it�̄σzσye

−it�̄σz

+�zσz] + H.c.] + Axe
it�̄σzσxe

−it�̄σz

+Aye
it�̄σzσye

−it�̄σz + (Az − �̄)σz, (A1)

with

�x = 1

2
g cos θeiφ, �y = − i

2
geiφ, �z = 1

2
g sin θeiφ,

(A2)

Ax = cos θ cos φRe(�) − cos θ sin φIm(�) + 1

2
sin θδ�,

(A3)

Ay = sin φRe(�) + cos φIm(�), (A4)

Az = − sin θ cos φRe(�) + sin θ sin φIm(�) + 1

2
cos θδ�,

(A5)

i.e.,

[�x,�y,�z]T = gR[1/2, − i/2,0]T , (A6)

[Ax,Ay,Az]T = R[Re(�),Im(�),δ�/2]T . (A7)
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TABLE II. Relative parameters of the system’s Hamiltonian.

α 1 2 3 4 5

Jα σz σ+ σz σ− σ+
Aα I I a a a

ωα 0 2�̄ δω �− �+
Cα Az − �̄ A− �z �+ �−

Now we use the Baker-Campbell-Hausdorf expansion, and
obtain

eit�̄σzσxe
−it�̄σz = (e2it�̄σ

(z)
+ + e−2it�̄σ

(z)
− ), (A8)

eit�̄σzσye
−it�̄σz = i(e−2it�̄σ

(z)
− − e2it�̄σ

(z)
+ ), (A9)

where σ
(z)
± = σx±iσy

2 are the ladder operators in the z basis.
Hence we obtain the interaction Hamiltonian which may be
broken up in terms of frequency components,

HI (t) = H̃0 + H̃�̄(t) + H̃z(t) + H̃−(t) + H̃+(t), (A10)

H̃0 = (Az − �̄)σz, (A11)

H̃ (t) = A−ei2�̄tσ
(z)
+ + A+e−i2�̄tσ

(z)
− , (A12)

H̃z(t) = �ze
iδωta†σz + �∗

ze
−iδωtaσz, (A13)

H̃−(t) = �+ei�−t a†σ (z)
− + �∗

+e−i�−t aσ
(z)
+ , (A14)

H̃+(t) = �−ei�+t a†σ (z)
+ + �∗

−e−i�+t aσ
(z)
− , (A15)

with

�± = �x ± i�y, A± = Ax ± iAy, �± = δω ± 2�̄.

(A16)

From here we will drop the (z) superscript and just note that we
are working in the σz eigenbasis. In order to intuitively make
out the frequency components of the interaction Hamiltonian
(A10), where the parameters are listed in Table II. So we obtain

HI (t) =
5∑

α=1

Hα(t) = C1e
iω1tA

†
1J1 +

5∑
α=2

CαeiωαtA†
αJα

+C∗
αe−iωαtAαJ †

α . (A17)

2. Derivation of Markovian master equation for the interaction
Hamiltonian with multifrequency components

Here we use the Lindblad master equation to describe the
evolution of the joint system, where the dynamics of the hybrid
quantum system may be depicted as an effective dissipator
acting upon the flux qubit alone [25]:

ρ̇(t) = L [HI (t)] ρ(t) + Dcρ(t), (A18)

where L is a superoperator L[HI (t)]ρ = −i[HI (t),ρ] describ-
ing the Hermitian Hamiltonian of the system (A17), and Dc

is a dissipator describing the non-Hermitian dynamics of the
system due to the coupling to a Markovian resonator [26]:

Dc = κ

2
{(1 + n̄)D[a] + n̄D[a†]}, (A19)

with D[A]ρ = 2AρA† − {A†A,ρ}, where n̄ is the expectation
value of the photon number operator at equilibrium,

n̄ = 1

eωc/kBTc − 1
, (A20)

where kB is the Boltzmann constant, and Tc is the temperature
of the bath.

We here move to the interaction frame defined by the
dissipator Dc. Any interaction superoperators are transformed
into S̃(t) = e−tDcS(t)etDc , except for the density operator
ρ̃(t) = e−tDcρ(t). Then the master equation (A19) of the
hybrid quantum system is reduced to

d

dt
ρ̃(t) = L̃[HI (t)]ρ̃(t). (A21)

We define a projection operator P̂ onto the relevant degrees
of freedom for our reduced system,

P̂ ρ(t) = (t) ⊗ ρeq, (A22)

where (t) = trc[ρ(t)] is the reduced state of the flux qubit
and ρeq is the equilibrium state of the resonator under the
dissipation, satisfying Dcρeq = 0. To obtain Markovian master
equation for the driven flux qubit, we assume the bad resonator
condition κ � g. Thus the reduced dynamics of the flux qubit
is transformed into the second-order time-convolutionless
(TCL) master equation [25],

d

dt
P̂ ρ̃(t) =

∫ t

0
dτ P̂ L̃[HI (t)]L̃[HI (t − τ )]P̂ ρ̃(t). (A23)

Using the following algebraic transformation of the dissi-
pator D

†
c , which satisfies trc[D†

c[A]B] = trc[ADc[B]] for all
operators A,B on the resonator,

D†
c[I] = 0, D†

c[a] = −κ

2
a, D†

c[a†] = −κ

2
a†, (A24)

etD
†
c [I] = I, etD

†
c [a] = e−κt/2a, etD

†
c [a†] = e−κt/2a†,

(A25)

we obtain

P̂ ρ̃(t) = trc[e−tDcρ(t)] ⊗ ρeq

= trc[e−tD
†
c [I]ρ(t)] ⊗ ρeq = P̂ ρ(t), (A26)

where we have used DcPρ(t) = trc[ρ(t)] ⊗ Dcρeq = 0. Thus
the reduced dynamics of the flux qubit is given by [13]

d

dt
(t) =

∫ t

0
dτ trc[L[HI (t)]eτDcL[HI (t − τ )](t) ⊗ ρeq]

=
∫ t

0
dτ trc[eτD

†
c (L[HI (t)])L[HI (t − τ )](t) ⊗ ρeq]

= −
∑
α,δ

∫ t

0
dτAαtrc[[Hα(t),[Hδ(t − τ ),(t) ⊗ ρeq]]],

(A27)

with

Aα =
{

1 α = 1,2;
e−κτ/2 α = 3,4,5.

(A28)
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Starting with the second-order TCL master equation (A27), we now expand this in terms of the component Hamiltonians Hα(t),
and define

Fαδ(t,t − τ ) = trc[[Hα(t),[Hδ(t − τ ),(t) ⊗ ρeq]]]. (A29)

Using the properties of the equilibrium state of the resonator,

trc[aa†ρeq] = n̄ + 1,trc[a†aρeq] = n̄,trc[a†a†ρeq] = trc[aaρeq] = trc[aρeq] = trc[a†ρeq] = 0, (A30)

we obtain three cases in the following.
(1) α,δ = 1,2:

Fαδ(t,s) = [Hα(t),[Hδ(t),(t)]]; (A31)

(2) α,δ = 3,4,5:

Fαδ(t,s) = trc[Cα(t)∗J †
αAα,[Cδ(s)JδA

†
δ,(t) ⊗ ρeq]] + trc[Cα(t)JαA†

α,[Cδ(s)∗J †
δ Aδ,(t) ⊗ ρeq]]

= trc[A†
αAδρeq][Cα(t)Cδ(s)∗JαJ

†
δ  + Cδ(s)Cα(t)∗JδJ

†
α − Cδ(s)∗Cα(t)J †

δ Jα − Cα(t)∗Cδ(s)J †
αJδ]

+ trc[AαA
†
δρeq][Cα(t)∗Cδ(s)J †

αJδ + Cδ(s)∗Cα(t)J
†
δ Jα − Cδ(s)Cα(t)∗JδJ †

α − Cα(t)Cδ(s)∗JαJ
†
δ ],

= n̄[Cα(t)Cδ(s)∗JαJ
†
δ  + Cδ(s)Cα(t)∗JδJ

†
α − Cδ(s)∗Cα(t)J †

δ Jα − Cα(t)∗Cδ(s)J †
αJδ]

+ (n̄ + 1)[Cα(t)∗Cδ(s)J †
αJδ + Cδ(s)∗Cα(t)J

†
δ Jα − Cδ(s)Cα(t)∗JδJ †

α − Cα(t)Cδ(s)∗JαJ
†
δ ]; (A32)

(3) α = 1,2,δ = 3,4,5 or δ = 1,2,α = 3,4,5:

Fαδ(t,s) = 0, (A33)

where we suppose that the time dependence of the Hamiltonian was included in Cα(t) = Cαeiωαt .
To calculate the dissipator for these terms in the Markovian limit we take the upper limit of the integral to infinity

∫ t

0 dτ →∫ ∞
0 dτ , and define the superoperator generators,

Gα,δ(t)(t) = −
∫ ∞

0
dτAαFαδ(t,t − τ ), Gα(t)(t) = −

∫ ∞

0
dτAαFαα(t,t − τ ). (A34)

Hence the reduced system master equation is given by
d

dt
(t) =

∑
α

Gα(t)(t) +
∑
α �=δ

Gα,δ(t)(t), (A35)

where Gα(t) are the diagonal terms of the master equation, while Gα,δ(t) are the cross-terms which do not generate a completely
positive map and can be removed under certain parameter regimes with an appropriate RWA.

We begin with the calculation of the diagonal terms of the master equation.
(1) α = 1

G1(t)(t) = −
∫ ∞

0
dτF11(t,t − τ ) = −

∫ ∞

0
dτ [H̃0,[H̃0,(t)]]

= (Az − �̄)2
∫ ∞

0
dτ [2σz(t)σz − (t)σzσz − σzσz(t)]

= (Az − �̄)2
∫ ∞

0
dτD[σz](t), (A36)

which won’t be convergent unless the constant of the Hamiltonian is equal to zero, i.e., �̄ = Az. Hence we obtain the effective
Rabi frequency,

�̄ = −Re [�] sin θ cos φ + Im [�] sin θ sin φ + δ�

2
cos θ. (A37)

(2) α = 2

G2(t)(t) = −
∫ ∞

0
dτF22(t,t − τ ) = −

∫ ∞

0
dτ [H̃�̄(t),[H̃�̄(t − τ ),(t)]]

= −
∫ ∞

0
dτ {[A−e2i�̄t σ+,[A−e2i�̄(t−τ )σ+,(t)]] + [A−e2i�̄tσ+,[A+e−2i�̄(t−τ )σ−,(t)]]

+ [A+e−2i�̄tσ−,[A−e2i�̄(t−τ )σ+,(t)]] + [A+e−2i�̄tσ−,[A+e−2i�̄(t−τ )σ−,(t)]]}
= λ2 |A−|2 L[σ−σ+ − σ+σ−](t) − iλ2A

2
−e4i�̄tD[σ+](t) + iλ2A

2
+e−4i�̄tD[σ−](t), (A38)
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with λ2 = (2�̄)−1. The high frequency terms e±4i�̄t can be removed by making the standard RWA under the parameter regimes
4�̄ � κ,λ2A

2
±. Hence we have

G2(t)(t) = D0L[σ−σ+ − σ+σ−](t), (A39)

with D0 = λ2|A−|2.
(3) α = 3,4,5

Gα(t)(t) = −
∫ ∞

0
dτe−κτ/2Fαα(t,t − τ )

= − |Cα|2
∫ ∞

0
dτe−κτ/2{(n̄ + 1)[e−iωατ (J †

αJα − JαJ †
α ) + eiωατ (J †

αJα − JαJ †
α )]

+ n̄[eiωατ (JαJ †
α − J †

αJα) + e−iωατ (JαJ †
α − J †

αJα)]}
= |Cα|2 (n̄ + 1)[(γα − iλα)(J †

αJα − JαJ †
α ) + (γα + iλα)(J †

αJα − JαJ †
α )]

+ |Cα|2 n̄[(γα + iλα)(JαJ †
α − J †

αJα) + (γα − iλα)(JαJ †
α − J †

αJα)]

= |Cα|2 γα[(n̄ + 1)D[Jα] + n̄D[J †
α ]] − |Cα|2 λαL[(n̄ + 1)J †

αJα − n̄JαJ †
α ](t). (A40)

Hence,

Gα(t)(t) = �α

2
[(n̄ + 1)D[Jα] + n̄D[J †

α ]] − �αL[(n̄ + 1)J †
αJα − n̄JαJ †

α ], (A41)

with �α = 2 |Cα|2 γα and �α = |Cα|2 λα .
The cross-terms Gα,δ(t)(α,δ = 3,4,5) will still have time dependence of e±i(ωα−ωδ)t . (Other cross-terms are all zero under the

convergence condition of the master equation, i.e., Az = �̄.) Thus, if we have |ωα − ωδ| � κ for all α,δ, then we can make a
RWA and disregard these high frequency terms.

In this case, the master equation (A35) reduces to

d

dt
(t) = G2(t)(t) +

5∑
α=3

(
�α

2
D̃α − �αL[H̃α]

)
(t), (A42)

with

D̃α = (n̄ + 1)D[Jα] + n̄D[J †
α ], �α = 4 |Cα|2 ωα

κ2 + 4ω2
α

, �α = 4 |Cα|2 κ

κ2 + 4ω2
α

, H̃α = (n̄ + 1)J †
αJα − n̄JαJ †

α,

where H̃α,D̃α,�α,�α are the effective Hamiltonian, dissipator, frequency, and dissipation rate of model (α).
We consider the evolution of the flux qubit which is diagonal in the basis {|−〉,|+〉},(t) = ∑

m=±1 Pm(t)m. Here Pm(t) =
〈m|(t)|m〉 is the probability of finding the system in the state m = |m〉〈m| at the arbitrary time t , and satisfies the equation:

d

dt
Pm(t) = trc[G2(t)(t)|m〉〈m|] +

5∑
α=3

trc

[(
�α

2
D̃α − �αL[H̃α]

)
(t)|m〉〈m|

]
, (A43)

with

trc[L[σ−σ+ − σ+σ−](t) |m〉 〈m| ] = −itrc[[σ−σ+(t) − σ+σ−(t) − (t)σ−σ+ + (t)σ+σ−] |m〉 〈m|]
= −itrc[(t) |m〉 〈m| σ−σ+ − (t) |m〉 〈m| σ+σ− − (t)σ−σ+ |m〉 〈m| + (t)σ+σ− |m〉 〈m|]
= −itrc[(δm,−1 − δm,1 − δm,−1 + δm,1)(t) |m〉 〈m|]
= 0, (A44)

trc[D[σ+](t) |m〉 〈m| ] = trc[2σ+(t)σ− |m〉 〈m| − σ−σ+(t) |m〉 〈m| − (t)σ−σ+ |m〉 〈m|]
= trc[2(t)σ− |m〉 〈m| σ+ − (t) |m〉 〈m| σ−σ+ − (t)σ−σ+ |m〉 〈m|]
= 2(δm,1 − δm,−1)trc[(t) |−1〉 〈−1|]
= 2(δm,1 − δm,−1)P−1(t), (A45)

trc[D[σ−](t) |m〉 〈m| ] = trc[2σ−(t)σ+ |m〉 〈m| − σ+σ−(t) |m〉 〈m| − (t)σ+σ− |m〉 〈m|]
= trc[2(t)σ+ |m〉 〈m| σ− − (t) |m〉 〈m| σ+σ− − (t)σ+σ− |m〉 〈m|]
= 2(δm,−1 − δm,1)P1(t), (A46)
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trc[D[σz](t) |m〉 〈m| ] = trc[2σz(t)σz |m〉 〈m| − σzσz(t) |m〉 〈m| − (t)σzσz |m〉 〈m|]
= trc[2(t)σz |m〉 〈m| σz − (t) |m〉 〈m| σzσz − (t)σzσz |m〉 〈m|]
= 0, (A47)

trc[D̃3(t) |m〉 〈m|] = (2n̄ + 1)D[σz](t) |m〉 〈m|] = 0, (A48)

trc[D̃4(t) |m〉 〈m|] = (n̄ + 1)D[σ−](t) |m〉 〈m|] + n̄D[σ+](t) |m〉 〈m|]
= 2(n̄ + 1)(δm,−1 − δm,1)P1(t) + 2n̄(δm,1 − δm,−1)P−1(t), (A49)

trc[D̃5(t) |m〉 〈m|] = (n̄ + 1)D[σ+](t) |m〉 〈m|] + n̄D[σ−](t) |m〉 〈m|]
= 2(n̄ + 1)(δm,1 − δm,−1)P−1(t) + 2n̄(δm,−1 − δm,1)P1(t), (A50)

trc[L[H̃3](t) |m〉 〈m|] = −itrc[(n̄ + 1)σzσz(t) |m〉 〈m| − n̄σzσz(t) |m〉 〈m|
− (n̄ + 1)(t)σzσz |m〉 〈m| + n̄(t)σzσz |m〉 〈m|]

= −itrc[(n̄ + 1)(t) |m〉 〈m| σzσz − n̄(t) |m〉 〈m| σzσz

− (n̄ + 1)(t)σzσz |m〉 〈m| + n̄(t)σzσz |m〉 〈m|]
= 0, (A51)

trc[L[H̃4](t) |m〉 〈m| ] = −itrc[(n̄ + 1)σ+σ−(t) |m〉 〈m| − n̄σ−σ+(t) |m〉 〈m|
− (n̄ + 1)(t)σ+σ− |m〉 〈m| + n̄(t)σ−σ+ |m〉 〈m|]

= −itrc[(n̄ + 1)(t) |m〉 〈m| σ+σ− − n̄(t) |m〉 〈m| σ−σ+
− (n̄ + 1)(t)σ+σ− |m〉 〈m| + n̄(t)σ−σ+ |m〉 〈m|]

= −itrc[δm,1(n̄ + 1)(t) |1〉 〈1| − δm,−1n̄(t) |−1〉 〈−1|
− δm,1(n̄ + 1)(t) |1〉 〈1| + δm,−1n̄(t) |−1〉 〈−1|]

= 0, (A52)

trc[L[H̃5](t) |m〉 〈m| ] = −itrc[(n̄ + 1)σ−σ+(t) |m〉 〈m| − n̄σ+σ−(t) |m〉 〈m|
− (n̄ + 1)(t)σ−σ+ |m〉 〈m| + n̄(t)σ+σ− |m〉 〈m|]

= −itrc[(n̄ + 1)(t) |m〉 〈m| σ−σ+ − n̄(t) |m〉 〈m| σ+σ−
− (n̄ + 1)(t)σ−σ+ |m〉 〈m| + n̄(t)σ+σ− |m〉 〈m|]

= −itrc[δm,−1(n̄ + 1)(t) |−1〉 〈−1| − δm,1n̄(t) |1〉 〈1|
− δm,−1(n̄ + 1)(t) |−1〉 〈−1| + δm,1n̄(t)σ+σ− |1〉 〈1|]

= 0. (A53)

Defining �P (t) = (P−1(t),P1(t)), the master equation (A43) reduces to a rate equation for the state populations:

d

dt
�P (t) =

∑
α=4,5

�αMα
J

�P (t), (A54)

with

M4
J =

[−n̄ n̄ + 1
n̄ −(n̄ + 1)

]
, M5

J =
[−(n̄ + 1) n̄

n̄ + 1 −n̄

]
. (A55)
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