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Scheduling wireless links under the SINR model has attracted increasing attention in the
past few years [1–6, 8–15, 18–20, 23–25, 27, 28, 33–36, 39, 41, 42, 45, 46]. However, most of
previous work did not account for the precedence constraint that might exist among the
wireless links. Precedence constraints are common in data aggregation problems where
a sensor can not send data to its parent node before it has received data from all of
its children. Existing solutions to the so-called minimum latency aggregation scheduling
problem [7, 16, 21, 26, 29, 30, 32, 40, 43, 44] mainly focus on specific tree topologies rooted
at the sink node. In this paper, we study the minimum latency link scheduling problem
for arbitrary directed acyclic networks under both precedence and SINR constraints. Our
formulation allows multiple sinks, and each sensor may transmit data to more than one
parent node. We first show that the problem is NP-hard, and then propose a linear power
assignment based polynomial time approximation algorithm and a dynamic labeling based
heuristic algorithm. We have carried out extensive simulations for both dense and sparse
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arbitrary directed acyclic networks. The simulation results show that: (1) compared with
both uniform and linear power assignments based algorithms, we can achieve much shorter
scheduling lengths using our proposed labeling algorithm, and (2) the dynamic labeling
based heuristic algorithm can lead to significantly shorter scheduling lengths than the
heuristic algorithm which does not use labeling.

Keywords: Minimum latency link scheduling; SINR model; physical interference model;
directed acyclic networks; precedence constraints.

1. Introduction

1.1. Problem Motivation

Recently there has been a surge of interest in studying the minimum length link

scheduling problem under the SINR (Signal-to-Interference-plus-Noise-Ratio) model

(also known as the physical interference model) [2, 3, 8, 11–13, 15, 24, 27, 34, 36].

Given a set of n arbitrarily constructed links on the plane, the objective of this

problem is to use the minimum number of timeslots to schedule all the links such

that the SINR ratios at all simultaneously scheduled links are greater than or equal

to the threshold values as stipulated by the SINR model. All previous work, however,

did not take the precedence constraints of the links into account. These precedence

constraints exist naturally in data aggregation problems where a sensor can not

send the data to its parent node if it has not received the data from all of its

children. An example of precedence is when a node needs to compute the maxi-

mum or average value of all the collected data from other nodes. Very recently,

there has been some work on this kind of minimum latency aggregation schedul-

ing problem (MLAS) [7, 16, 21, 26, 29, 30, 32, 40, 43, 44], but (1) except the work

in [16, 21, 29, 30, 32], most of them study the scheduling problem based on the graph

based interference models instead of the SINR model; and (2) all of the current work

study the joint problem of tree topology construction and link scheduling where each

sensor only needs to send their aggregated data to one parent node. In this paper,

we study the problem of minimum latency link scheduling for arbitrary directed

acyclic networks under both precedence and SINR constraints (MLSDAN). Here

by the minimum latency link scheduling, we mean to use the minimum number of

time slots to schedule all the links in the arbitrary directed acyclic networks while

satisfying the precedence and SINR constraints. Compared with the MLAS prob-

lem, the MLSDAN problem allows multiple sinks whereby each sensor may need to

transmit data to more than one parent node. In addition, in the MLAS problem,

given the nodes arbitrarily located on the plane, the algorithm can take advan-

tage of the specifically constructed tree topology to facilitate the scheduling process

(e.g., [16, 21, 29, 30, 32]). Whereas in our MLSDAN problem, an arbitrary network

topology is given and thus the algorithm loses the freedom of constructing its own

network topology to help the link scheduling process.
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1.2. Our Contribution

First, we show that the MLSDAN problem is NP-hard. Second, we propose a poly-

nomial time approximation algorithm with a provable performance guarantee. The

approximation ratio is O(min{d(dan) · Cmax, CP · d(dan)}) (min is a function to

choose the minimum value). Here d(dan) is the length diversity of all the links in

the directed acyclic network dan(cf. Equation (2.2)); CP is the length of the criti-

cal path in dan (cf. subsection 3.2) and Cmax means the maximum number of links

whose receivers are located in a cell (cf. subsection 4.2). To our knowledge, this is the

first polynomial time approximation algorithm for the MLSDAN problem. Third,

we present a dynamic labeling based scheduling algorithm and extensive simulation

results to show that our algorithm outperforms many frequently used link scheduling

algorithms in terms of scheduling lengths.

1.3. Related Work

The MLAS problem which was first proposed by Chen, Hu and Zhu in [7]. Im-

provements were later given by Wan et al. in [26, 40] and Yu et al. in [44] which

are based on either the unit disk graph model or the disk graph model. Xu et al.

have also studied the MLAS problem in the protocol interference model [43]. Cur-

rently, the only results for the MLAS problem under the SINR model can be found

in [16, 21, 29, 30, 32]. All of these work involve their own tree topology construction

algorithms in order to expedite the link scheduling process.

We now briefly review the papers that study the minimum length link scheduling

problem under the SINR model. For a more detailed survey of this line of research,

please refer to [14, 25]. First, a line of heuristic algorithms aiming to minimize the

scheduling lengths can be found in [2, 3, 8]. Tang et al. in [39] have formulated the link

scheduling problem as an integer programming problem and proposed some heuris-

tic algorithms based on the relaxed linear programming method. A seminal paper

which uses an elegant non-linear power assignment was proposed by Moscibroda and

Wattenhofer in [33]. Basically, this paper shows that a connected wireless topology

can be constructed in O(log4n) timeslots where n is the number of nodes. This paper

has spawned a large body of following works that either aim to reduce the scheduling

lengths [4, 13, 16, 21, 23, 34–36] or to analyze the hardness of the scheduling prob-

lem [12, 15, 27]. In addition, since the non-linear power assignment based scheduling

algorithm needs the information of all the links such as their lengths, there are

some recent works that focus on oblivious power assignment methods. For example,

Fanghänel et al. have proposed a so-called square-root or mean power assignment

that is based on each link’s own length [11]. This square-root power assignment has

also been used by Halldorsson in [18]. Note that, both constant [4, 13, 15] and linear

power assignments [10] are also oblivious power assignments since these strategies

also only need to know each link’s own length information. Different from heuris-

tic algorithms, all these non-linear or oblivious power assignment based algorithms

have worst-case performance guarantees. In addition to heuristic and approximation
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algorithms, an exponential time exact algorithm has been proposed by Hua and Lau

in [24]. By also considering routing in the minimum length link scheduling scenario,

a so-called cross-layer latency minimization problem in the SINR model was first

investigated by Chafekar et al. in [5] and an improved algorithm has been given by

Fanghänel et al. in [10].

Besides the multitude of studies on the minimum length link scheduling problem,

there have also been many recent works on the (weighted) capacity maximization

problem in the SINR model. The capacity maximization problem asks for the max-

imum number of links that can be simultaneously scheduled in the same timeslot

under the SINR model. The weighted version assigns some weight value to each

link. Note that, by using the master-slave strategy [13], an approximation algorithm

for the capacity maximization problem with approximation ratio ρ translates au-

tomatically to an approximation algorithm for the minimum length link scheduling

problem with approximation ratio logn/ρ. The papers [1, 6, 9, 20, 28, 41, 42] belong

to this category.

2. Preliminaries and Problem Definition

2.1. System Model

We have the following assumptions. First, by a wireless link, we mean a wireless

transmission comprising a source node (transmitter or sender) and a destination

node (receiver); second, we assume all the stationary wireless nodes are arbitrarily

located on a plane, and each node is equipped with an omni-directional antenna;

third, we assume a single channel and half-duplex mode, which means each node

can not send to or receive from more than one node, nor to receive and send at

the same time; fourth, we employ the physical interference model, or the signal-to-

interference-plus-noise ratio (SINR) model [17]. The SINR model requires that only

when the SINR ratios at all the receivers are above some threshold value can these

links be scheduled in the same timeslot. More specifically, the SINR ratio at the

receiver of a link i = (is, ir) can be represented as:

SINRi =
gii · pi

ni +
∑

j 6=i gij · pj
≥ β (2.1)

Briefly speaking, the numerator gii · pi means the received power at ir and gij · pj
in the denominator means the attenuated power of pj at ir and it is regarded as

the interference power for link i. Thus
∑

j 6=i gij · pj is the accumulated interference

caused by all the other simultaneous transmissions. More specifically, pi denotes the

transmission power of link i’s transmitter is; ni is the background noise at link i’s

receiver ir (Note that, throughout of the paper, we will assume all the links’ receivers

have the same background noise n0); gii = 1/dα(is, ir) and gij = 1/dα(js, ir) are the

link gain from is to ir, and that from the transmitter js of link j to ir, respectively;

here d(, ) is the Euclidean distance function and α is the path loss exponent which

ranges between 2 and 6; β is the SINR threshold which is larger than 1.
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Based on the SINR inequality, we define a non-negative link gain matrix H =

(hij) such that hij = β · gij/gii for i 6= j and hij = 0 for i = j. We also define a

noise vector η = (ηi) such that ηi = β ·ni/gii. With these definitions, we can rewrite

the SINR inequality as pi ≥
∑

j=1 hij · pj + ηi. By using a vector-matrix notation,

the above inequality becomes P ≥ HP + η or (I − H)P ≥ η where P = {pi}.
Finally we define the spectral radius ρ(H) = max

i
|λi(H)| where λi(H) stands for

the ith eigenvalue of H. Now according to [22, 38], we know that the matrix H is a

non-negative irreducible matrix, and the following useful properties of the H matrix

hold:

Property 1: (I −H)−1 > 0 if and only if ρ(H) < 1;

Property 2: The power vector P ∗ = (I −H)−1 ·η is Pareto-optimal in the sense

that P ∗ ≥ P component-wise for any other nonnegative P satisfying (I −H)P ≥ η.

2.2. Problem Definition

The Minimum Latency Link Scheduling for Arbitrary Directed Acyclic

Networks with Precedence and SINR Constraints Problem (MLSDAN):

First we are given an arbitrary directed network that consists of n wireless links

(directed edges); second, the directed edges or links represent the execution depen-

dencies of the wireless nodes. For a link i, we call its source node (transmitter) is as

the child node and its destination node (receiver) ir as the parent node. Then the

precedence constraints of the wireless links require that each wireless node can not

transmit data to any of its parent node until it has received the data from all of its

children. The MLSDAN problem is to decide in each timeslot which links to trans-

mit and at what power levels so that the totally used timeslots to schedule all the

links are minimized. Note that all the links transmitted in the same timeslot must

satisfy the SINR constraints. An example of the directed network that comprises 9

links is given in Fig. 1. In this example, the link (3, 1) can not be scheduled before

links (8, 3), (9, 3) and (4, 3). Also the link (4, 3) can not be scheduled before links

(8, 5) and (5, 4).

6

1
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3

4

5

2

98

Fig. 1. A directed acyclic network with 3 sinks and 9 links.
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2.3. Other Definitions

First, we define the length diversity d(L) of a family of links L = {i}. Basically, it
defines the number of length magnitudes of all the links in this collection of links. Let

c denote any positive constant greater than 1, then the definition of length diversity

is given below:

d(L) = |{m|∃i ∈ L : ⌊logc(d(is, ir))⌋ = m}| (2.2)

Second, let ρ be some constant greater than or equal to βni where β is the SINR

threshold and ni is the background noise at link i’s receiver ir, we then formally

define linear power assignment for each link i as follows:

pi = ρ · (d(is, ir))α (2.3)

Third, let L be a set of concurrently scheduled links, then we formally define

uniform (constant) power assignment for each link i as follows:

pi = maxj∈L{ρ · (d(js, jr))α} (2.4)

Finally, if each link i assigns its power based on the Pareto-optimal power vector

of the link gain matrix H which is calculated according to Property 2, we call it a

Pareto-optimal power assignment.

3. Problem Hardness and Basic Labeling Algorithms

3.1. Problem Hardness

Theorem 3.1. The decision version of the MLSDAN problem is NP-complete.

Proof. First we show that the decision version of the MLSDAN problem is in

NP. In other words, given an instance of the MLSDAN problem and a number T ,

we can verify the given answer in polynomial time. The verification process takes

four steps: (1)to check whether the used timeslots is less than or equal to T ; (2)to

check whether the given scheduling process satisfy the precedence constraints of the

wireless links; (3)to check whether all the links scheduled in each timeslot meet the

SINR requirement; and (4)all the links have been scheduled once. It’s easy to know

that all these four steps take polynomial time.

Now we show that, no matter whether we allow power control, the MLS-

DAN problem is NP-hard. First, by using a reduction from the Partition problem,

Goussevskaia, Oswald and Wattenhofer have shown that the minimum length link

scheduling problem under constant (uniform) power assignment (no power control)

is NP-hard [15]. Second, by extending the proof in [15], Katz, Völker and Wagner

proved that the minimum length link scheduling problem under power control is also

NP-hard [27]. Since the minimum length link scheduling problem is only a special

case of the MLSDAN problem, we can see that, no matter we allow power control

or not, the MLSDAN problem is NP-hard.
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3.2. Basic Labeling Algorithms

In this subsection, we will give three basic labeling algorithms which assign each

wireless link in the directed acyclic network some specific value. But first, we need

to give an algorithm, Algorithm 1, which tells how to sort all the wireless links

based on the topological order of the wireless nodes in the network. In this algo-

rithm, topological sort(dan) is a frequently used topological sorting procedure that

returns a linear ordering of the nodes in the directed acyclic network dan. Similar

to the topological ordering of the nodes, the topological ordering of the links, i.e.,

Algorithm 1, tells us that in the linear ordering of the links, each precedence con-

straint between the links (cf. the precedence constraint example in the MLSDAN

problem definition) in the network must also be obeyed in the linear ordering of the

links.

Algorithm 1 Topological Order of the Wireless Links.

Input: An arbitrary directed acyclic network called dan

Output: lorder: topological order of the wireless links

1: lorder := ∅;
2: norder :=topological sort(dan); //topological order of the nodes

3: For each node i in norder do

4: For each child node j of norder(i) do

5: if j is not empty then lorder := [lorder; [i, j]];

6: End For

7: End For

Now according to Algorithm 1, we give three labeling algorithms in order. Al-

gorithm 2 computes each link’s tvalue and all the links with tvalue = 1 are called

entry links. Since the transmitters in the entry links do not have child nodes, these

entry links can start scheduling immediately. Formally, the tvalue of a link i means

the length of the longest path from an entry link to link i, and the length of a path

is the number of links along the path. Thus the tvalue(i) highly correlates with link

i’s earliest scheduling time. Algorithm 3 computes each link’s bvalue and all the

links with bvalue = 1 are called exit links. All the receivers in the exit links do not

need to transmit since they have no receivers. Formally, the bvalue of a link i means

the length of a longest path from link i to an exit link. From these definitions, we

can see that both tvalue and bvalue are bounded by the length of the critical path

(denoted as CP ), i.e., the longest path in the whole directed acyclic network. Thus

we have the following Lemma 3.1 and Table 1 gives the corresponding tvalue and

bvalue for the network topology example given in Fig. 1.

Lemma 3.1. The scheduling length of the MLSDAN problem is lower bounded

by the length of the critical path of the directed acyclic network, i.e., CP =

maxi{tvalue(i)} = maxi{bvalue(i)}.
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Algorithm 2 Labeling each wireless link with its tvalue.

Input: An arbitrary directed acyclic network called dan

Output: Each link is labeled with its tvalue

1: Computing lorder of the wireless links using Algorithm 1;

2: For each link i in lorder do

3: tvalue(i):=0;

4: End For

5: For each link i in lorder do

6: max:=1;

7: For each link j whose receiver is link i’s transmitter do

8: if tvalue(j)+1≥ max

9: max:=tvalue(j)+1;

10: end if

11: End For

12: tvalue(i):=max;

13: End For

Algorithm 3 Labeling each wireless link with its bvalue.

Input: An arbitrary directed acyclic network called dan

Output: Each link is labeled with its bvalue

1: Computing lorder of the wireless links using Algorithm 1;

2: Reverse lorder.

3: For each link i in lorder do

4: bvalue(i):=0;

5: End For

6: For each link i in lorder do

7: max:=1;

8: For each link j whose transmitter is link i’s receiver do

9: if bvalue(j)+1≥ max

10: max:=bvalue(j)+1;

11: end if

12: End For

13: bvalue(i):=max;

14: End For

The first two labeling algorithms are based on the observations from the prece-

dence constraints of the directed acyclic network. Now we give the third labeling

algorithm, Algorithm 4, that is based on the following proposition of infeasible power

assignment.

Proposition 1 ([23]) For any two wireless links i = (is, ir) and j = (js, jr), if

d(is, jr)·d(js, ir) ≤ β
2

α ·d(is, ir)·d(js, jr), then there are no feasible power assignments

to simultaneously schedule these two links.
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Table 1. Topological ordering of the wireless links in Fig. 1 and their two corresponding labeling
values.

Links with topological order tvalue bvalue

9,3 1 2
8,3 1 2
8,5 1 4
5,2 2 1
5,4 2 3
4,3 3 2
4,7 3 1
3,1 4 1
6,2 1 1

The first node is the link’s transmitter and the second node is the link’s receiver.

Algorithm 4 Computing each link’s conflict value.

Input: An arbitrary directed acyclic network called dan

Output: The conflict value for each link

1: Computing lorder of the wireless links using Algorithm 1;

2: For each link i in lorder do

3: conflict(i) := 0;

4: For each link j in lorder do

5: if d(is, jr) · d(js, ir) ≤ β
2

α · d(is, ir) · d(js, jr)
6: conflict(i) := conflict(i) + 1;

7: end if

8: End For

9: End For

3.3. Labeling Algorithms Time Complexities

In this subsection, we will give the time complexities for the four algorithms pre-

sented in the last subsection. Since there are n links and at most n nodes in the

directed acyclic network, we can easily know that the time complexities for Algo-

rithms 1, 2, 3 are all O(n), where n is the number of links. Similarly we can conclude

the time complexity for Algorithm 4 is O(n2), where n is the number of links.

4. LPA: A Linear Power Assignment based Approximation

Algorithm

In this section, we will give a linear power assignment based polynomial time ap-

proximation algorithm for the MLSDAN problem. Basically, this algorithm works

as follows:

(1) We first pick all the entry links, i.e., the links L = {i|tvalue(i) = 1} (cf. line 4

in Algorithm 5), which guarantees there are no precedence constraints among

the links;
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(2) For all the links in L, the algorithm first picks the wireless link i ∈ L that has

the largest bvalue(i) value since this link is in the critical path of the network(cf.

line 6 in Algorithm 5); then it will schedule all the other links in L that (a) have

similar lengths to link i and (b) sufficiently apart from link i. This is realized by

3-coloring of all the links in Lk (cf. line 6 in Algorithm 5) and picking the links

meeting conditions (a) and (b) will guarantee they satisfy the SINR constraints

by using the linear power assignment (cf. lines 7-15 in Algorithm 5);

(3) Repeat step (2) until all links in L have been scheduled (cf. lines 16,17 in Algo-

rithm 5);

(4) Remove the links L in the directed acyclic network dan and repeat all the above

three steps until all links have been scheduled (cf. lines 18,19 in Algorithm 5).

The complete algorithm can be seen in Algorithm 5.

4.1. Correctness Analysis

According to line 12 in Algorithm 5, we need to show that all links in St satisfy SINR

constraints by using the linear power assignment. As mentioned earlier, in order to

guarantee all the SINR constraints, the simultaneously scheduled links must have

similar lengths and all of them are sufficiently apart. For links with similar lengths,

in each timeslot, the algorithm chooses to schedule the links Lk such that each link

i ∈ Lk satisfies ck ≤ d(is, ir) < ck+1 (cf. line 6). In order to make the simultaneously

scheduled links in Lk are sufficiently apart, similar to [12], we will 3-color of all the

links in Lk with hexagons of side length W = µ · ck (cf. line 7). The color of each

link in Lk equals the color of the cell (hexagon) that the link’s receiver belongs to

(cf. line 11). Now we show that all links in St do not share a common node and also

meet the SINR requirements.

First, since (1)each link j ∈ Lk satisfies ck ≤ d(js, jr) < ck+1; and (2)the side

length of all the hexagons W = µ ·ck = 4√
3
c(12β α−1

α−2)
1

α ·ck ≥ 2 ·ck+1 since 2 < α ≤ 6

and β > 1, we know that all these links can not share a common node.

Now we turn to prove that all the links do satisfy the SINR constraints. Namely,

we need to show that each link i ∈ St satisfies the following inequality (4.1):

SINRi =

pi
(d(is ,ir))α

n0 +
∑

j 6=i
pj

(d(js,ir))α
≥ β (4.1)

Since we employ linear power assignment, i.e., pi = ρ · (d(is, ir))α and pj =

ρ · (d(js, jr))α, the inequality (4.1) becomes

SINRi =
ρ

n0 +
∑

j 6=i
ρ·(d(js,jr))α
(d(js,ir))α

≥ β (4.2)
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Algorithm 5 LPA: An Oblivious Linear Power Assignment based Algorithm for

the MLSDAN Problem.
Input: An arbitrary directed acyclic network called dan

Output: The timeslots t to schedule all links in dan

1: Define two constants c and µ such that c is a constant greater than 1 and

µ = 4√
3
c(12β α−1

α−2)
1

α ; t = 0;

2: While not all links in dan have been scheduled do

3: Computing tvalue(i), bvalue(i) and conflict(i) values for each link i ∈ dan;

4: Let L := {i|tvalue(i) = 1};
5: While L 6= ∅ do

6: Pick the link i ∈ L with the largest bvalue(i) value and break ties with the

largest conflict(i) value. Suppose link i’s length satisfies ck ≤ d(is, ir) < ck+1

(k is a nonnegative integer), then group all the other links j ∈ L with similar

lengths as i, i.e., ck ≤ d(js, jr) < ck+1. Call this group of links as link category

Lk.

7: As Fig. 2 shows, we three-color all the links in link category Lk;

8: For each of the three colors do

9: While not all links whose receivers are located in the cells with the same

color have been scheduled do

10: St := ∅;
11: For each cell with the same color, we pick one link j (if there is one)

whose receiver is located in the cell and St := {St ∪ {j}};
12: For all the links in St, we assign the power levels based on the linear

power assignment(cf. Equation (2.3), and we set ρ = 2n0β);

13: t:=t+1;

14: End While

15: End For //all links in Lk have been scheduled

16: L := L\Lk;

17: End While //all links in L have been scheduled

18: dan := dan\L;
19: End While //all links in dan have been scheduled

20: Return t.

By observing the three-coloring method shown in Fig. 2, we have

d(js, ir) ≥ d(jr, ir)− d(js, jr) (4.3)

≥ (
3

2

√
3m−

√
3)W − ck+1 (4.4)

≥ (

√
3

2
m)W − ck+1 (4.5)

≥ (

√
3

2
m · µ− c) · ck (4.6)

≥
√
3

4
m · µ · ck (4.7)
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Fig. 2. Three shading of the plane with hexagons of side length W = µck. The arrows mean all
the links in link category Lk and all their receivers are located in the cells with shade 3. Here each
link j ∈ Lk satisfies ck ≤ d(js, jr) < ck+1.

Here the inequality (4.3) is obtained through triangle inequality; inequality (4.4)

is derived from the three shading of the hexgons and m stands for link i’s mth

nearest ring; since m ≥ 1, we have 3
2

√
3m −

√
3 ≥

√
3
2 m, thus we can achieve

inequality (4.5). Inequality (4.6) is obtained by plugging into the W value. Finally,

since µ = 4√
3
c(12β α−1

α−2)
1

α ≥ 4√
3
c and m ≥ 1, we have

√
3
2 m · µ − c ≥

√
3
4 m · µ. From

this we obtain inequality (4.7).

Now based on inequality (4.7),we have

∑

j 6=i

ρ · (d(js, jr))α
(d(js, ir))α

≤
∞∑

m=1

ρ · c(k+1)α · 6m
(
√
3
4 )α ·mα · µα · ckα

(4.8)

≤
∞∑

m=1

ρ · cα · ( 4√
3
)α6m

mα · µα

≤
∞∑

m=1

6ρ · cα · ( 4√
3
)α

mα−1 · µα

≤
6ρ · cα · ( 4√

3
)α

µα
· α− 1

α− 2
(4.9)

Here the inequality (4.8) is obtained by observing that there are at most 6m

links in link i’s m-th nearest ring. For example, as seen from Fig. 2, there are 12

hexagons(cells) that have color 3. And inequality (4.9) is derived from the Riemann

Zeta Function.
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Now since µ = 4√
3
c(12β α−1

α−2)
1

α , we have

SINRi =
ρ

n0 +
∑

j 6=i
ρ·(d(js,jr))α
(d(js,ir))α

≥ ρ

n0 +
ρ
2β

=
1

n0

2n0β
+ 1

2β

(4.10)

= β (4.11)

Here the equation (4.10) is obtained by plugging into the ρ = 2n0β value (cf.

line 12 in Algorithms 5).

4.2. Approximation Ratio Analysis

First, we need to know the scheduling length upper bound of our LPA algorithm

(Algorithm 5). Let dan denote the set of all links in the directed acyclic network.

According to this algorithm, we have L ⊆ dan and d(L) ≤ d(dan) (recall that d(L) is

the length diversity of all links in L). Now let Ck
max (Ck

max(L)) denote the maximum

number of links in dan (L) whose receivers belong to the same cell. Here k means

the link’s category number in the current timeslot, i.e., each link i to be scheduled

in this timeslot satisfies ck ≤ d(is, ir) < ck+1. Now, (1) According to line 11, since

we only pick one link from each cell of the same color, the while loop between line

9 and line 14 will be iterated at most Ck
max(L) times; (2) Since there are 3 colors,

we know the for loop between line 8 and line 15 will be iterated 3 times and all

links in Lk have been scheduled after the for loop; (3) According to line 6, since

each Lk contains all the links with similar lengths in L, we know that the while

loop between line 5 and line 17 will be iterated d(L) times; (4) According to line

18, since each removal of all the links in L will make the length of the critical path

of dan minus 1, we know the while loop from line 2 and line 19 will be iterated at

most CP times (recall that CP is the length of the critical path of dan). ¿From the

above analysis, by representing Cmax = maxk,L{Ck
max(L)}, we can obtain that the

scheduling length upper bound of the LPA algorithm is

Ck
max(L) · 3 · d(L) · CP = O(d(dan) · Cmax · CP ) (4.12)

Let Opt denote the minimum number of timeslots to schedule all the links in Cmax

(the cell with the maximum number of links whose receivers are located in this cell)

using linear power assignment. We now turn to compute a lower bound of Opt. First,

due to triangle inequality, we have

d(js, ir) ≤ d(js, jr) + d(jr, ir)

≤ ck+1 + 2W

≤ ck+1 + 2µck (4.13)
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Suppose there are at most t links that can be scheduled in the same timeslot.

Then according to the SINR inequality, we have:

SINRi =
ρ

n0 + t · ρ·(d(js,jr))α
(d(js,ir))α

≥ β (4.14)

According to inequalities (4.14) and (4.13) and since d(js, jr) ≥ ck, we know that

t ≤ 1

2β
· (d(js, ir))

α

(d(js, jr))α

≤ 1

2β
· (c+ 2µ)α (4.15)

According to inequality (4.15), we know that the minimum number of timeslots

to schedule all the links in Cmax is

opt ≥ Cmax/t ≥
2β · Cmax

(c+ 2µ)α
(4.16)

Then the approximation ratio of the LPA algorithm is less than

O(d(dan) · Cmax · CP )

opt
≤ O(d(dan) · Cmax · CP )(c+ 2µ)α

2β · Cmax

= O(d(dan) · CP ) (4.17)

In addition, according to Lemma 3.1, we know that the scheduling length of

the MLSDAN problem is lower bounded by the length CP of the critical path in

dan. By combing the scheduling length upper bound of the LPA algorithm (cf.

Equation (4.12)), we have another approximation ratio for the LPA algorithm as

O(d(dan) · Cmax). Thus we have the following Theorem 4.1.

Theorem 4.1. The approximation ratio of the LPA algorithm is O(min{d(dan) ·
CP, d(dan) · Cmax}).

Note that, in practice, the length diversity of all the links in dan (d(dan)), the

length of the critical path in dan (CP ) and the maximum number of links whose

receivers are located in a cell (Cmax) are all usually some small constant values, so

our approximation ratio of the LPA algorithm is also a constant in most realistic

scenarios.

4.3. Time Complexity Analysis

According to Section 3.3, we know that the time complexity for computing

tvalue,bvalue and conflict values are O(n), O(n) and O(n2), respectively. From

this we know that the time complexity for Algorithm 5 is O(n3) where n is the

number of links.
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5. DLS: A Dynamic Labeling Based Link Scheduling Algorithm

In this section, we will present a heuristic algorithm that is based on dynamically

updating the labeling values for each link. Similar to Algorithm 5, among all the

links L = {i|tlevel(i) = 1}, we first pick the link i with the largest bvalue(i) value.

Then instead of picking the links that have similar lengths with link i, we turn to

try picking the link in L that has the second largest bvalue(i) value. We then repeat

this process until there are no links in L that can be concurrently scheduled with

the picked links. At the beginning of the next timeslot, we update all the labeling

values and then repeat until all links have been scheduled. Note that, we adopt the

Pareto-optimal power assignment in the DLS algorithm (Algorithm 6).

Algorithm 6 DLS: Dynamic Labeling based Link Scheduling Algorithm for the

MLSDAN Problem.
Input: An arbitrary directed acyclic network called dan

Output: The timeslots t to schedule all links in dan

1: t := 0;

2: While not all links in dan have been scheduled do

3: Computing tvalue(i), bvalue(i) and conflict(i) for each link i ∈ dan;

4: Let L := {i|tvalue(i) = 1};
5: St := ∅;
6: Consider all i ∈ L in a decreasing order of bvalue(i); break ties via a decreasing

order of conflict(i);

7: if allowed(i, St) then

8: St := St ∪ {i}; dan := dan\{i}
9: end if

10: For all the links in St, we assign the power levels based on the Pareto-optimal

power assignment;

11: t:=t+1;

12: End While

13: Return t.

allowed(i,St)

1: if ρ(HSt∪{i}) ≥ 1 then

2: return false

3: else if any pj ∈ (I −HSt∪{i})
−1ηSt∪{i} exceeds the power limit then

4: return false

5: else

6: return true

7: end if
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5.1. Time Complexity Analysis

The time complexity of the DLS algorithm is dominated by checking whether a set

of links can be simultaneously scheduled, i.e. checking the spectral radius of the link

gain matrixH is smaller than 1. According to [37], we know that the time complexity

of checking an n ∗ n matrix H takes O(n3) time. Then for our DLS algorithm, the

worst case is to schedule only one link in each timeslot. Thus each timeslot can take

O(n) eigenvaule computations and the total number of eigenvalue computations is

O(n2). So the worst case time complexity for our algorithm is O(n2 ∗ n3) = O(n5)

where n is the number of links in the directed acyclic network.

6. Simulation Results

In this section, we present the simulation results for our scheduling algorithms. First,

we generate two kinds of topologies: the dense link topologies and the sparse link

topologies (cf. Fig. 3 and Fig. 4). In the dense link topologies, n nodes are randomly

distributed on a plane of size 200m*200m. Then we generate a link by randomly

picking its sender and receiver from the n nodes under the constraints that all the

picked links must form a directed acyclic network. We repeat this process until n

links have been generated. From this link topology construction, we can see that:

(1) the generated link topology is a very dense link topology, or a directed acyclic

network topology with very high disturbances (cf. [36]). For the sparse link topology,

we construct it with a nearest neighbor algorithm, i.e., each node will pick its nearest

neighbor as the receiver.

Remark: As discussed in the Problem Motivation (cf. subsection 1.1)

and Related Work (cf. subsection 1.3), although there have been some

works on the minimum latency aggregation scheduling problem (MLAS)

[7, 16, 21, 26, 29, 30, 32, 40, 43, 44], our proposed algorithms are not comparable to the

MLAS ones since we are considering arbitrarily given network topologies whereas

the MLAS algorithms can take full advantage of the topology construction proce-

dure to facilitate the scheduling process. So in the following simulations, we will

only compare various algorithms for arbitrary network topologies.

For the LPA algorithm, we first compare it with the LPA(FirstFit) algorithm

which is an adaptation of LPA in the sense that we do not label the wireless links

before scheduling them. Here FirstFit means that we use a first fit policy to pick

the links.

The simulation results for the LPA algorithm can be seen in Fig. 5 and Fig. 6.

Here in order to help distinguish the scheduling lengths for different scheduling

algorithms, we have chosen a relatively large path loss exponent value α = 5. In

addition, we have also chosen a higher SINR threshold value β for the sparse link

topologies (β = 40 for sparse topologies and β = 5 for dense topologies). This is

because either a lower β value in sparse topologies or a higher β value in dense

topologies will make all the scheduling lengths almost incomparable (much more

links will be simultaneously scheduled in sparse topologies with a smaller β value
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and much less links will be simultaneously scheduled in dense topologies with a

larger β value).

From these two figures, we can see that a labeling based algorithm can always

help to reduce the scheduling length for the dense link topology. But for the sparse

link topologies, the LPA algorithm without first labeling the wireless links (using a

first fit policy) may generate shorter scheduling lengths for a very small fraction of

the link topologies. This may be due to the fact that more links could be scheduled

in the same timeslot in sparse link topologies. In addition, we can achieve much

shorter scheduling lengths for sparse link topologies.
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Fig. 3. A dense directed acyclic link topology with 20 links.
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Fig. 4. A sparse directed acyclic link topology with 20 links.



November 25, 2011 11:19

102 Q.-S. Hua et al.

20 30 40 50 60 70 80 90 100 110
10

20

30

40

50

60

70

80

90

100

110

Number of Links

N
um

be
r 

of
 U

se
d 

T
im

es
lo

ts

 

 

LPA
LPA(FirstFit)

Fig. 5. Scheduling lengths for dense link topologies at α = 5 β = 5.
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Fig. 6. Scheduling lengths for sparse link topologies at α = 5 β = 40.

For the DLS algorithm, we compare it with the LPA algorithm, the UPA algo-

rithm as well as the FirstFit algorithm. Here the UPA algorithm is an adaptation for

the LPA algorithm in the sense that we employ uniform power assignment (please

see Section 2.3) instead of the linear power assignment. The FirstFit algorithm is

an adaptation for the DLS algorithm in the sense that we do not label the wireless

links before scheduling them. Instead, we use a first fit policy to choose the links.

The simulation results for these algorithms are shown in Fig. 7 and Fig. 8. From

these two figures, we can see that a labeling based algorithm can always help to

reduce the scheduling lengths for both the dense and sparse link topologies. Also

the dynamic labeling based scheduling algorithms greatly outperform the linear

and constant power assignment based scheduling algorithms in terms of scheduling

lengths. In addition, we can achieve much shorter scheduling lengths for sparse link

topologies.
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Fig. 7. Scheduling lengths for dense link topologies at α = 5 β = 5.
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Fig. 8. Scheduling lengths for sparse link topologies at α = 5 β = 40.

Finally we also simulated the DLS algorithm for various α and β values. The

results can be found in Fig. 9 and Fig. 10. From these two figures, we can see that

the the scheduling lengths can be greatly shortened by either using a larger α value

or a lower β value. In addition, we can achieve much shorter scheduling lengths for

sparse link topologies.

7. Conclusion

In this paper, we have formulated the MLSDAN problem, i.e., the problem of

Minimum Latency Link Scheduling for Arbitrary Directed Acyclic Networks un-

der both precedence and SINR constraints. Although link scheduling under SINR
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Fig. 9. Scheduling lengths for a dense link topology with 110 links.
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Fig. 10. Scheduling lengths for a sparse link topology with 110 links.

constraints is not a new problem, to our best knowledge, this is the first work

to address arbitrary networks link scheduling under both precedence and SINR

constraints. We have shown that the MLSDAN problem is NP-hard, and have pro-

posed both polynomial time approximation and heuristic algorithms. In realistic

scenarios, the achieved approximation ratio is a constant value. For the heuristic

algorithms, the extensive simulations have demonstrated that the presented dy-

namic labeling based algorithms outperform the frequently used link scheduling

algorithms, such as the constant and linear power assignments based scheduling al-

gorithms. In addition, the simulation results indicate that labeling the wireless links

before scheduling is of paramount importance in reducing the scheduling lengths.

There are many other issues that warrant further investigation. For example, it

would be interesting to design an approximation algorithm with an approximation
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ratio independent of the three parameters in our approximation ratio (cf. Theo-

rem 4.1). For designing an approximation algorithm with an approximation ratio

independent of the length diversity d(dan), a possibility is to consider some other

power assignment strategies, such as the square-root power assignment [11], the

non-linear power assignment [33] or the iterative power assignment [28]. In addi-

tion, designing a fully distributed algorithm for the MLSDAN problem should also

be a great but meaningful challenge. To achieve this goal, the topological properties

studied under the SINR model [31] could be utilized. Our recent distributed algo-

rithms for the local broadcasting problem [46] and the coloring problem [45] could

also be borrowed to design a distributed algorithm for the MLSDAN problem.
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10. A. Fanghänel, T. Kesselheim and B. Vöcking. Improved Algorithms for Latency Mini-

mization in Wireless Networks. In Proc. 36th ICALP, Rhodes, Greece, 2009.
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