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Abstract

This paper describes our solution for the video recogni-
tion task of ActivityNet Kinetics challenge that ranked the
1st place. Most of existing state-of-the-art video recog-
nition approaches are in favor of an end-to-end pipeline.
One exception is the framework of DevNet [3]. The merit
of DevNet is that they first use the video data to learn a
network (i.e. fine-tuning or training from scratch). Instead
of directly using the end-to-end classification scores (e.g.
softmax scores), they extract the features from the learned
network and then fed them into the off-the-shelf machine
learning models to conduct video classification. However,
the effectiveness of this line work has long-term been ig-
nored and underestimated. In this submission, we exten-
sively use this strategy. Particularly, we investigate four
temporal modeling approaches using the learned features:
Multi-group Shifting Attention Network, Temporal Xception
Network, Multi-stream sequence Model and Fast-Forward
Sequence Model. Experiment results on the challenging
Kinetics dataset demonstrate that our proposed temporal
modeling approaches can significantly improve existing ap-
proaches in the large-scale video recognition tasks. Most
remarkably, our best single Multi-group Shifting Attention
Network can achieve 77.7% in term of top-1 accuracy and
93.2% in term of top-5 accuracy on the validation set.

1. Introduction
Video understanding is among one of the most funda-

mental research problems in computer vision and machine
learning. The ubiquitous video acquisition devices (e.g.,
smart phones, surveillance cameras, etc.) have created
videos far surpassing what we can watch. It has there-
fore been a pressing need to develop automatic video under-
standing and analysis algorithms for various applications.

To recognize actions and events in videos, recent ap-
proaches based on deep convolutional neural networks
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(CNNs) [9, 13, 3, 17, 4] and/or recurrent networks [7, 15, 1]
have achieved state-of-the-art results. However, due to the
lack of public available datasets, existing video recognition
approaches are restricted to understand small-scale data,
while large-scale video understanding remains an under-
addressed problem. To remedy this issue, Google Deep-
Mind releases a new large-scale video dataset, named as
Kinetics dataset [10], which contains 300K video clips of
400 human action class.

To address this challenge, our solution follows the strat-
egy of DevNet framework [3]. Particularly, we first learn
the basic RGB, Flow and Audio neutral network models
using the videos. Then we extract the multi modality fea-
ture and fed them into different off-shelf temporal models.
We also design four novel temporal modeling approaches,
namely Multi-group Shifting Attention Network, Temporal
Xception Network, Multi-stream sequence Model and Fast-
Forward Sequence Model. Experiment results verity the ef-
fectiveness of the four models over the traditional temporal
modeling approaches. We also find that these four temporal
modeling approaches are complementary with each others
and lead to the state-of-the-arts performances after ensem-
ble.

The remaining sections are organized as follows. Section
2 presents the basic multi modal feature extraction. Sec-
tion 3 describe our proposed off-shelf temporal modeling
approaches. Section 4 reports empirical results, followed
by discussions and conclusions in Section 5.

2. Multimodal Feature Extraction

Videos are naturally multimodal because a video can be
decomposed into visual and acoustic components, and the
visual component can be further divided into spatial and
temporal parts. We extracted multi modal features to best
represent videos accordingly.

2.1. Visual Feature

As in [13], we used RGB images for spatial feature ex-
traction and stacked optical flow fields for temporal fea-
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Figure 1. Multi-group Shifting Attention Network.

ture extraction. We tried different ConvNet architectures
and found Inception-ResNet-v2 [16] outperforms others in
both spatial and temporal components. The RGB model is
initialized with pre-trained model from ImageNet and fine-
tuned in the Kinetics dataset, while the flow model is initial-
ized from the fine-tuned RGB model. Inspired by [19], the
temporal segment network framework is used and three seg-
ments are sampled from each trimmed video for video-level
training. During testing, we can densely extract features for
each frames in the video.

2.2. Acoustic Feature

We use ConvNet-based audio classification system [6]
to extract acoustic feature. The audio is divided into 960ms
frames, and the frames are processed with Fourier trans-
formation, histogram integration and logarithm transforma-
tion. The resulting frame can be seen as a 96× 64 image
that form the input of a VGG16 [14] image classification
model. Similar with the visual feature, we trained the acous-
tic feature in the temporal segment network framework.

3. Off-shelf Temporal Modeling Approaches
In this section, we present a brief introduction of our pro-

posed shifting attention network and temporal Xception net-
work. More implementation details and analysis will be in a
following technique report. We also refer [11] for the details
of multi-stream sequence model and fast-forward sequence
model.

3.1. Shifting Attention Network

Attention models have shown great potential in sequence
modeling. For example, numerous pure attention architec-

tures [18, 12] have been proposed and achieved promising
results in natural language processing problems. In order to
explore the capabilities of attention models in action recog-
nition, a shifting attention network architecture is proposed,
which is efficient, elegant and solely based on attention.

3.1.1 Shifting Attention

An attention function can be considered as mapping a set of
input features to a single output, where the input and output
are both matrices that concatenate feature vectors. The out-
put of the shifting attention SATT(X) is calculated through
a shifting operation based on a weighted sum of the fea-
tures:

SATT(X) =
λX · a+ b

‖λX · a+ b‖2
, (1)

where λ is a weight vector calculated as

λ = softmax(α · wXT ), (2)

w is learnable vector, a and b are learnable scalars, and α
is a hyper-parameter to control the sharpness of the distri-
bution. The shifting operation actually shifts the weighted
sum and at the same time ensures scale-invariance. The shift
operation efficiently enables different attention components
to flexibly diverge from each other and have different dis-
tributions. This lays the foundation for Multi-SATT, which
we describe next.

3.1.2 Multi-Group Shifting Attention Network

In order to collect multi modal information from videos, we
extract a variety of different features, such as appearance
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Figure 2. Temporal Xception Network.

(RGB), motion (flow) and audio signals. Although the at-
tention model focuses on some specific features and effec-
tively filters out irrelevant noise, it is unrealistic to merge
all multi modal feature sets within one attention model, be-
cause features of different modality have different values,
dimensions and scales. Instead, we propose Multi-Group
Shifting Attention Networks for training multiple groups of
attentions simultaneously. The architecture of the proposed
Multi-SATT is illustrated in Figure 1.

First, we extract multiple feature sets from the video. For
each feature set Xi, we apply Ni different shifting atten-
tions, which we call one attention group, and then we con-
catenate the outputs. Next, the outputs of different atten-
tion groups are normalized separately and concatenated to
form a global representation vector for the video. Finally,
the representation vector is used for classification through a
fully-connected layer.

3.2. Temporal Xception Network

Depthwise separable convolution architecture [2, 20] has
shown its power in image classification by reducing the
number of parameters and increasing classification accu-
racy simultaneously. Recently, convolutional sequence-to-
sequence networks have been successfully applied to ma-
chine translation tasks [5, 8]. In this competition, we

adopt the temporal Xception network for action recognition,
which apply the depthwise separable convolution families
to the temporal dimension and achieves promising perfor-
mance. The proposed temporal Xception network architec-
ture is shown in Figure 2. Zero-valued multi modal fea-
tures were padded to make fixed length data for each stream.
We applied adaptive temporal max pooling to obtain n seg-
ments for each video. We then feed the video segment fea-
tures into a Temporal Convolutional block, which is consist
of a stack of two separable convolutional layers followed by
batch norm and activation with a shortcut connection. Fi-
nally, the outputs of three stream features are concatenated
and fed into the fully-connected layer for classification.

4. Experiment Results

We conduct experiment on the challenging Kinetics
dataset The dataset contains 246,535 training videos,
19,907 validation videos and 38,685 testing videos. Each
video is in one of 400 categories.

Table 1 summarizes our results on the Kinetics valida-
tion dataset. From Table 1, we have three key observations.
(1) Temporal modeling approaches with multi modal fea-
tures are a more effective approach than naive combining
the classification scores of different modality networks for
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Model Modality Top-1 Accuracy (%) Top-5 Accuracy (%)
Inception-ResNet-v2 RGB 73.0 90.9
Inception-ResNet-v2 Flow 54.5 75.9

VGG16 Audio 21.6 39.4
Late fusion RGB + Flow + Audio 74.9 91.6

Multi-stream Sequence Model RGB + Flow + Audio 77.0 93.2
Fast-forward LSTM RGB + Flow + Audio 77.1 93.2

Temporal Xception Network RGB + Flow + Audio 77.2 93.4
Shifting Attention Network RGB + Flow + Audio 77.7 93.2

Ensemble RGB + Flow + Audio 81.5 95.6
Table 1. Kinetics validation results.

the video classification. (2) The proposed Shifting Atten-
tion Network and Temporal Xception Network can achieve
comparable or even better results than the traditional se-
quence models (e.g. LSTM), which indicates they might
serve as alternative temporal modeling approaches in fu-
ture. (3) Different temporal modeling approaches are com-
plementary to each other.

5. Conclusions
In this work, we have proposed four temporal model-

ing approaches to address the challenging large-scale video
recognition task. Experiment results verify that our ap-
proaches achieve significantly better results than the tradi-
tional temporal pooling approaches. The ensemble of our
individual models has been shown to improve the perfor-
mance further, enabling our method to rank first worldwide
in the challenge competition. All the code and models will
be released soon.
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