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Correlation functions are often employed to quantify the relationships among interdependent variables
or sets of data. Recently, a new class of correlation functions, called FORRELATION, has been introduced by
Aaronson and Ambainis for studying the query complexity of quantum devices. It was found that there
exists a quantum query algorithm solving 2-fold FORRELATION problems with an exponential quantum
speedup over all possible classical means, which represents essentially the largest possible separation
between quantum and classical query complexities. Here we report an experimental study probing the
2-fold and 3-fold FORRELATIONS encoded in nuclear spins. The major experimental challenge is to control
the spin fluctuation to within a threshold value, which is achieved by developing a set of optimized
GRAPE pulse sequences. Overall, our small-scale implementation indicates that the quantum query algo-
rithm is capable of determining the values of FORRELATIONS within an acceptable accuracy required for
demonstrating quantum supremacy, given the current technology and in the presence of experimental
noise.

� 2017 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

With the ability of creating exponential number of superposi-
tion of states, quantum computation provides an unprecedented
computational power over classical computation. For example,
Shor’s factoring algorithm [1], the Harrow-Hassidim-Lloyd (HHL)
algorithm [2], and other progresses in quantum simulation [3–5]
provide strong evidences that quantum computation can gain
exponential speed-up in practical problems. Apart from computa-
tional decision problems, quantum devices can be exploited for
other classically-intractable computational tasks, including sam-
pling distributions of some quantum systems [6–10]. As a result,
one may expect to gain ‘‘quantum supremacy” [11] in relatively-
simple quantum devices in the near future.

Although these results are promising, complete and rigorous
proofs supporting claims of gaining quantum supremacy are still
unavailable. Recalling that for the case of Shor’s algorithm, we have
not excluded the possibility of the existence of a polynomial-time
classical algorithm for the factoring problem. For the HHL algo-
rithm, which is BQP-complete, it remains to be determined if
Elsevier B.V. and Science China Pr
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quantum computation is indeed more powerful than classical com-
putation, or technically, if it is true that BQP � BPP. Here BPP

(bounded-error probabilistic polynomial time) is the class of deci-
sion problems solvable by a probabilistic Turing machine in poly-
nomial time with an error probability of at most 1=3 for all
instances and BQP (bounded-error quantum polynomial time) is
the quantum analogue of the complexity of BPP in computational
complexity theory. Furthermore, the success of the sampling algo-
rithms is founded on several conjectures in the theory of classical
computational complexity. Even though boson-sampling devices
are capable of creating an exponentially large superposition of
quantum states, the transition amplitudes can still be estimated
by classical devices within additive errors [12].

On the other hand, query complexity, which counts the number
of queries of black-box functions (i.e., without knowledge of the
internal structure), provides further evidence supporting quantum
speed-up over the classical counterparts. For example, Grover’s
search algorithm [13], the Deutsch-Jozsa algorithm [14] and
Simon’s algorithm [15] are all characterized in the context of query
complexity.

Recently, Aaronson and Ambainis [16] introduced a new con-
cept in query complexity, called FORRELATION, which characterizes
the multi-fold correlations among different boolean functions. It
was found that a quantum computer is capable of solving 2-fold
FORRELATION problems within a constant Oð1Þ number of queries.
ess. All rights reserved.
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Fig. 1. (Color online) Quantum circuit for probing (a) 2-fold and (b) 3-fold
FORRELATION problems. The system is prepared at state j000i. O1 � Of 1 ;O2 � Of 2 ,
and O3 � Of 3 are query operators that map states jxi to f 1ðxÞjxi; f 2ðxÞjxi, and f 3ðxÞjxi
respectively, wheref 1ðxÞ; f 2ðxÞ; f 3ðxÞ 2 f1;�1g.
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However, classical computers require an exponential number of
queries. The difference of the query complexity between quantum
and classical methods is shown to be a maximally-achievable sep-
aration with quantum methods (see also Refs. [17–19]). Further-
more, multiple-fold FORRELATION problems are as hard as quantum
computation [16], i.e., BQP-complete.

Here we report the first experimental study of the 2-fold and
3-fold FORRELATIONS in a system of nuclear spins, where the NMR
quantum circuit for 2-fold FORRELATION involves only 2 queries of
the black box functions, but classically, it takes a total of 8 queries
for an exact result. Similarly, 3 queries are needed for the NMR
implementation of 3-fold FORRELATION, while 12 queries are needed
classically if memory is given for the black-box functions;
otherwise it can go up to 192 classical queries.

However, we note that the measurement results come directly
from the NMR signals, but a standard implementation of the
quantum circuit involves probabilistic measurement outcomes.
Furthermore, similar to other experimental demonstrations of
Deutsch-Jozsa algorithms [20,21], the applied NMR pulse sequence
depends on the knowledge of the functions, which are not strictly
‘‘black boxes”. Therefore, the current experimental results cannot
be taken as a direct proof for demonstrating quantum supremacy,
which is relevant only in the large-N limit.

The purpose of the experiment is to investigate whether a
small-size prototype experiment can produce FORRELATION within
the accuracy required for demonstrating the quantum advantages
(above the threshold 3=5 or below the threshold 1=100), given the
current technology and in the presence of experimental noise. In
particular, our experimental fluctuation for the spin measurement
has to be controlled within 1%. These experimental results allow
us to identify the places one can improve for scaling up the size
of the experiment in future.

2. Forrelation

Given k Boolean functions, f 1 � f 1ðx1Þ; � � � ; f k � f kðxkÞ, each with
n variables, i.e., xj 2 0;1f gn ! �1;1f g, the k-fold FORRELATION,
Uk � Uf 1 ;f 2 ;...;f k , of these functions is defined as follows,

Uk �
X

x1 ;x2 ;...

ei/ðx1 ;x2 ;...Þ

2ðkþ1Þn=2 f 1ðx1Þf 2ðx2Þ � � � f kðxkÞ; ð1Þ

where ei/ðx1 ;x2 ;...Þ � ð�1Þx1 �x2 ð�1Þx2 �x3 � � � ð�1Þxk�1 �xk , and x � y indicates
the bitwise inner product between the n-dimensional binary vec-
tors x and y. The total number of possible assignment is N ¼ 2n.
Essentially, 2-fold FORRELATION is simply the inner product between
a boolean function and the Fourier transform of another boolean
function, i.e.,

Uf ;g � 1

23n=2

X
x;y2f0;1gn

ð�1Þx�yf ðxÞgðyÞ: ð2Þ

Importantly, an exact determination of 2-fold FORRELATION Uf ;g is
a computationally-hard problem for classical devices, which can be
justified by the following challenge [16]: given a pair of Boolean
functions f and g, suppose it is known that either (1)
jUf ;g j � 1=100 or (2) Uf ;g P 3=5 is true, all classical methods

require an exponential number Xð
ffiffiffiffi
N

p
= logNÞ of queries to the

black-box functions, but quantum computers can finish the task
with a constant number of queries. The separation between the
quantum and classical query complexity is (almost) possibly lar-
gest one can achieve [16].

Quantum circuits for solving 2-fold and 3-fold FORRELATION prob-
lems [16] are shown in Fig. 1. For 2-fold FORRELATION problems, there
are 2 query operators Of 1 and Of 2 , which map each input basis state
jxi to f 1ðxÞjxi and f 2ðxÞjxi respectively, i.e., Ofk xj i ¼ f k xð Þ xj i.
3. Experimental background

Nuclear magnetic resonance (NMR) is a reliable technology for
studying small-to-medium size quantum information experiments
[22,23], and quantum simulation [24–28]. Motivated by the needs
of studying quantum information, many sophisticated techniques
of controlling nuclear spins have been developed.

Here all the experiments are carried out at room temperature
(295 K) on a Bruker Avance III 400 MHz spectrometer and the 13C
labelled Diethyl-fluoromalonate dissolved in d6 acetone is used
as a 3-qubit NMR quantum information processor. The structure
and Hamiltonian parameters of Diethyl-fluoromalonate are shown
in Fig. 2a where 13C, 1H and 19F nuclear spins respectively act as an
ancillary qubit and two work qubits. Moreover, the internal Hamil-
tonian of the system is given by

Hint ¼
X3

i¼1

pmiri
z þ

X3

j<k;¼1

p
2
Jjkr j

zr
k
z ; ð3Þ

The whole experimental procedure consists of three parts: (1)
state initialization, (2) realization of the quantum algorithm for
solving 2 (or 3)-fold FORRELATION problem, and (3) readout of the
expectation value of r1

z of the ancillary qubit 13C, which is equal
to the FORRELATION, i.e.,

r1
z

� � ¼ Uk; ð4Þ

for any k P 2. We note that for the NMR quantum computing, the
whole system, starting from the thermal equilibrium state, can be
converted to the pseudo-pure state (PPS) [29,30] q000 ¼
ð1� eÞI=8þ ej000i, using the spatial average technique [31]. To
check the success of preparing the PPS, a full quantum state tomog-
raphy (QST) [32] is carried out. The fidelity between the density
matrix prepared in experiment (qexp) and the target one in theory
(qth) is given by the following expression,

Fðqexp;qthÞ � trðqexpqthÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðq2

expÞtrðq2
thÞ

q
: ð5Þ

A spectrum of the PPS observed on 13C is shown in Fig. 3a.
The real parts of the initial state are shown in the last figure as
q0. Overall, the initial state can be well prepared in our setup;
the fidelity can reach up to 96.9%.
4. Experimental details

To solve the k-fold FORRELATION problem, a quantum circuit is
designed to obtain FORRELATION Uk � Uf 1 ;...;f k by measuring the



Fig. 2. (Color online) (a) Molecular structure and Hamiltonian parameters of Diethyl-fluoromalonate. The chemical shifts and scalar coupling constants of the molecule are on
and below the diagonal (in Hz) in the table, respectively. (b) An example of pulse sequences for solving the 3-fold Forrelation problem. 13C acts as the probe qubit while 1H
and 19F are the work qubits. The circuit is comprised of 52 p=2 (p) hard pulses and 31 free evolution periods under spin–spin J-couplings in total (refocusing pulses are
omitted for clarity).

Fig. 3. (Color online) NMR spectra of the probe qubit 13C after a readout pulse. (a) Spectrum of the PPS. (b), (c) and (d) Spectra of experimental instances 1, 2 and 3 in 2-fold
case, respectively. (d) and (e) Spectra of experimental instances 4 and 5 in 3-fold case, respectively.

Table 1
Ten selected experimental instances for 2-fold and 3-fold Forrelation problems and their respective target Forrelation Uth, where Dð½a; b; c; d�Þ indicates a 4� 4 diagonal matrix
with diagonal elements a, b, c and d.

Case Instance Q1 Q2 Q3 Uth

2-fold 1 Dð½11� 11�Þ Dð½1� 111�Þ 1
2 Dð½1� 111�Þ Dð½11� 1� 1�Þ 0.5
3 Dð½�1111�Þ Dð½111� 1�Þ 0
4 Dð½�1111�Þ Dð½�11� 11�Þ �0:5
5 Dð½11� 11�Þ Dð½�11� 1� 1�Þ �1

3-fold 1 Dð½111� 1�Þ Dð½1� 11� 1�Þ Dð½11� 11�Þ 1
2 Dð½1� 11� 1�Þ Dð½11� 1� 1�Þ Dð½111� 1�Þ 0.5
3 Dð½11� 1� 1�Þ Dð½11� 11�Þ Dð½�11� 11�Þ 0
4 Dð½�1111�Þ Dð½111� 1�Þ Dð½�111� 1�Þ �0:5
5 Dð½1� 1� 11�Þ Dð½1� 111�Þ Dð½�111� 1�Þ �1
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probability of the ancillary qubit in state j0i. Here we focus on the
experimental results of 2-fold and 3-fold FORRELATION in nuclear
spins. There are in total five possible values for the FORRELATION
Uf 1 ;...;f k in both cases, namely, f1; 0:5;0;�0:5;�1g. For each theoret-
ical value of Uf 1 ;...;f k , we associate it with a set of functions listed in
Table 1. There, the operators O1;O2 and O3 are 4� 4 diagonal
matrices in the computational basis, i.e., Dð½a; b; c; d�Þ, where
a; b; c; d 2 f1;�1g.

The quantum algorithm for solving the k-fold FORRELATION prob-
lem can be decomposed into several elemental p=2 (and p) hard
pulses and evolutions under spin–spin J-couplings of the internal
Hamiltonian in experiment [33,34], and the whole pulse sequences
Fig. 4. (Color online) The experimental results of Forrelation U. The dashed lines are the
3rd instance in both plot. Only instances 1 and 3 satisfy jUj � 1=100 or U P 3=5 in both

Fig. 5. (Color online) Real parts of theoretical and experimental density matrices of q0 (P
for the theoretical values, while the inner colored stand for the experimental results.
can be compiled with phase tracking and numerical optimization
of the refocusing scheme. For example, the pulse sequences for
the instance 4 in the 3-fold case are shown in Fig. 2b. There are
at least 52 p=2 (p) hard pulses (without adding the refocusing
pulses) and 31 free evolution periods in total are required. In
experiment, we utilized the gradient ascent pulse engineering
(GRAPE) method [35] to pack the whole algorithm for each
instance into one shaped pulse, with the length of each pulse being
15 ms and the number of segments being 5000. All the shaped
pulses are calculated with their fidelities reaching 99:5% and are
guaranteed to be robust to the inhomogeneity of radio-frequency
pulses.
criterion vaules for the Forrelation decision problem. The inset is zooming in on the
2-fold and 3-fold cases.

PS), q2;1; q2;2; q2;3; q3;4 and q3;5. In each figure, the outer transparent columns stand
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5. Experimental results

Finally, an observation of the final state on the probe qubit hrzi
is conducted in each run of the experiment to get the probabilities
of the probe qubit in the j0i state, by integrating the whole spec-
trum. Fig. 3 shows the NMR spectra of the probe qubit 13C, where
(a) is the spectrum of 13C after a readout pulse when the system is
initialized in PPS taken as a calibration. (b), (c) and (d) are the 13C
spectra of the final state after conducting quantum algorithms of
the selected transformation operators instances 1, 2 and 3 in 2-
fold case, respectively, while (e) and (f) show the spectra after con-
ducting quantum algorithms of the selected transformation opera-
tors instances 4 and 5 in 3-fold case, respectively.

The experimental results of the 5 selected instances in 2-fold
(3-fold) case are respectively 0.9867, 0.4509, �0.0011, �0.4454
and �0.9516 (0.9791, 0.4659, �0.0068, �0.4871 and �0.9355), as
shown in Fig. 4. From the results, we can distinguish for the 10
selected instances which interval their values locate. i.e., instance
1 is in the case of U > 3=5, instance 3 is in the case of
jUj < 1=100 with bounded probability of error in both 2-fold and
3-fold cases; therefore our experimental results indicate that 2-
fold and 3-fold FORRELATION problems can be solved by making only
1 quantum query to each of f 1; f 2 and f 3.

Furthermore, we performed a full QST on the final states.
Indeed, we conducted QST on instances 1, 2, and 3 in 2-fold case,
and instances 4 and 5 in 3-fold case. To be noticed, it is not neces-
sary to perform QST on all the final states because of the same
radio-frequency pulses generation method and the similar experi-
mental process. To describe the density matrices of the final states,
we label them as qk;n for instance n in k-fold case. The real parts of
the density matrices for the final states of q2;1;q2;2;q2;3;q3;4 and
q3;5 are presented in Fig. 5 (the imaginary parts are very close to
zero). Since the fidelities of all the shaped pulses generated by
GRAPE are almost 99:5%, the experimental final density matrices
are indeed very close to the theoretical ones, as shown in the
Fig. 5. The five selected experimental fidelities are
95:27%; 96:26%; 94:69%; 94:73% and 94:64%, respectively, indi-
cating a very good implementation of the quantum algorithm in
experiment.
6. Conclusions

In summary, we tested a quantum implementation of solving
the k-fold FORRELATION problem [16] in a prototype experiment.
The FORRELATION Uf 1 ;...;f k among a set of ‘‘black-box” functions are
obtained by the spin polarization hrzi of an ancillary qubit. The
goal of the experiment is to determine if jUf ;g j � 1=100 or
Uf ;g P 3=5. In our experiments, 5 selected instances of both the
2-fold and 3-fold FORRELATION problems are solved on a three-qubit
NMR quantum information processor. The experimental results
successfully identify that instances 1 and 3 are in the case of
jUf ;g j � 1=100 or Uf ;g P 3=5 in both 2-fold and 3-fold cases. The
quality in the preparation of the PPS and the implementation of
the quantum algorithm are benchmarked by a full quantum state
tomography for both the initial and the final states. Besides, all
the shaped pulses are designed to be robust to the inhomogeneity
of the radio-frequency pulses. The main source of errors are caused
by the imperfection of GRAPE pulses and the instrumental-related
imperfection of the shaped pulse. The total length of each shaped
GRAPE pulse is only 15 ms, which is much shorter than the relax-
ation time of our system. To our knowledge, this is the first imple-
mentation of solving FORRELATION problem reported in the literature,
and the experimental method can be extended to a more complex
version of the multiple-fold FORRELATION in 2n-dimensional space,
and be implemented in other platforms such as superconducting
devices and trapped ions.
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