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Abstract—Data gathering is one of the core algorithmic and
theoretic problems in wireless sensor networks. In this paper, we
propose a novel approach – Compressed Sparse Functions – to
efficiently gather data through the use of highly sophisticated
Compressive Sensing techniques.

The idea of CSF is to gather a compressed version of a satis-
fying function (containing all the data) under a suitable function
base, and to finally recover the original data. We show through
theoretical analysis that our scheme significantly outperforms
state-of-the-art methods in terms of efficiency, while matching
them in terms of accuracy. For example, in a binary tree-
structured network of n nodes, our solution reduces the number
of packets from the best-known O(kn logn) to O(k log2 n), where
k is a parameter depending on the correlation of the underlying
sensor data. Finally, we provide simulations showing that our
solution can save up to 80% of communication overhead in a
100-node network. Extensive simulations further show that our
solution is robust, high-capacity and low-delay.

I. INTRODUCTION & RELATED WORKS

The fast, energy-efficient, and accurate gathering of sensor
data in a network is arguably the most important information
processing problem in sensor networks. It is not only relevant
in a variety of practical application scenarios (e.g. habitat
or information monitoring), but it is also of fundamental
theoretical interest. This is because the problem prototypically
captures the trade-off between the need for efficiency on the
one hand, and accuracy and robustness on the other hand. Not
surprisingly, data gathering problems have–in various disguis-
es and flavors–been at the center of attention for researchers
in the community for years [16], [11], [10], [15].

In its most basic form of data gathering problem, n sen-
sor nodes in the network can communicate with each other
wirelessly. Each node has one sensor readings di, and these
values have to be communicated to a sink node. Given that
sensor nodes are naturally limited in computation power,
memory, and above all energy, the data gathering process
should be efficient and incur low overhead. The principal
way of achieving such energy savings is through in-network
compression which is fundamentally based on the assumption
of spatial correlation between readings. On the other hand,
compression can incur lack of precision. The question of how
much overhead can be reduced through compression without
incurring harmful losses of accuracy thus lies at the heart of
the data gathering problem.

Here we briefly review previous works that is most related
to ours. Early algorithmic work on data gathering was focusing
mostly on using the data correlations during the encoding
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phase, e.g. [7], [8]. The other approach of dealing with
compression is based on Distributed Source Coding (DSC)
techniques [14]. The idea is for nodes to carry out compression
encoding in a distributed fashion. Based on Slepian-Wolf
coding theory, [13] showed that distributed encoding can
achieve the same efficiency as joint encoding can. Afterwards,
various compression encodings (e.g. Discrete Fourier Transfor-
m, Discrete Cosine Transform or Wavelet Transform [6]) are
utilized to generate new data gathering schemes. [16] proposed
a clustered aggregation technique that first groups sensor
nodes according to their measurements and transmits similar
measurements per group only once during the actual data
gathering process. A most recent Major Coefficients Recovery
(MCR) [15] scheme is based on the deep exploration of the
energy compaction property of Discrete Cosine Transform.
It only recovers the very beginning coefficients and hence
reduces the number of packets to O(kn). However, MCR has
too strict requirements for sensing data, so it may not be an
applicable method for all gathering networks.

In recent years, the understanding of the possibilities of effi-
cient data gathering has been revolutionized by the adoption of
Compressive Sensing techniques. A key breakthrough in this
regard was the development of Compressive Data Gathering
(CDG) [11], which was the first work to show that data
can be encoded in a distributed fashion in the network by
projecting it using random coefficients, and then decoding it
at the source using compressive sensing techniques. In contrast
to existing work, instead of applying compression on the data
itself, we compress data in the form of sparse functions, which
we send to the source. The source can recover the function
using techniques from polynomial approximation/interpolation
theory, and use it to compute data values that were not
reported. This approach allows us to very significantly sparsify
the network, which can substantially reduce message overhead
as well as increase network lifetime.

Table I gives us a direct feel for the order of improvement of
our novel Compressed Sparse Functions data gathering scheme
over others. Figure 1(c) is a simplest example demonstrating
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Fig. 1. 1D data gathering networks

CSF in a canonical chain network of n nodes where one
node can only communicate with the nearest neighbors. Most
surprisingly, we reduce the message complexity from the
previously known, e.g in binary tree topology, O(kn logn)
to a sub-linear function, O(k log2 n).

II. COMPRESSED SPARSE FUNCTIONS

A. Model & Assumptions

Assumptions: Similarly to other papers on data gathering,
we assume that sensor data is spatially correlated. To simplify
the discussion, we assume that each message transmission can
contain only one or a fixed number of sensor readings. We also
assume that initially, each node has the same energy level.

Notations: For the 1D network scenario, we consider n
nodes with a unique identifier 1 ≤ i ≤ n, increasing from
left to right. Each node holds a reading denoted by di,
which is to be gathered. Thus each node is labeled as a pair
of numbers (i, di), and the n pairs form a mapping from
[n] = {1, 2, · · · , n} to D = {d1, d2, · · · , dn}, f : [n] → D.
We further assume that di ∈ R, and denote by f a function
that maps integers to real numbers.

B. 1D Networks

The key idea underlying our Compressed Spare Functions
approach is, if we can find an suitable function that contains all
the n sensor’s readings (all sensor readings can be computed
by the function provided identifiers), and if we can express
this function in a very sparse way, then it should in principle
be possible to 1) only communicate the sparse functions to
the sink node, 2) recover the function at the sink, and then 3)
use the recovered function to generate all the n readings.

Moreover, determining the function may be more efficient
than using other compression schemes. It is for this reason,
the sending of a highly compressed version of sparse func-
tions, that we call our scheme Compressed Sparse Functions-
based data gathering. While in principle, the above approach
seems intriguing, many questions remain. First, do such sparse
functions exist, and if so, how can we quickly and efficiently
compute, encode, and decode them? In this section, we answer
these questions affirmatively in three steps, before putting all
results together in Section II-B4.

1) Function Basis and its Sparse Representation: A func-
tion f : Z → R such that f(i) = di, 1 ≤ i ≤ n, is called a
satisfying function for di, 1 ≤ i ≤ n. It is trivial to know for

any set of di satisfying functions exist. We use F : Z → R to
denote the set of satisfying functions.

According to the definition, if we can find one satisfying
function f ∈ F for a set of data to be gathered, we can extract
all the data from it. Hence, we can consider the data gathering
problem as the problem of identifying a suitable satisfying
function.

Definition 2.1: We define a function base as a set of func-
tions P = {p1(x), p2(x), · · · , pm(x)}, and let m = |P |
denote the number of functions in this base. We say a =
(a1, a2, · · · , am) ∈ Rm is a representation of f under the
function base P if f =

∑m
i=1 aipi(x). Furthermore, if a

contains only k ≪ n non-zero elements, we say this is a
k-sparse representation.

Assuming f is a satisfying function, and a function base
P = {p1, p2, · · · , pn} is give. Under P , f has a representation
a = (a1, a2, · · · , an). Without loss of generality, n = |P | =
|a| is also the number of sensor nodes.

The critical equations f(i) = di can be expressed as
d1
d2
...
dn

 =


p1(1) p2(1) · · · pn(1)
p1(2) p2(2) · · · pn(2)

...
...

. . .
...

p1(n) p2(n) · · · pn(n)




a1
a2
...
an


(1)

where a is to be determined. It typically requires n equations
to solve a, however if a is sparse (recall Definition 2.1, by
this it means f has a sparse representation under P ), we can
solve this system via Compressive Sensing (CS).

2) Compressive Sensing: Knowing Am×n, and ym×1, the
linear system of equations Axn×1 = y can hardly be solved
(x is unknown) because m < n makes it underdetermined.
However if x is k-sparse (x contains only k non-zero ele-
ments), CS shows this system can be solved by optimizing

argmin
x̂∈Rn

∥x̂∥1, such that Ax̂ = y, (2)

if A satisfies Restricted Isometry Property (RIP) and

m ≥ ck logn, (3)

where c is a positive constant [4], [5]. Practically, it is sufficient
that 1 ≤ c ≤ 4.

Recalling equation (1), if f has a k-sparse representation
under P , i.e. a is k-sparse, we can determine a using only
as few as m ≥ ck log n equations. We randomly pick up m
equations from (1) indexed by (i1, i2, · · · , im), and rewrite the
system in the form

di1
di2
...
dim

 =


p1(i1) p2(i1) · · · pn(i1)
p1(i2) p2(i2) · · · pn(i2)

...
...

. . .
...

p1(im) p2(im) · · · pn(im)




a1
a2
...
an

 .

(4)
The left side contains m readings, and at the right side

we have to know P thus to know the matrix. So firstly we
gather readings from m nodes which are (di1 , di2 , · · · , dim).
Secondly we have to know a suitable base P that ensures a
is sparse. Then by applying a CS recovery algorithm, a can
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be calculated, thus the satisfying function f is identified and
all the other readings can be computed.

3) Cosine Basis and Discrete Cosine Transform: As men-
tioned above, another essential point is that whether we can
actually find a suitable function base that ensures a sparse
representation of f . For this purpose, we employ the Discrete
Cosine Transform (DCT) as a tool to construct a function base.
Particularly, we use Type-IV DCT because of its symmetry and
orthogonality properties.

The Type-IV DCT matrix of length n is defined as

Ψ = (ψij), 1 ≤ i, j ≤ n, (5)

ψij =

√
2

n
cos

[
π

n

(
i− 1 +

1

2

)(
j − 1 +

1

2

)]
. (6)

Ψ = ΨT = Ψ−1 (7)

The most important properties of DCT are decorrelation
and energy compaction which means that the coefficients in
the DCT domain of correlated data are usually sparse [9].

Theorem 1: Given the function basis P = {pi(x)}, 1 ≤ i ≤
n, where

pi(x) =

√
2

n
cos

[
π

n

(
i− 1 +

1

2

)(
x− 1 +

1

2

)]
, (8)

There exists a satisfying function f ∈ F , such that f has a
representation a of small sparsity k.

Proof: Define a = (a1, a2, · · · , an)T =
Ψ(d1, d2, · · · , dn)T , where Ψ is defined as in (5).

Therefore define

f(x) = a1p1(x) + a2p2(x) + · · ·+ anpn(x)

= aT (p1(x), p2(x), · · · , pn(x))T .
Then we calculate

f(i) = aT (p1(i), p2(i), · · · , pn(i))T

= (d1, d2, · · · , dn)ΨT (ψ1i, ψ2i, · · · , ψni)
T

= (d1, d2, · · · , dn)(0, 0, · · · , 1, · · · , 0)T = di

Thus we have f(i) = di, 1 ≤ i ≤ n, i.e., f is a satisfying
function.

On the other hand, a is also the transformed vector of
(d1, d2, · · · , dn) in DCT domain. Due to the correlation of
data, a should be k-sparse, where k is a small number.

4) Putting Things Together: Now we summarize a novel
compressed sparse functions based data gathering scheme in
the following steps.
• Step 1. Randomly activate m sensor nodes out of a total n
nodes where m ≥ ck log n.
• Step 2. Collect the m readings from the active nodes.
• Step 3. Compute the corresponding DCT matrix, and run
a recovery algorithm by providing the collected readings.
The algorithm can determine the function base, and therefore
the function f . Using f , the sink can simply compute the
remaining n−m readings of those nodes are not activated.

C. 2D Networks
So far, we have described the scheme in 1D networks, but

generalization to 2D is straightforward. Without loss of gener-

ality, we consider two types of 2D topologies, grid topology
in a rectangle sensing field and tree-structured topology in
randomly deployed networks.

For grids, we first map the sensor nodes on 2D surface
into a 1D sequence, and use a unique integer to identify each
node as we do in 1D cases. Then a 2D scenario is converted
into a 1D scenario and we can apply CSF by following the
steps listed in Section II-B. At last, by performing an inverse
mapping from the 1D sequence we recover the 2D topology.
The only thing we need to take care is that the mapping of
the 2D topology should try its best to maintain the correlation
between adjacent nodes. For this reason, we employ Hilbert
Curves to map grid topologies[12]. By doing this, we can also
avoid periodical values in 1D sequences.

In random tree-structured topology with the sink being the
root, we also apply Hilbert Curve to convert a grid which
covers the whole sensing field as well as in the resolution
high enough to distinguish every node in the grid. Figure 2
illustrates this re-ordering process. By such a pretreatment
of ordering, CSF uncovers the correlation between data of
random nodes and therefore maintains highly optimized energy
efficiency. Along the re-arranged 1D vector, the same CSF
steps can be carried out.

Fig. 2. An example of random 2D network

D. Theoretical Analysis of CSF
Comparing with other schemes, CSF collects data from

much fewer nodes. This improvement dramatically reduces
the transmission overhead in the network. In the following
discussion we use the number of packets transmitted (#method

for short) to briefly compare CSF with the baseline Packets
Relay (PR) and Compressive Data Gathering (CDG) in energy
efficiency in different topologies.

Assuming the distance between nodes are the same in
chain topology, we define the transmission range r of a
node to an integer representing the number of nodes one can
communicate with in one direction.

When rmax = n, every node can directly deliver its data
to the sink node. So #PR = #CDG = n, and #CSF = m.
When rmin = 1, every node can only communicate with its
adjacent neighbors. This situation is well studied in previous
works, and the conclusion is #PR = O(n2), #CDG =
O(kn log n). In CSF, m nodes are randomly activated, thus
#CSF = O(kn log n) in the worst cases.

In general cases when 1 < r < n, the most efficient
strategy for each scheme to do the gathering is to separate all
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the nodes into several groups according to r. After carrying
out the scheme over each group, #PR = O(n

2

r ), #CDG =
O(kn log n), and #CSF = O(mn

r ).
In grid topology, we simply consider the cases when

r = 1. Through the similar discussion as in chain topol-
ogy, we can see in a

√
n ×

√
n grid, #PR = O(n

√
n),

#CDG = O(kn log n) and #CSF = O(k
√
n log n). The cases

of tree-structured topology is almost the same where #PR =
O(n log n), #CDG = O(kn log n) and #CSF = O(k log n2).

In 2D topologies, CSF performs much more efficiently than
the other schemes meanwhile the collection accuracy can also
be maintained at a good level. More detailed analysis will
appear in the following extended paper.

III. EVALUATION & SIMULATION

In this section we evaluate the performance of CSF through
simulations in comparison with PR and CDG. All the evalua-
tions are tested for networks of three different types of topolo-
gies, which are chain, grid and random 2D topology.
• Chain Each node can only communicate with the adjacent
neighbors.
• Grid We assume that one node can only communicate with
the four adjacent neighbors and the sink is deployed at one
corner. A spanning tree of the grid forms the routing pathes.
• Random 2D Within a certain sensing range, several nodes
are deployed at uniformly random. The sink is located at the
center, and shortest-hop routing pathes are generated towards
the sink. Therefore the topology in this scenario usually looks
like a tree that appears more spread than the spanning trees
in grid topologies.
In the ideal experiments we first explore the recovery

properties. Through these experiments we setup reasonable
values for simulation parameters. In the following simulations,
we mainly evaluate the network performance and show the
better network capacity, energy efficiency and network delay
of CSF than the other schemes.

A. Recovery Property & Parameter Setup

In the discussion about recovery accuracy, Signal to Noise
Ration (SNR) is employed to represent the recovery level
between an original signal s and its approximation ŝ.

Assuming data are gathered ideally through networks, the
experiment is carried out based on two real data sets, CTD
(Conductivity, Temperature and Depth) data from NOAA [2]
for chain topologies and temperature data from NASA [3] for
random 2D as well as grid topologies.

By setting m
k -ratio at different level, we explore how much

extra accuracy CSF can achieve when m is greater than
the necessary k log n. In Figure 3, the recovery accuracy
curves indicate 1) CSF achieves better recovers accuracy than
CDG provided the same m

k ratio, and 2) m
k ratio’s lower

bound k log n and its corresponding recoveries are highlighted
with circles in the figures, which clearly shows a threshold.
Therefore it is reasonable to set the positive constant c = 1
(in Equation (3)) in the following and simulations.

B. Simulation

We implement CSF, PR and CDG on Contiki OS, and four
hardware simulations are carried out on Cooja platform [1] to
focus on power consumption, network capacity, packet loss
rate and network delay respectively. All these simulations
are run for three types of network topology, chain, grid and
random 2D as mentioned above. The specific settings are
shown in Table II.

Radio component cc2420
Transmission range 50 meters
Interference range 100 meters
MAC protocol CSMA
MAC buffer size 6
MAC transmission retry 10
Payload size 23 Bytes
k/n percentage 4%
m/k ratio logn

TABLE II
SIMULATION PARAMETERS

1) Power Consumption: The power consumption simula-
tions are carried out on 25-node grid and random networks
separately. Figure 4(a) describes the accumulation of network’s
total power consumption during the first several hundred
seconds in the random topology scenario. During the first 100
seconds of routing generation, three schemes consume nearly
the same level of power. Afterwards, when networks begin to
gather and send data, power consumption accumulates almost
linearly with time elapsing. CSF consumes even less than half
of CDG’s power consumption, nearly 25% of PR. The similar
result can be found in simulations of grid topology, where
the accumulated power consumption of CSF, CDG and PR is
0.089, 0.129 and 0.280 (mW·h) respectively after 600 seconds
from the beginning.

Figure 4(b) shows the distribution of power consumption of
nodes at different hop distance from the sink. CSF and CDG
both perform better balance than PR.
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Fig. 4. Power consumed in random topology

2) Gathering Capacity: In this simulation we evaluate the
throughput of network a scheme could achieve in term of
gathered information. CSF and CDG both require only m
packets in order to collect n pieces of data as fully discussed
before. We consider that sink (the network system) actually
gathers n pieces of data after collecting the required m pieces
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Network Scale
(# of nodes) 50 75 100

CSF 1.25 s 2.79 s 4.19 s
CDG 12.47 s 45.86 s 60.14 s

TABLE III
GATHERING DELAY

because from which n items can be extracted. So we define
information incoming rate at sink as

Definition 3.1: The amount of information sink (the net-
work system) could extract from the received packets per sec-
ond is called the Information Incoming Rate at Sink (Bytes/s).

Assuming one piece of data contains one byte, we run the
simulations in 100-node grid and random networks. Figure 5
shows that CSF has a much more rapid increase in the
information incoming rate than the other two, which means
under the same level of network load our scheme can gather
data more frequently. For CSF, when packet generation rate is
greater than 20packets/s, it reaches a capacity limit of about
30Bytes/s. Meanwhile this limit for CDG is only 25Bytes/s
which comes at around 50packets/s. Clearly CSF has a higher
capacity than CDG, meanwhile PR has a much lower capacity.

3) Gathering Delay: The third performance we evaluate is
gathering delay, by which we mean the time duration from the
moment the first packet is sent to the moment sink gathers all
required packets. We run simulations in networks of different
scale to find out the shortest gathering delay the scheme could
possibly achieve without losing a single packet. Several rounds
of gathering are executed in each setting and the average
results of CSF and CDG are listed in Table III. The gap
between CSF and CDG in this evaluation is substantial that
CSF experiences only less than 10% of the delay that CDG
suffers, i.e. our scheme gathers data much faster.

IV. CONCLUSION

We propose the novel Compressed Sparse Function based
data gathering scheme for large-scale wireless sensor networks

in this paper, which utilizes Compressive Sensing techniques
to greatly reduce the transmission overhead. Leading to a
breakthrough in energy efficiency that in tree structured net-
works a sub-linear order of transmission overhead could be
obtained, CSF also provides better recovery accuracy when
comparing with previous schemes. Extensive simulations on
Contiki system support the theoretic analysis of energy saving
and demonstrate the high-capacity and low-delay properties
that CSF exhibits.
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