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Abstract—The SINR model has attracted much attention in
the field of wireless networks. The path loss exponent α in
the model is generally treated as a constant between two and
six. However, in real scenarios, the path loss is influenced by
many factors such as environment (vegetation and barriers),
propagation medium (dry or moist air), the distance between
the transmitter and the receiver, etc. Therefore, the exact value
of α is hard to detect in real scenarios and the attenuation of
signal powers transmitted through different areas varies, which
causes the value of α to ebb and flow among all wireless requests.
In this paper, we initiate the study about the impact of α that
fluctuates on the SINR model. We prove that for any given α and
the fluctuation δ, a specific topology can always be constructed
which is extremely vulnerable to the small change in α and all
the existing algorithms dealing with wireless network problems
perform dramatically poorly with the inaccurate α value. We
call algorithms that can still perform well despite the fluctuating
α “α-Robust” algorithms and we propose the first α-Robust
algorithm for the Connectivity Problem which generates a link
schedule with size of O(log n logΔ) even in the worst case, where
Δ is the ratio between the longest and the shortest links in a
nearest neighbor tree.
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I. INTRODUCTION

Ever since it was first discovered that radio waves could be

used to send telegraph messages in the 1800s, using radio for

communication purposes have been adopted by more and more

people and developed by many intellects. Nowadays, there

are millions of cell phone subscribers worldwide. In addition

to new types of wireless devices, wireless sensor networks,

have been attracting vast amount of attention and have been

providing an easy approach to monitor the environment, detect

physical events and so on.

Recently, the Wireless Links Scheduling (WLS) Problem

in wireless networks has attracted many researchers due to its

more realistic communication model, particularly the SINR

model (also called physical model, defined in [8]), which

describes the ratio between the desired signal strength and

all other signal strengths plus ambient noise. Only when this

ratio is above some threshold β, the receiver can decode

the signal successfully. In the early days of wireless sensor

network research, multi-hop wireless networks were modeled

as graphs. The nodes of this communication graph represent

the physical devices, two nodes being connected by an edge

if and only if the respective devices are within mutual trans-

mission range. In this graph-based model, a node is assumed

to receive a message correctly if and only if no other node in

physical proximity transmits at the same time. It is foreseeable

that in graph theory, interference-free concurrent transmissions

just boil down to solving variants of coloring or independent

set problems. Compared with the tremendously simplified

graph-theoretic model, the SINR model is a more accurate

description of reality. The advantage and robustness of the

SINR model are analyzed in [13], [17], which mainly focus

on the effect of the SINR threshold. In technical, the threshold

β has been discussed to show the robustness of the SINR

model in [12]. However, in real scenarios, the exact value of

α is harder than that of β to find; in addition the attenuation of

signal powers transmitted through different areas varies, which

may cause the value of path loss exponent α to ebb and flow

among all wireless requests. There is almost no previous work

considering this real factor and its influence. Thus, we initiate

the study of robustness of the physical model with fluctuating

α value in this paper.

In order to best investigate the fundamental possibilities

and limitations of robustness in view of fluctuations and

uncertainty of the path-loss exponent, we consider one of

the fundamental scheduling problems in wireless networks,

the connectivity problem: given some deployment of nodes in

the plane, the goal is to compute the power assignment and

time slot to transmit for all the nodes that forms a connected

communication structure spanning all nodes without violating

the SINR model. This problem, while simple enough to lend

itself to concise theoretical analysis and lower bound proofs,

is nevertheless a key building block for other more complex

and practically more important problems. One example, the

maximum capacity problem, which can be solved by our α-

Robust algorithm with several small modifications.

Our contributions are summarized as follows: We explore

how the path loss fluctuation will affect the results in wireless

networks and enquire robust algorithm design if the impact

is indeed large. In this paper, we discuss the α-sensitivity

of the SINR model, concluding the dramatic impact of a

fluctuating α such that no two links can transmit concurrently

for the topology we construct. Taking one of the simplest

problems: connectivity problem (i.e., minimize the amount of

time slots required until links in a connected wireless network

can be realized) as an example, we give an α-Robust algorithm

that finds a schedule which completes all transmissions in

O(log n logΔ) time slots, where Δ is the ratio between the

longest link length and the shortest link length in a nearest

neighbor tree of the node deployment.
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II. RELATED WORKS

A. Power Assignment in the SINR Model

In the early theoretical research, the scheduling signals in

wireless networks resort to protocol model (e.g., [1], [20]).

Two nodes in the network are connected by an edge in a

communication graph if and only if they are in each other’s

transmission range. So the transmitting power level of any

node is characterized as the radius of this communication

range. However, this modeling approach ignores the fact that

radio signal and interference do not have the exact boundary

of influence.

Later the physical (SINR) model is well-accepted in the

networking and engineering community, which assumes that

the strength of a signal attenuates with the increasing dis-

tance from the source. Since then, the power assignment has

become a significant subproblem of the wireless scheduling

problem. At first, most literature focuses on the uniform power
assignment, in which all the nodes transmitted at the same

power level (e.g., [9], [19], [21]). In some other studies, the

very intuitive linear power assignment is adopted, in which

the power level is chosen proportional to the transmission

distance or the path loss (transmission distance to the power

of the path loss exponent). As an example, Fanghänel et

al. [2] proposed the square root power assignment (one kind

of the oblivious power assignment they defined) setting the

power level for a transmission equal to the square root of

the transmission distance. Different from the oblivious power

assignment, Moscibroda and Wattenhofer [17] presented the

first analysis of the directed interference scheduling problem

using a non-oblivious power assignment. They discussed the

problem of how many time slots are needed to schedule a set

of wireless communication requests ensuring connectivity a-

mong n points placed arbitrarily in two-dimensional Euclidean

space. They show that there are scheduling instances that either

using uniform or linear power assignments results in Θ(n)
scheduling complexity. However, all of these methods assume

that the path loss exponent is a constant and all the signal

power attenuation is the same for any point in the network

area. The path loss fluctuation is not taken into consideration

and the ideas behind these power schemes can not be fully

realized with this fluctuation.

B. Wireless Scheduling Problems

Ever since the SINR model has been adopted in the

community and scheduling complexity was first defined by

Moscibroda et al [17] in 2006, a mass of studies on the WLS
Problem have appeared (see, e.g., [3], [6], [7], [11], [14], [18].

) The first algorithm for the Connectivity Problem achieves

O(log4 n) scheduling complexity in [17], which is improved

to O(log2 n) later in [16]. Later, Gu et al. [7] improved this

scheduling complexity to O(log n). Gradually deepening the s-

tudy on scheduling problem, more interesting and fancy works

are done. Halldórsson et al prove that One-Shot scheduling

with uniform power assignment is APX in [13]. After that, a

breakthrough is achieved by Thomas Kesselheim et al. in [14]

giving the first constant approximation algorithm with power

control. Very recently, based on Kesselheim’s work, Magnús

M. Halldórsson and Pradipta Mitra proposed an O(log n)
algorithm to achieve connectivity in [10]. Apart from this

problem, the capacity problem tries to find the maximum

feasible subset of a given set of links is another fundamental

one which attracts many researchers’ attention. This problem

is proved to be NP-Complete in [19] by Olga Goussevskaia et

al. in conjuction with an approximation algorithm that grows

linearly with the network size in the worst case. Katz, Vöker

and Wagner extended the NP-hardness proof in [22]. They also

established the first rigorous result that guarantee a constant

approximation when finding the Maximum Independent Set,

i.e. the largest set of links that can be scheduled concurrently

in one time slot in [6]. Some other results such as constant

approximation for capacity using oblivious power assignments

is given in [11]. Some other problems have also been extended,

such as topology control, routing and network coding in [4],

[5], [18].

To the best of our knowledge, there is no previous studies

on scheduling problem with path loss fluctuation under the

SINR model. This paper is the first attempt to analyze the

influence of this exponent in the SINR model and to propose

the “α-Robust” scheduling algorithm. We believe that the

theoretical scheduling algorithms can have more impact on

the real MAC layer protocol design in real scenario if the

path loss is described more accurately and treated carefully.

III. MODEL AND NOTATIONS

We are given a set of nodes X = {x1, x2, . . . , xn} located

arbitrarily in the Euclidean plane. We divide time into time

slots, defined to be the unit of time required to transmit

once for any link. All nodes can be both a sender and

receiver, but only in different time slots. The distance between

any two nodes xi, xj is denoted by d(xi, xj). Each edge

lij = (xi, xj) represents a communication request from a

sender vi to a receiver vj . The length of link lij is denoted

by dij = d(xi, xj), where dgj = d(xg, xj) designates the

distance between the sender of link lgh and receiver of link

lij .

Formally, the SINR model is defined as follows. The signal

power Pi(j) received at xj from sender xi depends on the

transmission power Pij of xi and distance dij . The path loss

radio propagation model for the reception of signals says

the signal strength that xj receives degrades at d−α
ij , where

α denotes the path-loss exponent, i.e. Pi(j) = Pij/d
α
ij . In

previous works, α is usually considered as a constant between

two and six in previous works involved with the SINR model.

In this paper, we adopt the definition of inaccurate α, which

means the exact path loss is unknown and transmissions in

different areas may be affected by different α valued. We

assume the varying range of this exponent is [α − δ, α + δ],
where δ denotes the fluctuation bound. Every sender xg (with

corresponding receiver xh) that transmits concurrently with

another sender xi (with corresponding receiver xj) causes

an interference Ig(j) = Pg(j) = Pgh/d
α
gj at receiver xj .
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Fig. 1. Transmissions from node A to D and from B to C can simultaneously
be scheduled successfully, whereas taking fluctuation into consideration, they
will conflict.

All interferences accumulate. The total interference I(xj)
experienced by receiver j is given as the sum of all in-

terferences caused by other concurrently sending nodes, i.e.

I(xj) =
∑

lgh �=lij
Ig(j). A receiver xj receives a message

from its sender xi successfully if and only if it suits the

following SINR constraint:

SINRS(xj) =
Pi(j)∑

lgh∈S\lij Ig(j) +N
≥ β

where N is the ambient noise, β ≥ 1 denotes the minimum

SINR (Signal-to-interference-plus-noise-ratio) required for a

message to be successfully received, and S is the set of

concurrently transmitting links.

In this paper, we focus on the connectivity problem in

wireless networks: Given some deployment of nodes X in

the plane, what is the minimal amount of time required until

a connected graph is realized based on the constructed links

of these nodes, which describes the theoretically achievable

efficiency of MAC layer protocols. Simply speaking, just

like the capacity of a wireless network which expresses the

maximum amount of information that can be transmitted

through the network, the scheduling complexity indicates the

minimum amount of time required to finish transmitting over

a given set of communication links (these links should make

all the nodes are connected and all the transmissions are

successful without violating the SINR constraint, with the path

loss exponent varying between [α− δ, α+ δ]).

IV. α-SENSITIVITY OF THE SINR MODEL

In order to exemplify the impaction of fluctuating α, con-

sider the simple four nodes deployment depicted in Fig. 1. As

indicated by the arrows, node A wants to transmit to node D

and node B wants to transmit to node C. Assume α = 3, β = 3
and the ambient noise N = 0.01μW . If no fluctuation exists,

the two transmissions can be scheduled simultaneously by

setting power P (A) = 1.26mW,P (B) = 31.6μW and the

SINR values at receivers C and D can be computed as:

SINRC =
31.6μW/(1m)3

0.01μW + (1.26mW/(5m)3)
≈ 3.13 > β

SINRD =
1.26mW/(7m)3

0.01μW + (31.6μW/(3m)3)
≈ 3.11 > β

However, it’s hard to measure the precise α value in

practical situation. When a small fluctuation exists (such as

α = 3.1), can the two transmissions still be successful with

no foresee of the fluctuation? The answer is NO because the

SINR value at the receiver D is:

SINRD =
1.26mW/(7m)3.1

0.01μW + (31.6μW/(3m)3.1)
≈ 2.86 < β

Small fluctuation may cause simultaneous transmissions

conflict even we take the fluctuations for different links the

same as the example above. It’s hard to image how badly it

can be if the fluctuations are different for all transmissions.

This is why we present α-Sensitivity of the SINR model

in this section, which points out the deficiency of existing

power assignment schemes that fail to take into account the

inaccuracy of the path loss exponent and it demands robust

algorithms against the fluctuant parameter from the algorithm

designer.

Theorem 1: For any given α and δ > 0, there exists a

topology in which any two simultaneous transmissions using

Pi and Pj cannot be both successful with two different path

loss exponents α and α− δ for any power assignment Pi, Pj ,

where α, α− δ ∈ (2, 6].
This theorem claims all the existing algorithms under the

SINR model without involving the fluctuation will crash in

some worse case topology. Robust algorithm design becomes

so important in this field and we will present the first robust

algorithm to the famous Connectivity Problem in the next

section.

d1 d2 d3 dn

S1

S2

Sn

Fig. 2. Example of inductively constructed chain.

Proof: Consider the chain constructed in Fig. 2, all

nodes are placed on a straight line with “super” exponentially

increasing distances between any successive two. (Here, by

“super” exponentially increasing, we mean that distances be-

tween nodes in this line grow much faster than the common

exponential chain.) These nodes compose the tree topology by

connecting the nearest neighbor (as the left arrow illustrated

in Fig. 2) and the left-most one is the leaf.

The lengths of these links l1, l2, . . . , ln in the topology are

denoted by d1, d2, . . . , dn in Fig. 2 . The following equations

hold for all di:

d1 = 1

Si =
i∑

k=1

di

dαi = Sα
i−1 · (di + Si−1)

α−δ (1)

First of all, we verify the existence of such an inductively

constructed topology.

Lemma 4.1: In the inductive step, di defined in Eq. (1)

satisfies di > 0 and di ≥ di−1, i.e. the constructed topology

is actually a nearest neighbor tree as depicted.
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Proof: Define a constant C s.t.

Cα = (C + 1)α−δ

Since α and δ are given before the construction, it is obvious

that such a constant C exists and C > 1. Actually we can find

that C = d2.

Define function f(x) = xα−Sα
i−1 ·(x+Si−1)

α−δ . It’s easy

to verify f(di−1) < 0 based on the observations Si > di and

di > 1 (i = 2, 3, . . . ). Consider the following two cases:

1. If α ≥ δ, then

f(C · S α
δ
i−1) = Cα · S α2

δ
i−1 − Sα

i−1(C · S
α
δ
i−1 + Si−1)

α−δ

≥ Cα · S α2

δ
i−1 − (C + 1)α−δ · S(α

δ (α−δ)+α)
i−1 = 0

2. If α < δ, then

f(C · S2− δ
α

i−1 ) = Cα · S(2− δ
α )α

i−1 − Sα
i−1(C · S2− δ

α
i−1 + Sn−1)

α−δ

≥ Cα · S(2− δ
α )α

i−1 − (C + 1)α−δ · S2α−δ
i−1 = 0

Thus there exists some value x∗ = C · S α
δ
i−1 > di−1 or

x∗ = C · S2− δ
α

i−1 > di−1 such that f(x∗) ≥ 0. Since this

function is continuous, there exists some value di−1 < x ≤ x∗

satisfying f(x) = 0, and the solution is di. (Note: In most

cases, we consider α > δ where δ is a small constant, so di’s
value is in the range [di−1, C · S

α
δ
i−1]).

Next, we prove the chain constructed above is the topology

we want, i.e. it is extremely vulnerable to δ. Suppose there

are two links li, lj(i < j) can be scheduled concurrently with

path loss exponent α, which means (without loss of generality,

we ignore the ambient noise here):

Pi

dα
i

Pj

dα
ji

≥ β and

Pj

dα
j

Pi

dα
ij

≥ β

Derived from these, we get the following range:

β · ( di
dji

)
α

≤ Pi

Pj
≤ 1

β
· (dij

dj
)
α

(2)

Similarly, if we hope that links li, lj can also transmit concur-

rently under a slightly decreased path loss exponent α−δ, the

following condition must be satisfied:

β · ( di
dji

)
α−δ

≤ Pi

Pj
≤ 1

β
· (dij

dj
)
α−δ

(3)

However, the “super” exponentially increasing chain has the

following property:

(
dij
dj

)
α

= (
Sj−1 − Si

dj
)α <

Sα
j−1

Sα
j−1 · (dj + Sj−1)α−δ

≤ 1

Sα−δ
j

<
dα−δ
i

(Sj − Si−1)α−δ
= (

di
dji

)α−δ

A reasonable and acceptable assumption is β ≥ 1, so it

is obvious that 1
β · (dij

dj
)
α
< β · ( di

dji
)
α−δ

, which means Eq.

(2) and Eq. (3) are contradict with each other. We call this

“sensitive contradiction”.

Thus, any Pi and Pj fail to make simultaneous transmis-

sions successful in both cases when path loss exponent is α
and α− δ.

Remark 4.1: We omit the ambient noise N during the proof

to the theorem because N is a fixed constant which can be

omitted by scaling to suit the equivalent condition.

Remark 4.2: We consider all the links have the same α
value in the construction as a special case that the real α
value for each link can vary between [α−δ, α+δ]. If different

links have different α values, the impaction will be much more

serious.

This theorem leads to an unexpected deficiency of all

existing scheduling algorithms under the SINR model without

considering the inaccuracy of α and we generate following

corollaries:

Corollary 1: For any scheduling algorithm A without con-

sideration of path-loss fluctuation, and for any given α and

δ > 0, real α values for all links vary between [α− δ, α+ δ],
the schedules generated by A could fail, and all transmissions

could face dramatic, unexpected interference.

Corollary 2: For any scheduling algorithm A without con-

sideration of path-loss fluctuation, and for any given α and

δ > 0, real α values for all links vary between [α− δ, α+ δ],
any power assignment for transmissions generated by A could

lead to an Ω(n) scheduling complexity.

V. α-ROBUST ALGORITHM

Robust algorithm design becomes important since no exist-

ing algorithms for scheduling problems could be stable under

inaccurate α value.There are many fundamental problems

in wireless sensor networks under the SINR model and we

give an improved α-Robust algorithm for the Connectivity

Problem.

Definition 5.1: An algorithm F is defined to be α-Robust

to problem P , if the solution (schedule) generated by F can

hold for any α∗ ∈ [α − δ, α + δ] under the SINR model.

(here α∗ can be different for different transmissions even they

transmit in the same time slot).

A. Connectivity Problem

Connectivity is the most basic and important property in

wireless networks. The goal of the connectivity problem is to

minimize the amount of time slots required until a connected

structure can be scheduled. This problem has been fully re-

searched in [7], [10], [15], [16], [17]. However, all the existing

algorithms can’t work when fluctuation exists. Consider the n-

odes X = {x1, x2, · · ·xn} to be located arbitrary in the plane.

We say node xi is connected to xj if the transmission between

(xi, xj) is successful. The Connectivity Problem demands how

quickly can they form a (weak) connected network under the

SINR model? Usually we construct a topology based on the

nodes deployment and schedule all the links in as minimum

time slots as possible. This method has been used in [7],

[16] and the best known result to the problem is O(log n)
time slots ([7], [10]). In this paper, we propose the first α-

Robust algorithm based on [7], [16] to achieve O(log n logΔ)
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scheduling complexity for the connectivity problem, where Δ
is the ratio between the largest link length and the smallest

link length of the topology constructed. The real α value for

each link in the topology varies between [α − δ, α + δ] and

different links may suffer from different α values.

B. α-Robust Algorithm Design

The algorithm given in this part contains two main steps:

topology construction and link scheduling.

Algorithm 1 Topology Construction on node set V

1: Tree := ∅;
2: while |V | > 1 do
3: for each node vi ∈ V do
4: Find vj ∈ V \ {vi} minimizing d(vi, vj);
5: if lji /∈ Tree then
6: Tree := Tree ∪ {lij};
7: end if
8: end for
9: for each link lij ∈ Tree do

10: V := V \ {vi};
11: end for
12: end while
13: return Tree;

Algorithm 1 uses the nearest neighbor tree(NNT) method to

construct the topology, which has been used in many previous

papers such as [10], [16]. Some properties can result from this

topology:

Property 5.1: Consider any two nodes vi, vj ∈ V , at most

one link of lij and lji can be in Tree.

Property 5.2: Consider any link lij ∈ Tree, if there exists

another node k with dik < dij , then lik ∈ Tree.

Before link scheduling, we scale all links and the ambient

noise in Algorithm 2, in which we find the minimum length

link and scale all the distances (between any sender and

receiver) by a factor of dmin. After the scale, all links’ length

are greater than or equal to one in the nearest neighbor tree

(NNT).

Algorithm 2 Scale All links in Tree

1: dmin := minlij∈Tree{dij}
2: for any two nodes vi, vj ∈ V do
3: d̃ij =

dij

dmin
;

4: end for
5: N∗ = Ndα+δ

min

We prove the equivalence scheduling between the original

instance and the scaled one. Suppose we have generated a

schedule Lt for scaled links under ambient noise N∗ =
Ndα+δ

min . Thus ∀lij ∈ Lt:

Pij

d̃α∗
ij

N∗ +
∑
∀lgh∈Lt,lgh �=lij

Pgh

d̃α∗
gj

≥ β

Apply the solution (including the power assignments) to the

original instance. It holds that:

Pij

dα∗
ij

N +
∑
∀lgh∈Lt,lgh �=lij

Pgh

dα∗
gj

=

Pij

dα∗
ij

· dα∗min

N · dα∗min +
∑
∀lgh∈Lt,lgh �=lij

Pgh

dα∗
gj ·dα∗

min

≥
Pij

d̃α∗
ij

N∗ +
∑
∀lgh∈Lt,lgh �=lij

Pgh

d̃α∗
gj

≥ β (4)

Thus, we only need to solve the problem under scaled

ambient noise N∗ and scaled link length. For simplicity, we

use the original notations such as N, dij in the following part.

Algorithm 3 Set Division on links in Tree

1: dmax := maxlij∈Tree{dij}, dmin := minlij∈Tree{dij};
2: Δ := dmax

dmin
,Λ := 	logΔ
, a1 := 4δ log (3βΔ)

α−2−δ

3: for each lij ∈ Tree with Δ
2a1m < dij ≤ Δ

2a1(m−1) do
4: Am := Am ∪ {lij}
5: end for
6: for each Am, 1 ≤ m ≤ Λ

a1
do

7: d′ := maxlij∈Am{dij};
8: for each lij ∈ Am with d′

2k
< dij ≤ d′

2k−1 do
9: Amk := Amk ∪ {lij}

10: end for
11: end for
12: Bk :=

⋃Λ
m=1 Amk, 1 ≤ k ≤ a1;

Algorithm 3 divides all links into subsets according to their

length in two steps. In the first step, the links are divided into
Λ
a1

subsets according to their length where the subsets are

denoted by Am. In the second step, all links in each set Am

are further divided into smaller subsets according to the links’

length relative to increasing power of 2 (line 8 of Algorithm

3). Each k-th subset from Am is combined to construct a set

Bk where 1 ≤ k ≤ a1. Fig. 3 illustrates how the algorithm

processes.

Fig. 3. An example of set division

Property 5.3: Consider any two links lij and lgh in the

same subset Bk. If lij and lgh come from different Amk
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link sets (e.g. Am1k and Am2k, where m1 < m2) then

dij ≥ 2(m1−m2)·a1 · dgh.

Property 5.4: Consider any two links lij and lgh in the

same subset Bk, their lengths are either very similar (differ

by a factor 2) or vastly different.

Proof: If the two links come from the same subset Amk,

it holds 1
2 ≤ dij

dgh
≤ 2 from line 8 in Algorithm 3. Otherwise,

they are vastly different by Property 5.3.

After the set division subroutine, each link is mapped to

a subset in Bk according to its length. In the link scheduling

phase, schedule each subset Bk separately taking advantage of

the link length relation from Property 5.4. Before we describe

the link scheduling phase, the definition conflicting link will

be useful.

Definition 5.2: Link lgh is a conflicting link to lij if any

one of the following properties is satisfied: (Suppose lij is

from subset Am1k, lgh is from subset Am2k and c1 is a large

enough constant)

- dig < c1 ·dij when m1 = m2 which means they are from

the same subset in the first layer division;

- dgj < dgh when m2 < m1;

- dhi < c1 · dgh when m1 −m2 ∈ (0, (1+log b) logn
αa1

];

- dhi < n
1

α−δ · dij · b
(τij−τgh)+1

α−δ when m1 − m2 >
(1+log b) log n

αa1
;

The definition of conflicting link is used in the Link Sched-

ule algorithm design and performance analysis.

Algorithm 4 Maximal Concurrent Link Scheduling on Tree

1: T := Tree \ {lv′s};
2: Scale T using Algorithm 2;

3: Set division on T using Algorithm 3;

4: b = 3βΔ2δ, k = N, tmax = 1, L1 = ∅
5: for k = 1 to a1 do
6: for each lij ∈ Bk in decreasing order of length do
7: for t = 1 to tmax do
8: if no conflicting link to lij exists in Lt then
9: Lt := Lt ∪ {lij}; break;

10: end if
11: end for
12: if link lij is not scheduled then
13: tmax := tmax + 1, Ltmax := {lij};
14: end if
15: Pi(lij) := k · bm · dα−δ

ij ;

16: end for
17: end for
18: return all link sets Lt

Algorithm 4 lays most of the ground work for scheduling.

It schedules each subset Bk separately. For each link lij in

Bk, if there exists a time slot with no conflicting links, add it

to the time slot; otherwise create a new time slot with link lij
and continue the process until all subsets are scheduled.

Remark 5.1: All the links in the same time slot Lt are from

the same subset Bk.

Remark 5.2: The power level assigned to each link lij is

a non-linear function of dij with relation to the maximum

fluctuation range δ.

C. Correctness, Complexity and Performance

In this part, we first prove that all the links scheduled in

the same time slot from the α-Robust algorithm above can

transmit concurrently under the SINR model; and then we

show the robust algorithm can achieve scheduling complexity

O(log n logΔ) even for the worst case topology. Moreover,

the time complexity of the algorithm itself is bounded by

O(n2(log n+ logΔ)) of efficiency.

Theorem 2: Consider any link set Lt generated by the α-

Robust Algorithm, ∀lij ∈ Lt and ∀α∗ ∈ [α − δ, α + δ], it

holds:

Pij

dα∗
ij

N +
∑
∀lgh∈Lt,lgh �=lij

Pgh

dα∗
gj

≥ β (5)

Remark 5.3: In Theorem 2, α∗ can be different value for

different links, which demands a stronger condition for robust

algorithm design.

In order to deduce Theorem 2, we provide the following

lemmas:

Lemma 5.1: Consider link lij ∈ Lt (suppose lij ∈ Am1k)

scheduled in time slot t. The interference caused at vj by other

links lgh ∈ Lt and lgh ∈ Am2k where m2 < m1 is bounded

by: I1(vj) ≤ N1 ·k · bm1−1 where N1 = 64·2α−δ(c1+4)
c21

α−δ−1
α−δ−2 .

Proof: Link lgh should be scheduled before link lij
because m2 < m1 which implies dgh > dij . We know that

lgh is not a conflicting link for lij since they are scheduled in

the same time slot, thus dgj ≥ dgh from the second case of

the conflicting link definition. Now, we bound the interference

caused by the simultaneous scheduled links in Am2k for a

fixed m2 value. Divide the plane into rings R1, R2 · · ·R∞. For

each link lg′h′ in ring Rλ: (2λ−1)dgh ≤ dg′j < (2λ+1)dgh.

Since lgh and lg′h′ are scheduled in the same time slot with

same subset index m2, dgg′ ≥ min{c1dgh, c1dg′h′} ≥ dgh

2
(from the first case of conflicting link definition) which implies

the disks of radius
dgh

4 centered at each link’s sender do not

overlap. The number of the senders, then, can be bounded by:

Nλ ≤ π(2λ+ 1 + c1
4 )

2 − π(2λ− 1− c1
4 )

2

π( c14 )
2

= 16 · 4λ(
c1
2 + 2)

c21
≤ 32(c1 + 4)

c21
· λ

The interference caused at vj by all senders in ring Rλ is

bounded by:
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Fig. 4. An example of dividing the plane into rings, where for each link
lg′h′ in ring Rλ, (2λ − 1)dgh ≤ dg′j < (2λ + 1)dgh. We can bound the
number of senders in each ring and thus bound the interference at the receiver
node vj .

IRλ
(vj) ≤ Nλ · k · b

m2 · (2dgh)α−δ

[(2λ− 1) · dgh]α∗

≤ Nλ · k · b
m2 · (2dgh)α−δ

[(2λ− 1) · dgh]α−δ

=
32(c1 + 4)

c21
· k · 2α−δ · bm2 · λ

(2λ− 1)α−δ

≤ 32k2α−δ(c1 + 4)bm2

c21

1

λα−δ−1

Naming the set of all links in Lt that are in Am2k as Sgh and

combining all the rings, we can bound the total interference

by senders in Sgh by:

ISgh
(vj) =

∞∑

λ=1

IRλ
(vj)

≤ 32k2α−δ(c1 + 4)bm2

c21

∞∑

λ=1

1

λα−δ−1

≤ 32k2α−δ(c1 + 4)

c21

α− δ − 1

α− δ − 2
bm2

Since 1 ≤ m2 ≤ m1, if we sum up all the interfer-

ence ISgh
(vj), we get I1(vj) =

∑m1−1
m2=1 ISgh

(vj) ≤ C1 ·
k
∑m1−1

m2=1 b
m2 = C1 · k b(bm1−1−1)

b−1 ≤ 2C1 · kbm1−1 where

C1 = 32·2α−δ(c1+4)
c21

α−δ−1
α−δ−2 and N1 = 2C1, the lemma follows.

Remark 5.4: We assume α−δ > 2. This is reasonable since

it is generally accepted under the standard SINR model that

any pass-loss exponent lies between 2 to 6.

Using the same technique above and the method in the

analysis of [16], we can obtain the following three lemmas

easily:

Lemma 5.2: Consider link lij ∈ Lt (suppose lij ∈ Am1k)

scheduled in time slot t. The interference caused at vj by other

links lgh ∈ Lt and lgh ∈ Am2k where m1 = m2 is bounded

by: I2(vj) ≤ N2 · k · bm1−1 where N2 = 32b·22α−δ

(c1−2)α−δ
α−δ−1
α−δ−2

Lemma 5.3: Consider link lij ∈ Lt (suppose lij ∈ Am1k)

scheduled in time slot t. The interference caused at vj by

other links lgh ∈ Lt and lgh ∈ Am2k where m1 < m2 ≤
m1 + (1+log b) logn

αa1
is bounded by: I3(vj) ≤ N3 · k · bm1−1

where N3 = 144·2α−δ

cα−δ
1

α−δ−1
α−δ−2 .

Lemma 5.4: Consider link lij ∈ Lt (suppose lij ∈ Am1k)

scheduled in time slot t. The interference caused at vj by

other links lgh ∈ Lt and lgh ∈ Am2k is bounded by: I4(vj) ≤
k · bm1−1, where m2 ≥ m1 +

(1+log b) logn
αa1

.

Based on the lemmas above, we prove the correctness of

Theorem 2:

Proof: Combining Lemma 5.1, 5.2, 5.3 and 5.4, we

calculate the SINR ratio for each link lij as:

Pij

dα∗
ij

N +
∑
∀lgh∈Lt,lgh �=lij

Pgh

dα∗
gj

≥
Pij

dα∗
ij

N∗ + (I1(vj) + I2(vj) + I3(vj) + I4(vj))

≥ k · bm1

[N + (N1 +N2 +N3 + 1)k · bm1−1] ·Δ2δ

≥ k · bm1

(N + 2k · bm1−1)Δ2δ
≥ β

where N1 +N2 +N3 < 1 can be verified when we take c1 as

a large enough constant. So Theorem 2 follows.

Remark 5.5: We have generated schedules for all scaled

links. This result is also the solution to the original problem,

since we have proved the correctness of their equivalence in

Equation (4).

Theorem 3: The α-Robust algorithm can schedule each link

lij ∈ Tree in time slot 0 ≤ t(lij) ≤ C log n logΔ for some

constant C.

Proof: The sketch is to bound the number of conflicting

links in the scheduling step. For each link lij ∈ Bk, if we

figure out there are only O(log n) conflicting links before its

schedule turn, the worst case would be allocating a new time

slot for it, which means it can be also scheduled in time slot

O(log n) + 1 ∈ O(log n). The number of conflicting links for

each link lij can bounded by O(log n) in [7]. Since there are

a1 loops and a1 is bounded by O(logΔ), which implies all

links can be scheduled in time slot [0, C log n logΔ] where C
is certain constant.

Theorem 3 implies that the scheduling complexity of the α-

Robust algorithm is bounded by O(log n logΔ) even for the

worst case topology. In addition, we analysis the complexity

of the algorithm as follows: the α-Robust algorithm takes

O(n2 log n) time to construct the NNT topology, scaling

and set division process are bounded by O(n2) and O(n)
separately. The core subroutine is link scheduling, which

involves three nested iterations and this procedure can be also

bounded by O(n2 logΔ). Thus, the time complexity of the

α-Robust algorithm is O(n2(log n+ logΔ) of efficiency.
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D. Performance Evaluation

Since no work before this paper takes the fluctuation into

consideration, we have to choose the best known result, which

generates O(log n) time slot for the Connectivity Problem

from [7], [10] for comparison, i.e. we evaluate our α-Robust

algorithm by comparing the performance with the best known

result in two scenarios:

1) Constant Distance Line Topology: Suppose all the n
nodes are deployed in a line, and the distance between each

two adjacent node is the same. We run the two algorithms on

different size of nodes (from 512 = 29 to 32768 = 215) to see

the efficiency tradeoff under two different α values: α = 3
and α = 4 where β = 3, δ = 0.5.

Fig. 5. The trade off between normal algorithm and the robust one under
two different α values

Fig. 5 shows the extra time consumed in robust algorithm

is very small compared with the O(log n) normal algorithm.

However, when we verify the scheduled time slots by normal

algorithm with α∗ = α − 0.1, no one can still hold the

SINR constraint, which means all time slots crash when

small fluctuation exists. Through the comparison, we claim

the robust algorithm is efficient and robust to the fluctuating

α value for the constant distance line topology.

2) Random Topology: In this scenario, we first generate a

sequence of random graphs with n nodes arbitrary deployed

in the Euclidean plane, and then test the two algorithms on

different size of nodes in order to find out the trade off of

scheduling complexity and the ratio of failed transmission time

slots generated by normal algorithm if fluctuation exists.

Fig. 6 and Fig. 7 implies the scheduling complexity of the

robust algorithm is comparable to the O(log n) one. When the

fluctuation is very small (such as 0.1 or 0.2), almost all time

slots generated by the normal algorithm can be successful in

the random graph, while the ratio of unsuccessful time slots

becomes larger when the fluctuation increases from 0.3 to 0.5.

When n is big enough, only half number of time slots can be

successful when the fluctuation is maximal (in our simulation,

it’s 0.5). Thus, the α-Robust algorithm proposed in this paper

achieves better performance in the random network topology

with little extra cost in time consuming, compared with the

best known result.

Fig. 6. The comparison between two algorithms when α = 3 and the ratio
of failed time slots for different fluctuation

Fig. 7. The comparison between two algorithms when α = 4 and the ratio
of failed time slots for different fluctuation

VI. CONCLUSION

In this paper, we have initiated the study of an inaccurate

α in algorithm design and analysis under the SINR model.

Inaccurate α may destroy performance guarantees given by

any algorithm under the standard SINR model, since there

exists a topology in which no two links can transmit concur-

rently if the path loss exponent is allowed to vary between

[α − δ, α + δ], where δ is the maximum deviation. Thus α-

Robust algorithm design becomes important to all the existing

results. We give an improved α-Robust algorithm to the

fundamental connectivity problem, achieving O(log n logΔ)
time slots to compose a (weak) connected network even for

the worst case topology. This result is also comparable to the

best known result O(log n) time slots. Extensive simulation

results on both constant distance line topology and random

topology scenarios have shown little gap exists between the

two algorithms, where the improved one is robust to the

fluctuation, while the normal algorithm crashes.
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[10] M.M. Halldórsson, and P. Mitra, “Wireless Connectivity and Capacity,”
in SODA, 2012.
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