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Abstract. In a (r, n)-threshold secret sharing scheme, no group of (r − 1) col-
luding members can recover the secret value s. However, the number of colluders
is likely to increase over time. In order to deal with this issue, one may also re-
quire to have the ability to increase the threshold value from r to r′(> r), such
an increment is likely to happen several times.

In this paper, we study the problem of threshold changeability in a dealer-free
environment. First, we compute a theoretical bound on the information and se-
curity rate for such a secret sharing. Second, we show how to achieve multiple
threshold change for a Chinese Remainder Theorem like scheme. We prove that
the parameters of this new scheme asymptotically reach the previous bound.

Keywords: Secret Sharing Scheme, Threshold Changeability, Information Rate,
Security Rate, Chinese Remainder Theorem, Dealer Free Update.

1 Introduction

A (r, n)-threshold secret-sharing (TSS) scheme is a cryptographic primitive, allowing
a dealer to divide a secret s into n pieces of information called shares (or shadows),
distribute them among a group of n participants in such a way that the secret is recon-
structible from any r shares while any set of r − 1 shadows cannot uniquely determine
s. Classical constructions for threshold secret-sharing schemes include the polynomial-
based Shamir scheme [12], geometry-based Blakley scheme [3] and the integer-based
Chinese Remainder Theorem (CRT) scheme [1].

A common application for TSS schemes is to achieve robustness of distributed secu-
rity systems. A distributed system is called robust if its security is maintained against
an attacker who manages to break into a certain number of components of the system.
In many settings, the attacker capabilities are likely to change over time. This threat
requires the security level (i.e. the threshold value) to vary as well.
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There is a trivial solution to the problem of increasing the threshold parameter of
a (r, n)-TSS scheme. The participants simply discard their old shares while the dealer
distribute shadows of a (r′, n)-TSS scheme to all participants. However, this solution is
not very attractive since it requires the dealer to be involved after the setup stage as well
as the availability of a secure channel between the dealer and each one of the n group
members. Such secure channels may not exist or may be difficult to establish after the
initial setup phase.

There already exist TSS schemes allowing the threshold parameters to be changed af-
ter the initial setup. Using secret redistribution [6, 11] involves communication
amongst the participants in order to redistribute the secret using a new threshold pa-
rameter. Although this technique can be applied to standard secret-sharing schemes, its
disadvantage is the need of secure channels for communication between participants.
Constructions from [5, 2, 9] do not need such secure channels, but they all require the
initial secret-sharing scheme to be a non-standard one, i.e. it must specially be designed
for threshold increase. Ramp schemes [4, 8] use optimal size of shares but they are
not perfect. Other techniques [13, 14] can be applied to existing schemes even if they
were set up without consideration to future threshold increases. Unfortunately, those
approaches have worse security than the construction presented in [5, 2, 9]. The secret
schemes designed in [10, 16] achieve perfect security before and after threshold modifi-
cation. However, the share size has to be at least twice of the size of secret. Moreover, if
we change to threshold c times, the size of the initial shares needs to be at least (c + 1)
times as large as the secret’s.

In this paper, we first construct an upper-bound on the security rate (ratio between
the entropy of a largest unauthorized group and the entropy of the secret) and infor-
mation rate (ratio between the share size and the secret size) of a changeable-threshold
scheme. Second, we propose a new CRT-based secret sharing scheme allowing multi-
ple threshold updates. Our construction allows to choose the security rate of the scheme
while having an information rate meeting the previous bound. We will show that our
scheme can achieves perfect security, ideal initial scheme and optimal ramp-scheme
(the ramp-scheme uses optimal size of shares) easily.

In Sect. 2, we briefly recall some definitions about TSS schemes. In Sect. 3, we
discuss the definition of the changeable-threshold secret-sharing scheme as well as the
upper-bound on the security rate and information rate for threshold change. In Sect. 4,
we present our construction allowing to increase the threshold parameter c(≥ 1) times.
After proving its correctness and efficiency, we present two examples: one for standard
initial scheme and one for optimal ramp-scheme. The last section concludes the paper.

2 Preliminaries

In this section, we review some basic definitions related to secret sharing.

Definition 1 (TSS Scheme [13]). Denote P = {P1, P2, · · · , Pn} a group of n partici-
pants. Let S be the set of secrets and let the share of Pi come from a set Si. Denote R
a set of random strings. A (r, n)-Threshold Secret-Sharing (TSS) scheme is a pair of
algorithms called the dealer and the combiner working as follows:
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– For a given secret from S and some random string from R, the dealer algorithm
applies the mapping:

Dr,n : S ×R → S1 × S2 × · · · × Sn

to assign shares to participants from P .
– The shares of a subset A ⊆ P of participants can be input into the combiner

algorithm. Denote SA the set of shares of participants from A. The mapping:

Cr,n : SA → S

uniquely determines the secret when |A| ≥ r. Otherwise, it fails to uniquely deter-
mine the secret value.

The previous definition is rather general and it does not specify what can occur when
the secret is not reconstructed. As a consequence, one of the basic problems in the field
of secret sharing schemes is to derive bounds on the amount of information revealed by
at most r − 1 shares.

Definition 2 (Security Rate [15]). For a (r, n)-TSS scheme with secret s, the security
rate φ is the real number defined as:

φ = min
{

H(S|Si1 , . . . , Sim)
H(S)

: {i1, . . . , im} ⊆ {1, . . . , n} and m < r

}

where Si is the i-th share (for i ∈ {1, . . . , n}).

Definition 3 (Perfect TSS Scheme [15]). Consider a (r, n)-TSS scheme with the fol-
lowing properties:

1. if |A| ≥ r then H(S|SA) = 0
2. if |A| < r then H(S|SA) = H(S)

where s denote the secret and H is the entropy function. Then, this secret sharing is
called perfect.

Note that, for a perfect scheme, we have: φ = 1. A perfect (r, n)-TSS scheme allows the
dealer to distribute a secret s amongst a group of n participants in such a way that any
r-subgroup of members can reconstruct it while no subsets of less than r participants
can gain any information about s.

Another efficiency parameter of secret sharing schemes is the amount of information
that the participants must keep secret.

Definition 4 (Information Rate [15]). For a (r, n)-TSS scheme with secret s, we call
information rate of the scheme ρ, the value ρ defined as:

ρ = min
{

H(S)
H(Si)

: 1 ≤ i ≤ n

}

where Si is the i-th share (for i ∈ {1, . . . , n}).
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Note that, for any perfect secret sharing scheme, we have: ρ ≤ 1 [15]. The following
definition characterize the property that the information rate is in optimal situation.

Definition 5 (Ideal TSS Scheme [15]). A perfect (r, n)-TSS scheme is called ideal if
and only if ρ = 1.

In other words, a perfect threshold scheme is ideal when the size of the shares is the
same as the secret’s. We can easily see that Shamir’s scheme is ideal.

An example of non-perfect threshold scheme is given by ramp schemes [4]. Such
constructions offer a trade-off between security and share size. We first review the def-
initions of ramp-schemes as well as optimal ramp-schemes [7].

Definition 6 (Ramp Scheme [4]). A (T , n)-threshold secret sharing scheme with se-
cret s is said to be a (C, T , n)-ramp scheme if it satisfies the following properties:

1. If |A| ≥ T , then H(S|A) = 0.
2. If C < |A| < T , then 0 < H(S|A) < H(S).
3. If |A| ≤ C, then H(S|A) = H(S).

In a ramp scheme, each share size can be smaller than the secret size. However, the
smaller the share size gets, the more information about the secret is revealed. We have
the following theorem presented in [7].

Theorem 1 ([7]). For any (C, T , n)-ramp scheme, we have:

H(S|SA) ≥ T −R
T − C H(S) and ∀i ∈ {1, . . . , n} H(Si) ≥

H(S)
T − C

Definition 7 (Optimal Ramp Scheme [7]). A (C, T , n)-ramp scheme is said to be

optimal, if it has the property that H(S|SA) =
T −R
T − C H(S) hold for any A ⊆

{1, 2, . . . , n} such that |A| = R and C ≤ R ≤ T and shares are of minimal size

H(Si) =
H(S)
T − C .

3 Threshold Changeability for Secret-Sharing Scheme

3.1 Definition and Efficiency Measures

As said in Sect. 1, it sometimes occurs that the security level be changed before the
secret is to be reconstructed. Let P = {P1, . . . , Pn} be a group of n participants and
denote S the set of secrets.

Definition 8 (Threshold Changeability). A (r0 → r, n)-threshold changeable scheme
is a threshold scheme where the threshold can be increased c (≥ 1) times, r = (r1,
. . . , rc) with ri−1 < ri for i ∈ {1, . . . , c}.

The initial (r0, n)-threshold scheme is denoted Π0 and the ith derived (ri, n)-
threshold scheme is denoted Πi. For any i ∈ {0, . . . , c} and any j ∈ {1, . . . , n},
we let Si,j denote the set of j-th shares of Πi. There exists one dealer algorithm, c com-
biner (sub-share combiner) algorithms and c n sub-share generation algorithms with
the following properties:



200 T. Lou and C. Tartary

– For a given secret from S and some random string from R, the dealer algorithm
applies the mapping:

Dr0,n : S ×R → S0,1 × · · · × S0,n

to assign shares to participants from P .
– For any share from Si,j , there exists a sub-share generation algorithm:

Er0→r,i,j : Si,j → Si+1,j

to modify shares for increasing the threshold parameter from ri to ri+1 for any
i ∈ {0, . . . , c − 1}.

– For any i ∈ {0, . . . , c}, the shares of a subset A ⊆ P of participants can be
input into the combiner algorithm. Let Si,A denote the set of shares of A in Πi, if
|A| ≥ ri then the mapping:

Cr0→r,i : Si,A → S

reconstructs the secret. And for any ri − 1 participants, it always failed to recover
the secret.

In the definitions given above, the sub-share generation algorithms can be probabilistic
(dealer free). The third point of Definition 8 involves that, for any ri-group G, there
exists j0 ∈ G such that H(si,j0 |si+1,j0) > 0. Indeed, in the opposite situation, there
would be a ri-group G̃ such that: ∀Pj ∈ G̃ H(si,j |si+1,j) = 0. This would imply that
each of the ri members of G̃ could reconstruct his share related to threshold ri from
his share related to the new value ri+1(> ri). Thus, we would not have a (ri+1, n)-
threshold scheme after threshold update which contradicts the definition of threshold
changeability.

Remark. We would like to call the reader’s attention to the fact that old shares are as-
sumed to be deleted after performing any threshold update. That is, after updating the
threshold value from ri to rr+1, each of the n participants keeps the share related to the
new value ri+1 and discards the shadow related to ri (for i ∈ {0, . . . , c − 1}).

The efficiency of a TSS scheme can be measured by its security rate and information
rate. We generalize those definitions to the case of a threshold changeable scheme.

Definition 9 (Security and Information Rates). Let 〈Π0, . . . , Πc〉 be a (r0 → r, n)-
threshold changeable scheme where r = (r1, . . . , rc) with ri−1 < ri for i ∈ {1, . . . , c}.
Let φi denote the security rate of Πi. The security rate φ of the changeable scheme
〈Π0, . . . , Πc〉 is defined as min

i∈{0,...,c}
{φi}. Let ρi denote the information rate of Πi. The

information rate ρ of the changeable scheme 〈Π0, . . . , Πc〉 is defined as min
i∈{0,...,c}

{ρi}.

We will present the definition of deterministic (r0 → r, n)-threshold changeable
scheme, where r = (r1, r2 · · · rc).
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Definition 10 (Deterministic Threshold Changeable Scheme). Let 〈Π0, . . . , Πc〉 be
a (r0 → r, n)-threshold changeable scheme. The scheme 〈Π0, . . . , Πc〉 is called deter-
ministic, if all the c sub-share generation algorithms are deterministic. In other words,
there exist deterministic functions hi,j , such that si+1,j = hi,j(si,j), where si,j is j-th
shadow of Πi for i ∈ {0, . . . , c − 1} and j ∈ {1, . . . , n}.

Many existing secret-sharing schemes (like Shamir’s construction [12] and the CRT-
based secret sharing [1]) are ideal. We have the following result.

Lemma 1. Let 〈Π0, . . . , Πc〉 be a deterministic (r0 → r, n)-threshold changeable
scheme. If the initial (r0, n)-TSS scheme Π0 is ideal then the final (rc, n)-TSS scheme
Πc cannot be ideal.

Proof. We demonstrate this result by contradiction. Assume the (rc, n)-TSS scheme
Πc is ideal. We fix i ∈ {1, . . . , n}. We have:

I(S0,i; Sc,i) = H(S0,i) − H(S0,i|Sc,i) = H(Sc,i) − H(Sc,i|S0,i)

So, we get:

H(S0,i|Sc,i) = H(S0,i) − H(Sc,i) + H(Sc,i|S0,i) = H(Sc,i|S0,i)

Since the algorithm to update the threshold is deterministic, we have: H(S0,i|Sc,i) =
H(Sc,i|S0,i) = 0. This means that one can recover S0,i from Sc,i for any i ∈ {1, . . . ,
n}. Thus, the resulting scheme Πc is also a (r0, n)-threshold secret-sharing scheme,
which is impossible. 
�

3.2 Upper Bounds on the Security Rate and the Information Rate

Definition 11. Suppose T is a (r, n)-TSS scheme with secret s. It is called a (φ, ρ)
(Semi-Random Dealer and Complete Randomness Recovery Combiner) SRDCRRC-
scheme if it has the following properties:

1. T has security rate φ. This means that we have H(S|Si1 , . . . , Sim) ≥ φH(S) for
any {i1, . . . , im} ⊆ {1, . . . , n} and m < r.

2. T has information rate ρ. This means that we have H(Si) ≤ H(S)
ρ for any i ∈

{1, . . . , n}.
3. When the dealer of T wants to share s, he secretly chooses one random string a

and uses the pair α = (s, a) to construct the n shares. The method to output n
shares using α is deterministic.

4. The combiner of T can recover the secret s if and only if it can uniquely determine
α. In other words, by any r shares, the combiner can reconstruct not only the secret
s but also all random bits a.

Lemma 2. Suppose T is a (r, n)-threshold secret-sharing scheme as well as a (φ, ρ)
SRDCRRC-scheme. Let Si denote i-th share of T . We have: H(α) = H(S1, . . . , Sr).
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Proof. Since the dealer algorithm is deterministic, we have: H(S1, . . . , Sr|α) = 0. On
the other hand, using S1, . . . , Sr, the combiner can recover the vector α. So, we have:
H(α|S1, . . . , Sr) = 0. As a consequence, we get: H(α) = H(S1, . . . , Sr). 
�

Remark. The previous result is valid for any r shares. We focused on S1, . . . , Sr as this
will be used to demonstrate the following lemma.

Lemma 3. Suppose T is a (r, n)-threshold secret-sharing scheme with secret s as well
as a (φ, ρ) SRDCRRC-scheme. Then: H(α) ≥ rφH(S).

Proof. Let Si denote the i-th share of T . According to Lemma 2, we have:

H(α) = H(S1, . . . , Sr) = H(S1) + H(S2, . . . , Sn|S1)
= H(S1) + H(S2|S1) + H(S3, . . . , Sn|S1, S2)

=
r∑

k=1

H(Sk|S1, . . . , Sk−1)

We get: H(α) ≥
r∑

k=1

H(Sk|{S1, . . . , Sr} \ {Sk}).

Let A be a r-subset and choose any participant i from A, define B = A \ {i} and the
size of B is r − 1. Let SB denote the shares of all participants in B. Since T has a
security rate φ, we have H(S|SB) ≥ φH(S). Using SB, we get a set of possible secrets
S′(⊆ S) such that s ∈ S′ and H(S′) = φH(S) where S is the set of all secrets. Hence,
for each s′ ∈ S′, there is a distribution rule[15] dist(s′) such that the shares of B are

the same. Since A is authorized, we must have: S
dist(s1)
i �= S

dist(s2)
i when s1 �= s2 and

s1, s2 ∈ S′. Thus: H(Si|SB) ≥ H(S′) ≥ φH(S).

Thus: ∀k ∈ {1, . . . , r} H(Sk|{S1, . . . , Sr}\{Sk}) ≥ φH(S). This achieves our proof.

�

Theorem 2. Suppose that there exists a deterministic algorithm for changing a (r, n)-
TSS scheme T1 to (r′, n)-TSS scheme T2. Assume that T1 is a (φ1, ρ1) SRDCRRC-
scheme and T2 is a (φ2, ρ2) SRDCRRC-scheme. We have:

min(ρ1, ρ2) × min(φ1, φ2) ≤
r

r′

Proof. The dealer algorithm of T2 is the dealer algorithm of T1 followed by the de-
terministic algorithm A to change the threshold. According to Lemma 3, we have:
H(α) ≥ r′φ2H(S).

Let S1,i denote the i-th share of T1. According to Lemma 2, we have:

H(S1,1, . . . , S1,r) = H(α) ≥ r′φ2H(S)

So:

max
1≤i≤n

H(S1,i)≥ max
1≤i≤r

H(S1,i)≥
1
r

r∑
i=1

H(S1,i) ≥
1
r
H(S1,1, . . . , S1,r) ≥

r′φ2

r
H(S)
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Thus, we get:

ρ1 ≤ H(S)
max

1≤i≤n
H(S1,i)

≤ H(S)
r′φ2

r H(S)
≤ r

r′φ2

Therefore, we have:

min(ρ1, ρ2) × min(φ1, φ2) ≤ ρ1φ2 ≤ r

r′


�

Remark. Note that if both T1 and T2 are perfect secret-sharing schemes, then the infor-
mation rate of 〈T1, T2〉 is at most r

r′ . Similarly, if both T1 and T2 have shares as large as
the secret, then the security rate of 〈T1, T2〉 is at most r

r′ .

4 Threshold Changeability for CRT Secret-Sharing Schemes

4.1 CRT Secret Sharing Scheme

We now describe the CRT secret sharing scheme presented in [1]. Denote Si the set
of all i-subsets of {1, . . . , n}. A set of pairwise coprime integers {p, m1, . . . , mn} is
chosen subject to the following:

∃M :

(
∀S ∈ Sr

∏
i∈S

mi ≥ M

)
and

(
∀S ∈ Sr−1

∏
i∈S

mi ≤
M

p

)

The reader may notice that the original definition by [1] is slightly different. However,
it can be shown that both definitions are equivalent.

Dealer. Suppose the secret value is s, we can assume that 0 ≤ s < p. Selecting a ran-
dom integer A in [0, M

p − 1] and set y = s + Ap. The set of shadows is (y1, . . . , yn),
where yi = y mod mi for i ∈ {1, . . . , n}.

Combiner. To recover secret s, it clearly suffices to find y. If yi1 , . . . , yir are known,

then y is known modulo N1 =
r∏

j=1

mij (CRT). As N1 ≥ M , this uniquely determines

y and thus s. On the other hand, if only r − 1 shadows were known, essentially no
information about the key can be recovered. If yi1 , . . . , yir−1 are known, then we have

the value of y modulo N2 =
r−1∏
j=1

mij . Since M
N2

≥ p and gcd(N2, p) = 1, the collection

of numbers ni with ni ≡ y (mod N2) and ni ≤ M cover all congruence classes modulo
p, with each class containing at most one more or one less ni than any other class.

The CRT sharing scheme described above is perfect. However, the construction that
we will present in the next section will not as its security rate will not be equal to 1.



204 T. Lou and C. Tartary

4.2 A New CRT-Based Secret Sharing Scheme

In this section, we present our construction which is a modification of the CRT se-
cret sharing scheme. Let n be the number of participants, we choose a set of integers
{p, q, m1, . . . , mn, w1, . . . , wn} as follows:

1. gcd(mwi

i , m
wj

j ) =gcd(mi, mj) = 1 for i �= j,
2. gcd(p, mwi

i ) =gcd(p, mi) = 1 for all i and q|p,

3. ∃M :

(
∀S ∈ Sr

∏
i∈S

mwi

i ≥ M

)
and

(
∀S ∈ Sr−1

∏
i∈S

mwi

i ≤ M

q

)
.

Share Construction. Suppose the secret value is s, we can assume that 0 ≤ s < p.
Selecting a random integer A in [0, M

p − 1], and set y = s + Ap. The set of shadows
are (y1, . . . , yn), where yi = y mod mwi

i .

Secret Recovery. To recover secret s, it clearly suffices to find y. If yi1 , . . . , yir are

known, then y is known modulo N1 =
r∏

j=1

m
wij

ij
(CRT). As N1 ≥ M , this uniquely

determines y and thus s.

On the other hand, if only r − 1 shadows were known, we can not uniquely deter-
mine the secret s. If yi1 , . . . , yir−1 are known, then we have the value of y modulo

N2 =
r−1∏
j=1

m
wij

ij
. Since M

N2
≥ q and gcd(N2, p) = 1, the collection of numbers ni with

ni ≡ y (mod N2) and ni ≤ M cover all congruence classes modulo q, with each class
containing at most one more or one less ni than any other class. So, the security rate of
the scheme:

φ =
H(x|yi1 , yi2 , . . . , yir−1)

H(x)
=

log q

log p
= logp q

The information rate of the scheme is:

ρ =
log p

log (max{mwi

i : 1 ≤ i ≤ n}) =
log p

max{wi log mi : 1 ≤ i ≤ n}

Remark. If the parameters p and q are equal, we can set m′
i = mwi

i such that
{p, m′

1, . . . , m
′
n} became a standard CRT secret sharing scheme defined in Sect. 4.1.

4.3 Construction of a Multiple Threshold Changeable Secret Sharing Scheme

For the threshold increase problem, the basic idea of our method is the following one:
to increase the threshold parameter from r to r′ > r, the participants decrease values
from wi to w′

i < wi.
For any φ ∈ (0, 1], we can get a (r0 → r, n)-threshold changeable scheme, such that

the security rate is at least φ and the information rate ρ is at least r0
rc φ . So, the bound

constructed in Theorem 2 is met with equality.
Suppose the secret value is s, we can assume that 0 ≤ s < B. Let wi,j denote the

value of wi after the j-th transitions (the i-th share of scheme Πj), for 1 ≤ i ≤ n and
0 ≤ j ≤ c. Let φ be any element of (0, 1]. We construct our scheme as follows:
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1. GC(s)(Public Parameter Generation)
(a) Pick any integer u ≥

⌈
r2

c

r0

⌉
, set k = r0 · u and d = k · rc.

(b) Pick any integer � ≥ rc + φ·log2 B
k + 2 log2 n, choose n + 1 distinct primes

m0 < m1 < · · · < mn from the interval [2�, 2�+1]. Estimates of the density of
primes show that one could easily find primes mi.

(c) Pick a prime m̂ from the interval [2�−rc , 2�+1−rc ].

(d) Set M = md
0, q = m̂k and p = m̂

k
φ (we have: p ≥ 2(�−rc)

k
φ ≥ 2log2 B ≥ B).

(e) Pick uniformly at random a number A in [0, M
p − 1].

2. D(s,A)(Dealer Setup)

To share secret s, set y = s + Ap. Set wi,0 =
⌈

d
r0

⌉
, and the i-th initial share is

si,0 = y mod m
wi,0
i .

3. E(si,j)(Sub-share Generation)
To generate sub-shares, let si,j denote the i-th share of Πj (the scheme after j

changes). Set wi,j+1 =
⌈

d
rj+1

⌉
and the sub-share is: si,j+1 = si,j mod m

wi,j+1
i .

4. C(si,S,j)(Combiner)
To recover s, it clearly suffices to find y. Suppose S = {v1, . . . , vrj}, if sv1,j , . . . ,
svrj

,j are known, by the Chinese remainder theorem, y is known modulo N =
rj∏

k=1

m
wvk,j

vk . We will prove that N ≥ p in the next section.

In this settings, only p, q, m1, . . . , mn, r0, rc need to be publicly known when setting
up the original scheme. When the participants want to increase the threshold value ri,
they simply need to agree on the new value ri+1. Each of them can compute his new
share without any other interaction.

4.4 Scheme Analysis

In this section, we want to proof that our scheme satisfies the following three conditions
at any step j ∈ {0, . . . , c}.

C1 : ∀(i, i′) ∈ {1, . . . , n} × {1, . . . , n} gcd(mwi,j

i , m
wi′,j

i′ ) = 1 for i �= i′,
C2 : ∀i ∈ {1, . . . , n} gcd(p, m

wi,j

i ) = 1 and q|p,

C3 :

(
∀S ∈ Srj :

∏
i∈S

m
wi,j

i ≥ M

)
and

(
∀S ∈ Srj−1 :

∏
i∈S

m
wi,j

i ≤ M

q

)
.

For any j ∈ {0, . . . , c}, conditions C1 and C2 are trivially satisfied due to the choice of
p, q, m1, . . . , mn by the dealer. The proofs of the following two lemmas can be found
in Appendix A and Appendix B respectively.

Lemma 4. For any j ∈ {0, . . . , c}, Condition C3 is satisfied if the following two in-
equalities are satisfied:

∀S ∈ Srj

∑
i∈S

wi,j ≥ d (1)

∀S ∈ Srj−1

∑
i∈S

wi,j ≤ d − k (2)
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Lemma 5. For any j ∈ {0, . . . , c}, (1) and (2) hold.

Combining Lemma 4 and Lemma 5, we can prove that the scheme satisfies the three
conditions C1, C2, C3 for any j ∈ {0, . . . , c}.

Our construction is a (r0 → r, n)-threshold changeable scheme. The following the-
orem shows that it has security rate φ and the information rate of the scheme ρ asymp-
totically equals to r0

rc φ for any 0 < φ ≤ 1.

Theorem 3 (Security and Information Rate). For any 0 < φ ≤ 1, the (r0 → r, n)-
threshold changeable scheme has security rate φ. In addition, it asymptotically meets
with equality the upper bounds in Theorem 2.

Proof. For any 0 < φ ≤ 1, the security rate of the scheme is:

logp q =
log q

log p
=

log m̂k

log m̂
k
φ

=
k log m̂
k
φ log m̂

= φ

The information rate ρ of the scheme is:

ρ ≥ min
1≤i≤n

{
H(S)
H(Si)

}
≥

log
(
m̂

k
φ

)
max

1≤i≤n, 0≤j≤c

{
log
(
m

wi,j

i

)} ≥
(� − rc) k

φ

max
1≤i≤n,0≤j≤c

{(� + 1)wi,j}

Therefore, we have:

ρ ≥
(� − rc) k

φ

(� + 1)
⌈

d
r0

⌉ ≥ � − rc

� + 1
× r0 k

rc k + r0 − 1
× 1

φ
≥ r0

rc φ
× � − rc

� + 1
× k

k + (r0−1)
rc

For any j ∈ {0, · · · , c}, it is easy to see that Πj is a SRDCRRC-scheme (as defined in
Sect.3.2). So, we have:

ρ ≤ r0

rcφ

If � and k are asymptotically large, then we have:

ρ =
r0

rcφ

Note that "� large" means that u is large. So, the upper bound in Theorem 2 is met with
equality. 
�

4.5 Comparison

In this section, we want to compare our construction with previous methods from
[10, 16, 13, 14, 7]. It should be remembered that φ is to be chosen during the set-up
phase. We will see that for different values of φ, 〈Π0, . . . , Πc〉 can be perfectly secure
(φ = 1), an asymptotically optimal ramp-scheme (φ = 1

T −C ) or it can use a standard
initial scheme as Π0.
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The secret sharing schemes designed in [10, 16] achieve perfect security before and
after threshold modification. However, the share size has to be at least twice of the size
of secret. Moreover, if we change to threshold c times, the information rate is at most

1
c+1 . We have the following result for our construction which is a direct consequence of
Theorem 3.

Proposition 1 (Perfect Secure Changeable Scheme). Let 〈Π0, . . . , Πc〉 be a
(r0 → r, n)-threshold changeable scheme (where r = (r1, . . . , rc)) as constructed
in Sect. 4.3. If we set φ = 1, then 〈Π0, . . . , Πc〉 has security rate 1 and information
rate ρ such that:

r0

rc
× � − rc

� + 1
× k

k + (r0−1)
rc

≤ ρ ≤ r0

rc

This proposition involves that each (rj , n)-TSS scheme Πj achieves perfect secrecy
(for any j ∈ {1, . . . , c}). This means that the secret s is reconstructible from any rj

shares while no information about s leaks out from any set of ri − 1 shadows.
Techniques in [13, 14] can be applied to existing schemes even if they were set up

without consideration of future threshold increases. This is called the standard initial
scheme approach. Unfortunately, those constructions have worse security. In addition,
the secret recovery is only probabilistic. Our construction always guarantees s to be
recovered.

We will show how to construct a threshold changeable secret sharing scheme
〈Π0, . . . , Πc〉, where Π0 is a standard CRT scheme (as defined in Sect. 4.1), for any
given (r, n) and r = (r0, . . . , rc) with r0 = r. Our idea is to use the construction from
Sect. 4.3 which is valid for any (n, r0, . . . , rc). We simply need to choose the construc-
tion parameter φ of 〈Π0, . . . , Πc〉 so that Π0 is standard scheme. We use the next two
lemmas, the proofs of which are in Appendix C and Appendix D respectively.

Lemma 6. For a (r0 → r, n)-threshold changeable scheme 〈Π0, . . . , Πc〉 where
r = (r1, . . . , rc), if we set φ = r0

rc
, then the initial scheme Π0 has perfect security.

Lemma 7. For a (r0 → r, n)-threshold changeable scheme 〈Π0, . . . , Πc〉 where
r = (r1, . . . , rc), if we set φ = r0

rc
, then the initial scheme Π0 is a standard CRT

scheme.

When a secret sharing is set-up, the dealer ignores what security level will be required
in the future. Thus, the value rc is a priori unknown. We would like to emphasized that
this issue can be overcome easily. Indeed, when setting-up the scheme the dealer simply
consider the pair (r0, rc′) where rc′ = n. He can construct 〈Π0, Πc′〉. When the dif-
ferent threshold updates occur, the participants can recursively construct 〈Π0, Π1, Πc′〉,
〈Π0, Π1, Π2, Πc′〉, . . . , 〈Π0, Π1, Π2, . . . , Πc′〉 without interacting with the dealer.
Note that this technique allows to design an (intermediate) SSS for any threshold value
from {r0 + 1, . . . , n}.

We can use our method to construct an asymptotically optimal (C, T , n)-ramp sche-
me Π . The idea of our construction is the following one. Set φ = 1

T −C , and use our
method from Sect. 4.3 to construct an ((C − 1) → T , n)-threshold changeable scheme
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π̂ = 〈Π0, Π1〉 where Π = Π1. We have the following result, the proof of which is in
Appendix E.

Theorem 4. The secret sharing scheme Π constructed by the previous method is
asymptotically an optimal (C, T , n)-ramp scheme.

5 Conclusion

In this paper, we first studied the properties of threshold changeable schemes. We de-
duced some bounds on the information and security rates for these constructions. Sec-
ond, we introduce a new CRT-based secret sharing, allowing multiple threshold changes
after the original set-up phase without requiring any interactions with the dealer. One
benefit of our construction is that the secret is always guaranteed to be recovered af-
ter any threshold update contrary to [13, 14] where recovery is only probabilistic. We
also demonstrated that a suitable choice of the security rate φ led to a perfectly secure
construction. As in [13, 14], a point of interest to further investigate is to deal with
malicious participants who deviate from the threshold update protocol.
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A Proof of Lemma 4

Let S be any element of Srj . We have: ∀i ∈ {1, . . . , n}mi > m0. Thus, if we have∑
i∈S

wi,j ≥ d then we obtain:
∏
i∈S

m
wi,j

i ≥ md
0 ≥ M .

Let S be any element of Sr−1. Assume that
∑
i∈S

wi,j ≤ d − k. We get:

∏
i∈S

m
wi,j

i ≤
∏
i∈S

(2�+1)wi,j ≤2
(�+1)

∑
i∈S

wi,j

≤2(�+1)(d−k)≤ 2�d

(
2�+1−d

k

)k
≤ 2�d

(2�+1−rc)k

So, we have: ∏
i∈S

m
wi,j

i ≤ M

q

.

B Proof of Lemma 5

We first demonstrate that (1) holds. Let j be any element of {0, . . . , c} and let S be any
element of Srj . We have: ∑

i∈S

wi,j ≥ rj

⌈
d

rj

⌉
≥ d
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Now, we want to demonstrate (2). We consider j = c. Let S be any element of Src . We
have: ∑

i∈S

wi,j = (rc − 1)
⌈

d

rc

⌉
= (rc − 1) k = d − k

Assume that j ∈ {0, . . . , c − 1}. We have:

k ≥ r0

⌈
r2
c

r0

⌉
≥ r0

⌈
1
r0

× (rc−1 − 1)2

rc − rc−1

⌉
≥ (rc−1 − 1)2

rc − rc−1
≥ (rj − 1)2

rc − rj

In addition, we have the following bound:⌈
d

rj

⌉
≤
⌊

d + rj − 1
rj

⌋
≤ d + rj − 1

rj

Let S be any element of Srj , we have:

∑
i∈S

wi,j ≤ (rj − 1)
⌈

d

rj

⌉

≤ (rj − 1)
d + rj − 1

rj

≤ (rj − 1)(k rc + rj − 1)
rj

≤ k rc −
k rc − r2

j + 2rj − 1
rj

≤ d − k rc − (rj − 1)2

rj

≤ d − k

(
rc

rj
− (rj − 1)2

k rj

)

If rj = 1 then, we have:
∑
i∈S

wi,j ≤ d − k
rc

rj
≤ d − k

Otherwise, we have:

∑
i∈S

wi,j ≤ d − k

⎛
⎝rc

rj
− (rj − 1)2

(rj−1)2

rc−rj
rj

⎞
⎠ ≤ d − k

C Proof of Lemma 6

Let S be any element of Sr0−1. Firstly, we want to prove that
∏
i∈S

m
wi,0
i ≤ M

p . Since

r0|k, we have r0|d. Therefore:

wi,0 =
⌈

d

r0

⌉
=

d

r0
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We get: ∑
i∈S

wi,0 = (r0 − 1)
d

r0
= d − d

r0
= d − k

rc

r0

We obtain:

∏
i∈S

m
wi,0
i ≤

∏
i∈S

(2�+1)wi,0 ≤ 2
(�+1)

∑
i∈S

wi,0

≤ 2(�+1)(d−k rc
r0

) ≤ 2�d

(
2

�+1− d

(k
rc
r0 )
)k rc

r0

Finally, we have: ∏
i∈S

m
wi,0
i ≤ 2�d

(
2�+1− d

k

) k
φ

≤ M

p

If only r0 − 1 shares yi1 , . . . , yir0−1 were known, then have have the value of y modulo

N3 =
r0−1∏
λ=1

m
wiλ

iλ
. Since N3 ≤ M

p and gcd(N3, p) = 1, the collection of numbers ni

with ni ≡ y mod N3 and ni ≤ M cover all congruence classes mod p, with each class
containing at most one more or one less ni than any other class. Thus, no useful infor-
mation(even probabilistic) is available without r shares. Therefore, the initial scheme
Π0 is perfect.

D Proof of Lemma 7

Set m′
i = m

wi,0
i . Since {p, m1, . . . , mn} are pairwise coprime, we always have pair-

wise coprime integers {p, m′
1, . . . , m

′
n}. Now, we want to prove that the integers

{p, m′
1, . . . , m

′
n} satisfy the following conditions:

(
∀S ∈ Sr

∏
i∈S

m′
i ≥ M

)
and

(
∀S ∈ Sr−1

∏
i∈S

m′
i ≤

M

p

)

According to Lemma 4 and Lemma 5, we have:

∀S ∈ Sr

∏
i∈S

mi ≥ M

Using the result in the proof of Lemma 6, we get:

∀S ∈ Sr−1

∏
i∈S

mi ≤
M

p

Therefore, Π0 is a standard CRT scheme.



212 T. Lou and C. Tartary

E Proof of Theorem 4

Let Si denote the i-th share of Π . For |A| = R, C ≤ R ≤ T , we have

H(S|SA) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,

log

⎛
⎜⎝ M∏

i∈A

mk
i

⎞
⎟⎠

log m̂
k
φ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

H(S)

= min

⎧⎪⎪⎨
⎪⎪⎩

1,

d log m0 −
∑
i∈A

(k log mi)

k
φ log m̂

⎫⎪⎪⎬
⎪⎪⎭

H(S)

So, we have:

H(S|SA) ≥ min
{

1,
� d −R k (� + 1)

k (� − T + 1) (T − C)

}
H(S)

≥ min
{

1,
� T −R (� + 1)

(� − T + 1) (T − C)

}
H(S)

and:

H(S|SA) ≤ min
{

1,
(� + 1) d −R k �

k (� − T ) (T − C)

}
H(S)

≤ min
{

1,
(� + 1) T −R �

(� − T ) (T − C)

}
H(S)

If � is asymptotically large, then we have:

H(S|SA)
H(S)

=
T −R
T − C

Therefore, the information rate:

ρ =
H(Si)
H(S)

=
log mk

i

log m̂
k
φ

=
k log mi

k
φ log m̂

So, we have:
H(Si)
H(S)

≥ �

(T − C) (� − T + 1)
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and:
H(Si)
H(S)

≤ � + 1
(T − C) (� − T )

Finally, we deduce that, when � is asymptotically large, we have:

H(Si)
H(S)

=
1

T − C

Therefore, the scheme Π is an optimal ramp scheme.
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