
Information Processing Letters 111 (2011) 804–808
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

How strong is Nisan’s pseudo-random generator?

Matei David a, Periklis A. Papakonstantinou b,∗,1, Anastasios Sidiropoulos c

a Center for Computational Intractability, Princeton University, United States
b Tsinghua University, Institute for Theoretical Computer Science, 1-208 FIT Building, Beijing, China
c Toyota Technological Institute, Chicago, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 August 2010
Received in revised form 23 April 2011
Accepted 26 April 2011
Available online 3 May 2011
Communicated by J. Torán

Keywords:
Computational complexity
Nisan’s pseudo-random generator
Derandomization
Space bounded

We study the resilience of the classical pseudo-random generator (PRG) of Nisan (1992) [6]
against space-bounded machines that make multiple passes over the input. Nisan’s PRG is
known to fool log-space machines that read the input once. We ask what are the limits of
this PRG regarding log-space machines that make multiple passes over the input. We show
that for every constant k Nisan’s PRG fools log-space machines that make logk n passes
over the input, using a seed of length logk′

n, for some k′ > k. We complement this result
by showing that in general Nisan’s PRG cannot fool log-space machines that make nO (1)

passes even for a seed of length 2Θ(
√

logn). The observations made in this note outline a
more general approach in understanding the difficulty of derandomizing BPNC1.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction and preliminaries

The seminal work of Nisan [6] gives a PRG which fools
log-space machines that read their input once. We study
the resilience of this PRG against log-space machines that
make multiple passes over the input. Our initial motivation
comes from understanding the fooling power of Nisan’s
PRG for circuits. Although the derandomization of circuit
classes, and in particular of BPNC1 is an ambitious goal,
the following discussion seems to put things in proper
context. It is easy to see that NC1 ⊆ L, e.g. [1]. However
BPNC1 ⊆ BPL is not known to be true, where BPNC1 and
BPL are the standard definitions of the two-sided error
randomized analogs of NC1 and L. By definition BPL is
characterized by log-space machines that read their ran-
domness only once. On the other hand a family of prob-
abilistic circuits roughly corresponds to a space bounded
machine that reads its randomness multiple times.

* Corresponding author.
E-mail address: papakons@tsinghua.edu.cn (P.A. Papakonstantinou).

1 P.P. is supported in part by the National Basic Research Program
of China Grant Nos. 2007CB807900, 2007CB807901, the National Nat-
ural Science Foundation of China Grant Nos. 61050110452, 61033001,
61061130540, 61073174.
0020-0190/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2011.04.013
To date there are explicit constructions of pseudo-
random generators (PRGs) that fool space-bounded ma-
chines, which make a single pass over the input. A natural
question is whether these PRGs already have the fooling
power to show e.g. BPNC1 ⊆ QuasiP.

Prior to our work Impagliazzo, Nisan and Wigderson [3]
constructed a PRG, more complicated than the original PRG
of Nisan (N-PRG), and they showed that it fools log-space
machines for some number of passes over the input. We
use a simple averaging argument to show that the original
N-PRG already has this property2 (Theorem 2.4).

Our second contribution is a uniform log-space and
nO (1)-passes distinguisher against N-PRG, which also an-
swers our derandomization question in the negative (The-
orem 3.2). It seems interesting to understand further
whether this distinguisher can be generalized so as to put
new derandomization questions in perspective – see Sec-
tion 4 for a short discussion.

Preliminaries and notation. Derandomizing space and
time-bounded classes is an area of intense interest; cf. the

2 To the best of our knowledge, this property of Nisan’s PRG was not
previously known (also: Noam Nisan, personal communication).

http://dx.doi.org/10.1016/j.ipl.2011.04.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:papakons@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.ipl.2011.04.013

M. David et al. / Information Processing Letters 111 (2011) 804–808 805
somewhat older but excellent surveys by Saks [8] and Ka-
banets [4].

We use standard names for complexity classes NC,
BPNC, BPL; see e.g. [1]. In particular, we denote QuasiP :=⋃

c>0 DTIME(2logc n), BPNC1 denotes the class of languages
decidable by probabilistic uniform polynomial size circuits
of depth O (log n) and bounded fan-in, and BPL denotes
the class of languages decidable by probabilistic Turing
Machines that read their random tape once.

BP∗L denotes [7] the class of languages decidable by
log-space machines with an auxiliary read-only, polyno-
mially long, and two-way tape. In particular, BPNC1 ⊆
BP∗L. We define BPL[r] to be the class of languages de-
cidable by log-space machines with at most r(n) passes
over the randomness, and 2-sided error bounded away
from 1/2. Observe that a log-space Turing Machine with
a polynomially-long, two-way random tape works in time
nO (1) , given that it always halts. Thus,

BPNC1 ⊆ BP∗L = BPL
[
nO (1)

] :=
⋃

k>0

BPL
[
nk]

We also know that NC1 ⊆ L = BPL[0]. In this sense,
derandomizing along BPL[r] indicates progress towards
the derandomization of BPNC1. Also, let BPL[polylog] :=⋃

k>0 BPL[logk n].
Our results. In Section 2 we observe (Theorem 2.4) that a
PRG resilient against multiple passes corresponds to a PRG
with larger seed-length that fools single-pass machines. In
Section 3 we complement this result by presenting a uni-
form log-space distinguisher which distinguishes N-PRG-

strings even for seed of length 2c
√

logn , for any c > 0. This
holds for the standard family3 of hash functions for N-PRG.
Our distinguisher uses some elementary algebraic proper-
ties. It relies on a deep result due to Mulmuley [5] (which
is a derandomization of the RNC2 algorithm by Borodin,
Gathen and Hopcroft [2]) for solving a non-singular system
of linear equations in the functional analog of NC2. This in
particular implies an O (log2 n) space algorithm. Our distin-
guisher works in logarithmic space – it uses the algorithm

of [5] in linear systems of size O (2c
√

logn), where n is the
length of the whole input.

2. BPL[logO (1) n] ⊆ QuasiP: Nisan’s PRG against poly-log
passes

We show that for a fixed space of an adversary, longer
seed length in N-PRG fools adversaries that make more
passes over the input. To show this we do not rely on the
specifics of N-PRG. In this sense we show that using in a
“black-box” way the analysis of N-PRG we can trade seed-
length for passes over the input. Intuitively, this becomes
possible since [6] proves that it is not only hard to distin-
guish between the computation of a log-space machine on
a random and on a pseudo-random tape, but more gen-
erally hard to distinguish between “partial computations”,

3 Note that some restriction on the complexity of the family of hash
functions is necessary for a distinguisher to exist.
i.e. when we start at an arbitrary state and end to an ar-
bitrary state. It is an easy exercise to check that such a
property is also be a necessary condition.

Notation and preliminaries for N-PRG. We identify a one-
way, non-uniform Turing Machine (i.e. TM with advice) M
by a family of Finite State Machines (FSMs).

Let G : A → B be an arbitrary function, and let D be
a probability distribution on A. We denote by G(D) the
probability distribution of the random variable G(x), where
x is chosen from D .

Let N � 1, and let D be a probability distribution over
{0,1}N . For any t � 1, we denote by Dt the probability dis-
tribution over {0,1}Nt obtained by taking t concatenated
copies of a string x that is chosen from D .

Let D1, D2 be probability distributions over a finite
set A. We use the notation

‖D1 − D2‖1 =
∑

x∈A

∣∣∣ Pr
y1∈D1

[y1 = x] − Pr
y2∈D2

[y2 = x]
∣∣∣

Let Q be an FSM with alphabet {0,1}, and with a des-
ignated initial state, and let D be a probability distribution
over {0,1}n . We denote by Q (D) the matrix whose (i, j)-
th entry is the probability getting from state i to state j
after reading a string x chosen from D .

For a matrix P ∈ RN×N let ‖P‖1 = maxi
∑

j |Pi, j|.
Definition 2.1 (Pseudo-random generator against FSMs). Let
G : {0,1}m →{0,1}n be computable in time polynomial
in n, and let ε, w > 0. We say that G is a pseudo-random
generator against FSMs for space w with parameter ε if for
any FSM Q with 2w states, we have ‖Q (Un)− Q (G(Um))‖1
� ε.

Theorem 2.2. (See Nisan [6].) There exists c > 0 such that for
any N > 0, there exists a function G : {0,1}N2 → {0,1}N2cN

computable in time polynomial in 2cN which is a pseudo-
random generator against FSMs for space cN, with parameter
2−cN .

Our “seed-length-buys-passes” theorem. Instead of con-
sidering a distinguisher as an FSM with multiple passes
over the input, it is convenient to consider a one-way FSM
whose input contains multiple copies of the original in-
put. For a function G : {0,1}m → {0,1}n we define G2 :
{0,1}m → {0,1}2n , x 	→ G(x) ◦ G(x), where ◦ denotes con-
catenation of strings. The following simple lemma states
that N-PRG works (with a small loss in the parameter)
even if the space-bounded machine is allowed to make
two passes over the random tape.

Lemma 2.3. Let G : {0,1}m → {0,1}n be a PRG against FSMs
for space 2s with parameter ε. Then G2 : {0,1}m → {0,1}2n is
a PRG against FSMs with space s with parameter ε′ = ε · 22s .

Proof. Suppose that G2 is not pseudo-random against
FSMs of space s with parameter ε′ . We show that G is
not a PRG against FSMs for space 2s with parameter ε.

Therefore, there exists an FSM with state space {1, . . . ,

2s} such that
∥∥Q

(
G2) − Q

(
U 2

n

)∥∥ > ε′ (2.1)
1

806 M. David et al. / Information Processing Letters 111 (2011) 804–808
Let 1 be the initial state of Q . For a string x ∈ {0,1}n , and
for i, j ∈ {1, . . . ,2s} we write i x−→Q j to denote the event
that starting from state i and reading the string x, the FSM
Q ends up to state j. For any i, j ∈ {1, . . . ,2s} let

pi, j = Pr
x∈G

[1 x−→Q i and i x−→Q j]
and

qi, j = Pr
y∈Un

[1 y−→Q i and i
y−→Q j]

From (2.1) we have
∑

i∈{1,...,2s}

∑

j∈{1,...,2s}
|pi, j − qi, j| �

∥∥Q
(
G2) − Q

(
U 2

n

)∥∥
1 > ε′

Therefore, there exist i∗, j∗ ∈ {1, . . . ,2s} such that

|pi∗, j∗ − qi∗, j∗ | > ε′/22s

Let Q ′ be an FSM with state space {1, . . . ,2s} × {1, . . . ,

2s}, and alphabet {0,1}. We define the transition function
of Q ′ so that for any b ∈ {0,1} and for any i, j ∈ {1, . . . ,2s},
we have (i, j) b−→Q ′ (i′, j′) iff i b−→Q i′ and j b−→Q j′ . We
set the initial state of Q ′ to be (1, i∗). We have
∥∥Q ′(G) − Q ′(Un)

∥∥
1

=
∑

i, j∈{1,...,2s}

∣∣∣ Pr
x∈G

[(
1, i∗

) x−→Q ′ (i, j)
]

− Pr
y∈Un

[(
1, i∗

) y−→Q ′ (i, j)
]∣∣∣

�
∣∣∣ Pr
x∈G

[(
1, i∗

) x−→Q ′
(
i∗, j∗

)]

− Pr
y∈Un

[(
1, i∗

) y−→Q ′
(
i∗, j∗

)]∣∣∣

=
∣∣∣ Pr
x∈G

[
1 x−→Q i∗ and i∗ x−→Q j∗

]

− Pr
y∈Un

[
1

y−→Q i∗ and i∗ y−→Q j∗
]∣∣∣

= |pi∗, j∗ − qi∗, j∗ |
> ε′/22s

= ε

Therefore, G is not a PRG against FSMs of space 2s with
parameter ε. �

Note that every time we apply Lemma 2.3 on a PRG
G we get a new PRG G ′ which is secure against twice as
many passes as G , with slightly worse space and error pa-
rameters. By repeating O (log logn) times, we obtain the
following Theorem 2.4.

Theorem 2.4. BPL[polylog] ⊆ QuasiP.

Theorem 2.4 is a corollary of the following theorem.

Theorem 2.5. For every space-constructible r(n), BPL[r(n)] ⊆
DTIME(2O (r(n)2 log2 n)).
Proof. Recall that in N-PRG for space parameter N , the
seed length is N2 and the distinguishing parameter is
ε = 2−cN , for a universal constant c > 0. Start by setting
N = αr(n) log n, for a large enough constant α, and con-
sider distinguishers with slightly smaller space. That is, for
this N Nisan’s PRG fools distinguishers of space N and in
particular of space r(n) log n, with ε = 2−c·α·r(n) log n . By ap-
plying Lemma 2.3 we have that this output of N-PRG also
fools r(n) logn

2 -space adversaries that make 2 passes over
the input with distinguishing parameter 2(1−cα)r(n) log n . It-
erating Lemma 2.3 k times we have that the same gener-
ator fools r(n) log n

2k -space adversaries that make 2k passes

over the input with parameter 2
(1+ 1

2 +···+ 1
2k−1 −cα)r(n) log n �

2(2−cα)r(n) log n .
Hence, if we choose N = αr(n) log n for a large enough

constant α we get a PRG that fools log-space adversaries
that make r(n) passes over the input, with advantage
ε′′ < 1

2 bounded away from 1/2.
Fix an arbitrary BPL[r(n)] machine M , compute Nisan’s

PRG on every seed of length N2, use each output of N-
PRG as the random tape for M , simulate M , and decide by
majority. This algorithm takes time 2O (r(n)2 log2 n) . �
3. Breaking Nisan’s PRG with polynomially many passes

Let n be the length of the output of N-PRG. Fix c > 0

and the seed length to be 2c
√

logn . In Theorem 2.2 we
stated a corollary of the theorem from [6], by choosing the
parameters appropriately. We used Theorem 2.2 to obtain
a positive result, which is independent of the structure of
the PRG. However, for breaking N-PRG we consider its ex-
act form.

Note that our adversary overwhelmingly breaks the se-
curity properties (stated for one-pass) of N-PRG. In partic-

ular, for seed length 2c
√

logn instead of a 2c′√logn-space
distinguisher, c′ > 0, we present a log-space one. Further-
more, we distinguish with probability much bigger than

2−c′√logn .
Let us review the description of N-PRG.
Let H be a universal family of hash functions h :

{0,1}N → {0,1}N , for some N . We are going to determine
all parameters after the description of the PRG. For every
integer k � 0 define the generator

Gk : {0,1}N × Hk → ({0,1}N)2k

where Gk is defined recursively as follows:

• G0(x) = x, and
• Gk(x,h1, . . . ,hk) = Gk−1(x,h1, . . . ,hk−1) ◦ Gk−1(hk(x),

h1, . . . ,hk−1), where ◦ denotes concatenation of strings.

Nisan shows that such a PRG is secure against FSMs
that make a single pass over the input. He uses an ex-
plicit efficiently computable family H of affine functions
h : GF(2)N → GF(2)N . A function h is affine if there is a lin-
ear function fh and a b ∈ GF(2)N such that h(x) = fh(x)+b
for all x ∈ GF(2)N . Nisan’s [6] family H has the property
that each h ∈ H can be described in O (N) bits.

M. David et al. / Information Processing Letters 111 (2011) 804–808 807
The parameters and additional notation. The output of
the PRG consists of blocks, each of which is an N-bit bi-
nary string, and it corresponds to evaluating x on some
composition of functions from H . By definition of N-PRG
we have that the output y is of the form

y = y1 y2 . . . yN/2h(y1)h(y2) . . .h(yN/2)

where for each yi h(yi) is a block of size N , and h = h1.
The output length is n = 2k N . Therefore, k = O (log n).

For a family H as in [6], the seed length is O (kN). There-

fore, for seed length 2c
√

logn we have that N = O (2c
√

logn).

The main idea. Suppose that the string y is the output of
N-PRG, with H = {h1, . . . ,hk} the family of affine functions
and some x. We will describe a test that every such y
passes, but almost every string fails to pass. Note that to
perform the test we do not need to know the actual hi .
We just need to know the position of h(yi) for the given i.

Here is a property that our test will use. We treat ev-
ery block of y, which is in particular a binary substring
of length N , as a vector in GF(2)N . Let z1, . . . , zl be an
even number of blocks in y and h : GF(2)N → GF(2)N an
affine function. If z1, . . . , zl are linearly dependent then
h(z1) + · · · + h(zl) = 0. This holds since (i) fh is a lin-
ear map, and thus in particular a homomorphism, and
(ii) for an even l, h(z1)+· · ·+h(zl) = fh(z1)+· · ·+ fh(zl) =
fh(z1 + · · · + zl).

Therefore, the output of N-PRG y passes the following
test:

find an even number of linearly independent blocks
z1, . . . , zl , and check whether the sum of the blocks cor-
responding to h1(zi) evaluates to 0.

Observe that to perform this test we don’t have to know
the actual h.

Observe that if y is random then the probability that at
least 2 vectors corresponding to N-bit substrings of y sum
up to 0 is 2−N .

The log-space distinguisher. Let y be the input to the dis-
tinguisher.

1. Let H1 := {y1, . . . , yN+1}, and H2 := {yN+2, . . . , y2N+2}.
Hence, in both cases for y (either y is the output
of N-PRG on random H and x, or y is a random
string) we have that (i) H1 ∩ H2 = ∅ with probabil-
ity � 1 − 2−Ω(N) , and (ii) each of the sets is larger
than N , which guarantees that the vectors in H1 are
linearly dependent, and the same holds for H2.

2. Use [5] (see below) to find in space O (log n) a set of
linearly dependent vectors in H1: y(1)

1 + y(1)
2 + · · · +

y(1)
j1

= 0, and a set of linearly dependent vectors in H2:

y(2)
1 + y(2)

2 + · · · + y(2)
j2

= 0. As usual in space-bounded
computation, by this we mean that each time we can
(re)compute the indices of the vectors on the input
tape.

3. If j1 is even, accept iff
∑ j1

j=1 α
y(1)

j
= 0, where α

y(1)
j

is

the block indexed by the composition of h1 with the
composed functions corresponding to y(1)
j . Similarly, if

j2 is even. Else, if both j1 and j2 are odd then j1 + j2

is even, and accept iff
∑ j1

j=1 α
y(1)

j
+ ∑ j2

j=1 α
y(2)

j
= 0.

Clearly, if the input is random then the probability that
the distinguisher accepts is 2−Ω(N) . On the other hand, if
the input is pseudo-random then with probability at least
1−2−Ω(N) we have that (i) H1 ∩ H2 = ∅, and (ii) all vectors
in H1 ∪ H2 are non-zero. Conditioned on these two events,
the distinguisher accepts with probability 1.

Finding the linear dependencies. Let NonSingular-Equa-

tions(n) be the problem of solving a non-singular n × n
system of linear equations [2].

Theorem 3.1. (See Mulmuley [5].) NonSingular-Equations(n)

can be computed in the functional analog of the uniform NC2

(i.e. the circuits can have multiple outputs).

Consider the following procedure. Fix y ∈ H1 and let
A be the N × N matrix with columns {z ∈ H1 − {y}}. If
y �= 0, then every solution of the system Ax = y is non-
zero. Since the set of vectors in H1 is linearly dependent,
there exists at least one y such that the system has a so-
lution. This solution gives us the required set of vectors
y(1)

1 + · · · + y(1)
j1

= 0. Similarly for H2.

Recall that NC2 ⊆ DSPACE(log2 n). However, when solv-
ing the linear system Ax = y in the above procedure, the

input length is not n, but polynomial in N = O (2c
√

logn).
Therefore, by Theorem 3.1, the above procedure can be
implemented in space O (log n) and thus we obtain the fol-
lowing theorem.

Theorem 3.2. Let c > 0. There exists k > 0, such that N-PRG

with seed of length 2c(
√

logn) is not secure against log-space ma-
chines that make nk passes over the input.

4. Discussion

Constructing a PRG that unconditionally fools two-way
log-space machines is a difficult task. If such a reasonably
efficient to compute (e.g. in polynomial time) PRG exists
then we obtain L � NP, a somewhat strong lower bound.
In this case the language in NP − L is the image of the
PRG. However, there are more modest goals to pursue. It
seems interesting to understand what is the main issue
behind multiple passes. For example, is it possible to con-
struct a PRG that fools log-space machines that make e.g.
nε passes for some fixed ε > 0? Can we formulate an in-
teresting family of Nisan-like PRGs and abstract out the
property that makes them vulnerable to multiple passes?
Furthermore, there are conceivably simpler related ques-
tions. For example, can we construct a PRG G that fools
a log-space machine when reading its input once, but G
does not fool, e.g. two-passes log-space machines?

Acknowledgements

We wish to thank Eric Allender, Alan Borodin, and
Charles Rackoff for their remarks and suggestions.

808 M. David et al. / Information Processing Letters 111 (2011) 804–808
References

[1] S. Arora, B. Barak, Computational Complexity: A Modern Approach,
Cambridge University Press, 2009.

[2] A. Borodin, J. von zur Gathen, J.E. Hopcroft, Fast parallel matrix and
GCD computations, Inform. and Control 52 (3) (1982) 241–256; also
in: FOCS’82.

[3] R. Impagliazzo, N. Nisan, A. Wigderson, Pseudorandomness for net-
work algorithms, in: ACM Symposium on Theory of Computing
(STOC), ACM Press, 1994.

[4] V. Kabanets, Derandomization: a brief overview, Bull. Eur. Assoc.
Theor. Comput. Sci. EATCS 76 (2002) 88–103.
[5] K. Mulmuley, A fast parallel algorithm to compute the rank of a matrix
over an arbitrary field, Combinatorica 7 (1) (1987) 101–104; also in:
STOC’86.

[6] N. Nisan, Pseudorandom generators for space-bounded computation,
Combinatorica 12 (4) (1992) 449–461; also in: STOC’90.

[7] N. Nisan, On read-once vs. multiple access to randomness in logspace,
Theor. Comput. Sci. 107 (1993) 135–144; also in: Structure in Com-
plexity Theory ’90.

[8] M. Saks, Randomization and derandomization in space-bounded com-
putation, in: Proceedings of the 11th Annual IEEE Conference on Com-
putational Complexity (CCC-96), Los Alamitos, May 24–27, IEEE Com-
puter Society, 1996, pp. 128–149.

	How strong is Nisan's pseudo-random generator?
	1 Introduction and preliminaries
	2 BPL[logO(1)n]⊆QuasiP : Nisan's PRG against poly-log passes
	3 Breaking Nisan's PRG with polynomially many passes
	4 Discussion
	Acknowledgements
	References

