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Graph states are an important class of multipartite entangled states. Previous experimental generation of
graph states and in particular the Greenberger-Horne-Zeilinger (GHZ) states in linear optics quantum informa-
tion schemes is subjected to an exponential decay in efficiency versus the system size, which limits its large-scale
applications in quantum networks. Here we demonstrate an efficient scheme to prepare graph states with only
a polynomial overhead using long-lived atomic quantum memories. We generate atom-photon entangled states
in two atomic ensembles asynchronously, retrieve the stored atomic excitations only when both sides succeed,
and further project them into a four-photon GHZ state. We measure the fidelity of this GHZ state and fur-
ther demonstrate its applications in the violation of Bell-type inequalities and in quantum cryptography. Our
work demonstrates the prospect of efficient generation of multipartite entangled states in large-scale distributed
systems with applications in quantum information processing and metrology.

Introduction. As the available quantum devices scale up
over the past few decades, multipartite entanglement has at-
tracted intense research interest owing to its wide applica-
tions ranging from testing fundamental concepts such as quan-
tum nonlocality [1–3] to the practical usage such as quantum
computing [4–6], quantum cryptography [7, 8] and quantum
metrology [9–11]. An archetypal class of the multipartite en-
tangled states is the graph state [12]. It includes the cluster
state with applications in measurement-based quantum com-
puting [6], and the n-particle Greenberger-Horne-Zeilinger
(GHZ) state [1] which is one of the maximally entangled
states (see e.g. [13]), shows largest violation in Bell-type in-
equalities [2, 14], and is used in various protocols in quantum
information science [4, 5, 7]. Graph states have previously
been demonstrated in diversified physical systems. For exam-
ple, the GHZ state has been generated in trapped ion systems
for up to 24 qubits [15], in superconducting circuits for up to
27 qubits [16], up to 20 qubits in Rydberg atom arrays [17], up
to 12 qubits in linear optical systems [18] (and up to 18 qubits
using hybrid degrees of freedom of photons [19]), as well as
in cavity QED systems [20], colored centers in diamonds [21]
and NMR systems [22].

Despite the experimental progress, deterministic realiza-
tions of general graph states, and in particular the GHZ states,
are currently restricted to local systems [15–17]. For appli-
cations like distributed quantum computers and quantum net-
works [23, 24], the linear optical system is preferred as it natu-
rally supports long-distance transmission, which however suf-
fers an exponential decay in the generation efficiency versus
the system size due to the probabilistic entanglement oper-
ation [18, 19]. Incidentally, one-dimensional cluster states
of photons have been generated with the help of a quan-
tum emitter [25, 26], but it is still challenging to generalize
to higher dimensions for applications in measurement-based
quantum computing. To overcome this difficulty of scalable
nonlocal graph states, theoretical proposals have been raised
through the combination of atomic ensembles and linear op-
tics [27, 28] inspired by the DLCZ protocol for quantum re-
peaters [29]. The key idea is that, photons not involved in the
later operations can be measured and postselected halfway by
polarization beam splitters (PBSs) and single photon detectors

(SPDs) [28]; then large-scale graph states can be generated
in a divide-and-conquer manner with the help of long-lived
atomic quantum memories [27]. Following this protocol, the
exponential decay of the preparation efficiency versus the sys-
tem size can be alleviated to only polynomial, which is cru-
cially important for generating large-scale graph states using
linear optics with relatively low entanglement generation and
photon detection efficiencies. Similar ideas of memory as-
sistance have also been explored in quantum-repeater-related
studies for synchronizing single photons or preparing bipar-
tite entanglement in various systems such as atomic ensem-
bles [30–32], optical cavities [33, 34] and solid state spins
[35]. However, due to the experimental difficulty such as low
storage efficiency and fidelity, memory-enhanced generation
of multipartite entanglement has not been realized yet.

In this work, we implement the memory-enhanced scheme
to generate four-photon GHZ states. We load atomic ensem-
bles in two optical traps to achieve a storage time of tens
of milliseconds, produce atom-photon entanglement in each
atomic memory asynchronously and then simultaneously con-
vert the collective atomic excitations in the two memories into
photons and project them to the desired four-photon GHZ
state. We show that the preparation efficiency of the GHZ
state in the four-photon case is improved from a quadratic
scaling to a linear one versus the generation rate of individual
entangled pairs, which, when generalized to larger number of
atomic memories and photons, leads to the desired polyno-
mial scaling in efficiency rather than the exponential one. We
further measure the fidelity of this GHZ state and demonstrate
its applications in the violation of MABK inequalities [2] and
a quantum cryptography protocol of quantum secret sharing
[7]. Our work realizes a prototype for the efficient prepara-
tion of a large-scale graph state, thus constitutes an important
step towards its various applications in quantum information
science and quantum metrology.

Memory-enhanced generation of four-photon GHZ
states. Our experimental scheme is sketched in Fig. 1a. We
generate two pairs of polarization-entangled photons and use
one PBS and two SPDs to project them into a four-photon
GHZ state [28]. A crucial prerequisite for the efficient gener-
ation of multipartite GHZ states is to have long-lived quantum
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FIG. 1. Schematic for the memory-enhanced preparation of four-qubit GHZ states. a, The scheme to create a four-qubit GHZ state. Two
pairs of entangled qubits are generated asynchronously and are then projected into a four-qubit GHZ state. The two edge qubits not involved
in the latter operations can be measured in advance depending on applications. b, The whole experimental setup consists of two symmetrically
designed long-lived atomic quantum memories (QMs) and one intermediate interference station. Atom-photon entanglements are generated
in the atomic ensembles asynchronously using the DLCZ scheme by weak red-detuned write beams (red arrows). Upon registering two signal
photons (1 and 4) successively, we apply strong resonant read beams (blue arrows) to retrieve the two atomic excitations into idler photons
(2 and 3), and transmit them to the interference station through single mode fibers. A polarization beam splitter (PBS3) is used to project
the two idler photons onto the subspace spanned by |H〉|H〉 and |V 〉|V 〉 if both output ports have photons (2′ and 3′). A sandwich structure
of two quarter-wave plates (QWPs) and one half-wave plate (HWP) is used to compensate the polarization change of the photons during the
fiber transmission. c, The energy level diagram for the write process and the read process. The relevant energy levels of the 87Rb atoms are
|g〉 ≡ |5S1/2, F = 2,mF = 0〉, |s〉 ≡ |5S1/2, F = 1,mF = 0〉 and |e〉 ≡ |5P1/2, F = 2〉. The write beam is 20MHz red detuned to the
|g〉 ↔ |e〉 transition while the read beam is resonant to the |s〉 ↔ |e〉 transition.

memories (QMs), such that the succeeded parts can be stored
for long enough time until the other parts also succeed. In
this experiment, we implement two quantum memories with
87Rb atomic ensembles loaded into one-dimensional optical
lattices [36–38]. We have observed storage lifetime of tens of
milliseconds [39], which fully meets our requirement for the
asynchronous preparation of entangled photon pairs.

As shown in Fig. 1b, we use the DLCZ scheme to create the
atom-photon entanglement in the two atomic ensembles. We
start from the QM1 with its atoms initially optically pumped
to the ground state |g〉. A weak red-detuned write laser pulse
can induce a spontaneous Raman transition |g〉 → |s〉 with
a small probability p, which leads to the emission of a sig-
nal photon together with a collective spin wave excitation in
the atomic ensemble, as shown in Fig. 1c. Here we collect the
signal photon from two possible spatial modes L andR which
locate symmetrically on the two sides of the write beam. We
further use a half-wave plate (HWP) and a PBS to convert the
path qubit into a polarization qubit (labelled as 1 in Fig. 1b)
and register the signal photon with an SPD (we can measure
it in any desired polarization basis depending on the appli-
cations). The effective atom-photon entangled state can be
written as

|Ψ〉S−A =
1√
2

(|H〉|L〉+ eiφS |V 〉|R〉), (1)

whereH/V denotes the horizontal/vertical polarization of the
signal photon, L/R the two spatial modes of the spin wave ex-
citation, and φS the phase difference between the two signal

paths before they are combined on the PBS1. Here we have
ignored the large vacuum part of the state, which will be elim-
inated automatically by the postselection of photon detection;
we have also dropped the higher-order excitations for simplic-
ity owing to the low excitation probability. This atom-photon
entangled state can later be converted into photon-photon en-
tanglement on demand by applying a strong resonant read
pulse to retrieve the stored spin wave excitation into an idler
photon (labelled as 2 in Fig. 1b). The resulting signal-idler
photon entangled state can be described as

|Ψ〉12 =
1√
2

[
|H〉|H〉+ ei(φS+φI)|V 〉|V 〉

]
, (2)

where φI is the phase difference between the two idler paths
before they are combined on the PBS2. In the experiment, the
total phase φS + φI is actively stabilized by a Mach-Zehnder
interferometer. Thanks to the long-lifetime storage capacity,
the atom-photon entanglement can be stored for milliseconds
with a high entanglement fidelity above 90% [39].

Upon the successful entanglement generation in QM1 her-
alded by the detection of signal photon 1, we move on to cre-
ate the atom-photon entanglement in QM2 in the same way.
Once a signal photon 4 is detected, an atom-photon entangled
state analogous to Eq. (1) is prepared in QM2. After the asyn-
chronous preparation of the two atom-photon entangled states,
we apply two read beams to retrieve the atomic qubits into two
idler photons simultaneously (labelled as 2 and 3) and direct
them to the interference station with single mode fibers.

The core elements of the interference station are a PBS and



3

a

0.0

0.5

0.4

0.3

0.2

0.1

HH
HV

VH
VV HH

HV
VH

VV

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

𝑀0
⊗4 𝑀1

⊗4 𝑀2
⊗4 𝑀3

⊗4

b

E
x
p
e

c
ta

ti
o

n
 v

a
lu

e
E

x
p

e
c
ta

ti
o

n
 v

a
lu

e

FIG. 2. Fidelity of the four-qubit GHZ state. a, Normalized four-
photon coincidence probabilities measured in the H/V basis for the
first term of Eq. (4). b, Measured average values for the observables
M⊗4

n (n = 0, 1, 2, 3) for the last term of Eq. (4). For each mea-
surement setting we record four-photon coincidence counts for one
hour. Error bars represent one standard deviation.

two SPDs. Because the PBS transmits H polarization and re-
flects V polarization, the coincidence count between the two
exits of PBS3 occurs only when both the idler photons 2′ and
3′ have the same polarization H or V . In other words, the
coincidence count projects the two idler photons into the sub-
space spanned by |H〉|H〉 and |V 〉|V 〉 [28]. The product state
|Ψ〉12 ⊗ |Ψ〉34 is thus projected into a four-photon GHZ state

|GHZ4〉12′3′4 =
1√
2

(|HHHH〉+ eiφ|V V V V 〉), (3)

where the relative phase φ is compensated to be zero in the
experiment [39].

Performance. To characterize the quality of the created
four-photon GHZ state, we measure the fidelity by decom-
posing the density operator of an ideal GHZ state into local
observables [40]

|GHZ4〉〈GHZ4| =
1

2

(
|HHHH〉〈HHHH|

+ |V V V V 〉〈V V V V |
)

+
1

8

3∑

n=0

(−1)nM⊗4n , (4)

where Mn ≡ cos(nπ/4)σx + sin(nπ/4)σy (n = 0, 1, 2, 3)
while σx ≡ |H〉〈V |+|V 〉〈H| and σy ≡ −i|H〉〈V |+i|V 〉〈H|
are Pauli matrices in theH/V basis. The fidelity of the created
four-photon GHZ state is measured to be 78.3(1.5)% when
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FIG. 3. Memory-enhanced scaling in generation efficiency of the
four-qubit GHZ state. Four-photon coincidence counts in 20 min-
utes are measured at various excitation probabilities p ranging from
0.1% to 0.8% (black diamonds). Here we collect all the photons in
theH polarization, hence the coincidence rate gives us one half of the
generation rate of the four-photon GHZ state. The blue solid curve is
the theoretical four-photon coincidence rate in our experiment and
the orange curve is the calculated coincidence rate for a protocol
without memory enhancement [39]. These theoretical curves are cal-
culated with all the retrieval efficiencies, detection efficiencies and
postselection operations taken into account under the current experi-
mental conditions. Error bars represent one standard deviation.

we set the excitation probabilities of both ensembles to p =
0.1%, as shown in Fig. 2. This result significantly surpasses
the entanglement threshold of 50% [13, 41], and thus proves
the existence of genuine four-partite entanglement.

Next we show that this scheme demonstrates a memory-
enhanced scaling in the preparation efficiency of GHZ states,
as evidenced by Fig. 3. Without loss of generality, we set
the excitation probabilities p to be equal for both atomic en-
sembles. By measuring the four-photon coincidence count
rate in the |HHHH〉 state, which is one half the generation
rate of the four-photon GHZ state, we observe a linear scaling
O(p) as we vary p from 0.1% to 0.8%. The experimental data
(black diamonds) agree well with the theoretical results with
all the retrieval efficiencies, detection efficiencies and postse-
lection operations included (blue curve) [39]. In contrast, for a
scheme without memory enhancement, the two pairs of atom-
photon entangled states need to be created in the two atomic
ensembles simultaneously at the joint probability of p2. We
plot this scaling as the orange curve in Fig. 3 under the same
retrieval efficiencies and imperfections for comparison. This
improvement in the four-photon case from a quadratic scaling
versus p to a linear one demonstrates the key advantage of the
memory-enhanced protocol.

Applications. We further demonstrate the applications of
the prepared four-photon GHZ state in Bell-type inequalities
and quantum cryptography. For n = 4 qubits, a local realistic
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FIG. 4. Experimental test of the MABK inequalities and demon-
stration of quantum secret sharing. We set the measurement basis
of each qubit to be σx or σy and collect the four-photon coincidence
counts under a fixed excitation rate for one hour each. The measure-
ment basis is controlled by a QWP and an HWP to convert the σx or
σy basis into the σz basis of H/V polarizations, followed by a PBS
to separate the two polarizations into different paths to be detected
by two SPDs. For each photonic qubit under a given measurement
basis, we record +1 if it passes through the PBS and −1 if it is re-
flected. Here we plot the measured expectation values for all the
16 possible combinations of measurement bases (product of σx/σy

Pauli operators). For a given set of measurement bases, we record
M+ four-photon coincidence counts for the product to be +1 and
M− coincidence for the product to be−1; then the expectation value
is computed as (M+ − M−)/(M+ + M−). More details can be
found in Supplementary Materials [39].

theory needs to satisfy the MABK inequalities [2]

〈F 〉 ≡ 〈σxσxσxσx〉+ 〈σyσyσyσy〉
− 〈σxσxσyσy〉 − 〈σxσyσxσy〉 − 〈σxσyσyσx〉
− 〈σyσxσxσy〉 − 〈σyσxσyσx〉 − 〈σyσyσxσx〉 ≤ 2

√
2.
(5)

On the other hand, quantum mechanics allows a violation
of the MABK inequalities with the largest possible violation
given by the four-qubit GHZ state as 〈GHZ4|F |GHZ4〉 = 8.
To measure the expectation value of F , we evaluate each term
in the expansion by choosing suitable σx/σy measurement
bases for each photon, as shown in Fig. 4. According to the ex-
perimental data and statistics, we estimate 〈F 〉 = 6.01(0.11),
which violates Eq. (5) by more than 28 times the standard
deviation. Note that due to the postselection in our scheme,
which is essential for the memory-enhanced scaling, the four
photons of the GHZ state do not physically exist simultane-
ously. This will lead to the locality loophole [42] if we want
to distinguish the quantum theory from local realism. Never-
theless, the violation of the MABK inequality can still verify
the existence of quantum entanglement [13]. Besides, if we
accept the validity of quantum mechanics and just focus on
the practical applications of the multipartite graph states such
as measurement-based quantum computing [6], quantum se-
cret sharing [7] and quantum networks [23, 24], then the state

prepared by our scheme produces exactly the same outcome
as a conventional graph state whose qubits all exist at the same
time. Below we consider one such application of four-partite
quantum secret sharing [7] using the four-photon GHZ state.

Suppose Alice wants to send a message to Bob, Charlie
and Dave in such a way that any two people cannot recover
the message but all three together can. Equipped with four-
photon GHZ states among the four people, a simple strategy
is to measure their photons randomly in the σx or σy basis and
publicly announce their choices. As evident from Fig. 4, when
all their bases coincide, the product of the four outcomes will
be +1 with high probability (for ideal GHZ states this prob-
ability is one). Similarly, when two measurement bases are
σx and the other two are σy , the product of the outcomes will
be -1. The other choices of measurement bases will lead to
no correlation and hence will be discarded. In this way, Bob,
Charlie and Dave can jointly establish a shared secret key with
Alice that can be used for encoding and decoding the message;
but since each one’s measurement outcome in the σx or σy ba-
sis is completely random, any two of the three people will not
be able to get back the message. As shown in Fig. 4, we mea-
sure the four-photon coincidence in the 16 bases, pick out the
8 ones to be used for secret sharing and compute the quantum
bit error rate (QBER) [43] which is the probability of deduc-
ing a wrong bit for the secret key due to the imperfect GHZ
states. The QBER is estimated to be 12.46(0.66)% (see Sup-
plementary Materials), which is below the threshold of 15%
for the security against individual attack and allows classical
error correction and privacy amplification to further improve
the secret key [43]. Note that this QBER is still above the
security threshold of 11% for the coherent attack [43], but it
can still find practical applications assuming limited capacity
of the eavesdropper [43, 44].

To sum up, we have demonstrated memory-enhanced
preparation of four-qubit GHZ states with efficient scaling and
have applied it for the violation of MABK inequalities and for
quantum secret sharing. This change from a quadratic scaling
to a linear one for preparing graph states, when generalized to
larger number of qubits, leads to the substantial difference be-
tween an exponential scaling and a polynomial one [39], thus
opens up realistic prospects towards the future generation of
large-scale multipartite entangled states in distributed systems
with various applications in quantum information science and
quantum metrology.
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[7] M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret shar-
ing, Phys. Rev. A 59, 1829–1834 (1999).

[8] A. Cabello, Solving the liar detection problem using the four-
qubit singlet state, Phys. Rev. A 68, 012304 (2003).

[9] J. J . Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen,
Optimal frequency measurements with maximally correlated
states, Phys. Rev. A 54, R4649–R4652 (1996).

[10] V. Giovannetti1, S. Lloyd, and L. Maccone, Quantum-
enhanced measurements: Beating the standard quantum limit,
Science 306, 1330–1336 (2004).
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Section S1. Long-lived atomic quantum memory

To extend the lifetime of atomic quantum memories to the millisecond level, we start by cooling a sample of 87Rb atoms
in a magneto-optical trap (MOT) and loading the atoms into a one-dimensional optical lattice. Then we pump the atoms into
the upper clock state |g〉 = |5S1/2, F = 2,m = 0〉 and use the magnetically insensitive hyperfine ground states |g〉 and
|s〉 = |5S1/2, F = 1,m = 0〉 for storage. Lifetime of tens of milliseconds is observed by the electromagnetically induced
transparency (EIT) storage.

For a DLCZ-type atomic quantum memory, the retrieval efficiency and the cross-correlation function are two important pa-
rameters to characterize its quality. In our experiment, we observe that the retrieval efficiency drops from 8% to 4% within
the 1ms storage time in QM1. The fast decay of the retrieval efficiency within 1ms is due to the motion of atoms confined
in individual optical lattice pancakes. For QM2, long-time storage is not used in our scheme so we only measure the retrieval
efficiency as 4% when the storage time is 10µs. We also measure the cross-correlation gc and the anticorrelation parameter α
for QM1 within the 1ms storage time, as shown in Fig. S1.

FIG. S1. Experimental setup for characterizing the long-lived atomic quantum memory QM1 and its performance. a, 106 atoms are
loaded into a one-dimensional optical lattice. The write laser beam propagates in the opposite direction to the read laser beam. The signal
photon is collected at a small angle of 1.5◦ relative to the write laser beam. The idler photon is collected along the opposite direction to
the signal photon. A beamsplitter (BS) is inserted into the path of the idler photon followed by two single photon detectors D2 and D3 to
measure the photon anticorrelation. b, Decay of the cross-correlation function gc in QM1 within 1ms. The cross-correlation function is
defined as gc ≡ (p12 + p13)/[p1(p2 + p3)], where pi (i = 1, 2, 3) is the photon detection probability of the single photon detector Di,
and pij is the signal-idler coincidence detection probability of single photon detectors Di and Dj . The measured cross-correlation function
is far beyond the classical threshold of two after 1ms storage, which implies that the nonclassical correlation between the signal and the idler
photons is well preserved during the storage. The 1/e decay time is estimated to be 1.44(0.16)ms. The presented data is for QM1 with an
excitation probability p = 0.1%. c, The measured anticorrelation parameter for various storage time. The anticorrelation parameter is defined
as α = p1p123/(p12p13), where p123 is the three-fold coincidence count probability of detectors D1, D2 and D3. The presented data is for
QM1 with an excitation probability p = 0.1%.

Section S2. Experimental timing sequence

We use two National Instruments 6733 boards to load two samples of atomic ensembles into two optical lattices at the same
time. After that, the experimental timing sequence begins with a trigger signal from the 6733 boards and is executed on a home-
made-field-programmable gate array (FPGA). As shown in Fig. S2, the experimental sequence starts with continually applying
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FIG. S2. Experimental sequence for the asynchronous preparation of two atom-photon entangled pairs.

write pulses (W1) on QM1. If there is no signal photon (S1) click after a write pulse, a clean pulse identical to the read pulse
is applied (not shown in Fig. S2 for simplicity). Each write-clean cycle takes 1µs. Upon a signal photon click (S1) after a
write pulse, the experimental sequence for QM1 halts and we begin to repeat the same write-clean trials on QM2 until there is
a signal photon click (S2). Note that if there is no signal photon click (S2) within 1000 trials, the sequence will terminate and
restart from QM1. This threshold of 1000 trials is based on a tradeoff between nearly deterministic generation of entanglement
in QM2 and the small decoherence in QM1. Once we successfully register the signal photon (S2) from QM2, two read pulses
are simultaneously turned on to retrieve the stored spin wave excitations. A four-photon coincidence count is recorded if the two
idler photons can be detected after interference. Whether or not the four-photon coincidence count occurs, the sequence enters
a new round. After 50ms we terminate the whole experimental sequence and start again from loading atoms into the MOT and
the optical lattice.

Section S3. Entanglement fidelity of atom-photon entangled pairs

To characterize the quality of each atom-photon entangled pair, we coherently convert the spin wave excitation stored in the
atomic quantum memory into a photon field and measure the entanglement fidelity by quantum state tomography. We reconstruct
the density matrix of the signal-idler photon entangled state with maximum likelihood method, as shown in Fig. S3a. We further
investigate the fidelity decay in QM1 versus storage time since it is used for long-time storage in our scheme. The fidelity
drops from 96.2(1.4)% to 92.9(2.8)% within 1ms storage for QM1, as shown in Fig. S3b. As QM2 is not involved in long-
time entanglement storage, we just fix the storage time at 10µs and reconstruct the density matrix in Fig. 3a with a fidelity of
90.6(1.6)%.

Section S4. Memory-enhanced scaling in generation efficiency of the four-qubit GHZ state

To show the memory-enhanced scaling in the generation efficiency of the four-qubit GHZ states, we compare our protocol
with a protocol without memory enhancement. For the protocol without memory enhancement, the two atom-photon entangled
pairs need to be generated at the same time. Thus the joint success probability is proportional to p2 if we assume that the
excitation probability of individual atom-photon entangled pairs is p. In contrast, asynchronous preparation of two atom-photon
entangled pairs with the help of long-lived atomic quantum memories will cost about 1/p+1/p = 2/p trials, which is equivalent
to a joint probability of two entangled atom-photon pairs of p/2. Apart from that, the two protocols connect the two entangled
pairs into a four-qubit GHZ state in the same way. Therefore, there is a scaling change from O(p2) to O(p) in the generation
efficiency of four-qubit GHZ states in our protocol, as is observed experimentally in Fig. 3 of the main text.

Besides, it is also necessary to compare the four-qubit GHZ state fidelity of the two protocols. In our experiment, the infidelity
of the four-qubit GHZ state mainly comes from the imperfect preparation of atom-photon entangled pairs and the imperfect
photon interference, which are on the order of about 20%. This infidelity does not depend on whether we prepare the two
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FIG. S3. Entanglement fidelity for atom-photon entangled pairs. a, The reconstructed density matrix of the signal-idler photon entangled
state in QM2 when the storage time is 10µs. The fidelity is estimated to be 90.6(1.6)%. b, Entanglement fidelity of the signal-idler entangled
state in QM1 within 1ms storage time.

atom-photon pairs simultaneously or asynchronously. The additional infidelity due to the storage in QM1 of less than 1ms is
only about 3.3% according to Sec. S3 and is much smaller than the dominant error sources. Therefore we expect that the fidelity
of the four-qubit GHZ states should be comparable in the two protocols.

Section S5. Quantum secret sharing

We experimentally demonstrate a quantum secret sharing protocol using GHZ states in the main text, which is further ex-
plained in Fig. S4a. We plot all the measured expectation values in different bases in Fig. 4 and here we further present the
detailed values in Fig. S4b. The results in the eight bases with even number of σx’s and σy’s are used for the quantum secret
sharing task. The quantum bit error rate (QBER) is calculated as Rwrong/(Rright +Rwrong), where Rright (Rwrong) is the total
number of correct (incorrect) key bits deduced under these eight bases.
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FIG. S4. Schematic diagram and experimental data for four-partite quantum secret sharing. a, Each participant is assigned a photon
from the four-photon GHZ state. A QWP, an HWP and a PBS constitute the measurement basis for each photonic qubit. For the randomly
chosen σx or σy basis, each participant records +1 if the photon passes through the PBS and -1 if the photon is reflected. b, The measured
expectation values in all the 16 possible combinations of σx and σy bases. Std represents one standard deviation.
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Section S6. Generalization to arbitrary graph states and scalability

In this experiment, we demonstrate the simplest version of the scheme in Ref. [1] and explicitly show the memory-enhanced
preparation efficiency. Here we briefly summarize the results of Ref. [1] about how this scheme can generate larger graph states
and how the preparation time scales with the system size.

Suppose we have two independent graph states G1 and G2, each with n qubits (in our experiment, G1 is the entangled state
between photons 1 and 2, and G2 is that between photons 3 and 4). By applying a PBS gate, which consists of a polarization
beam splitter (PBS3 in Fig. 1 of the main text) and a half-wave plate (which changes the local basis of individual qubits to meet
the definition of graph states, and is not needed in this experiment for GHZ states), on qubit i from G1 (photon 2) and qubit
j from G2 (photon 3), the two graph states can be combined together into a 2n-qubit graph state, where qubit j is now only
connected to qubit i, while qubit i is connected to qubit j and all their neighboring qubits in the original graphs G1 and G2. By
repeating this procedure as shown in Fig. S5a and Fig. S5b, larger graph states can be obtained.

The memory enhancement comes from the observation that if there are no additional operations on some of the qubits, their
measurements can be expedited before the operations on the other qubits. This allows us to discard the unsuccessful events
through postselection and to restart the preparation as soon as possible, while the succeeded parts can be held in quantum
memories to wait for further connections. Suppose at each stage, we measure all the other qubits apart from the one used for
later connections. Then the expected time to generate an n-qubit graph state is found to be [1]

T ≈ t0(ηsηd)−1n[(log2 n−1)/2+log2(1/ηd−1/2)], (S1)

where t0 is the time of each attempt to generate an elementary entangled pair, ηs the source efficiency and ηd the detection
efficiency. Compared with the notation in the main text, we have p = ηsηd as the measured excitation probability. Note that
to obtain this scaling, after each PBS gate, one photon is measured for postselection while the other one should be stored again
for later connections. This can be achieved by e.g. EIT storage using atomic ensembles which is compatible with our setup [2].
Nevertheless, for the 4-photon GHZ state demonstrated in this work, since there is only one connection step, such an additional
storage is not needed. From Eq. (S1), we see that the total preparation time scales as T ∼ nlogn which is subexponential to the
size of the graph state. In particular, this scaling is not affected by the finite detection efficiency ηd of the practical single-photon
detectors. Also note that, under a finite excitation rate ηs, we have about O(η2s) probability to create double excitations in
the elementary entangled pair, which is a fundamental source of infidelity in the prepared graph state. This error accumulates
linearly with the qubit number. Therefore, to maintain a high state fidelity, ηs should decrease as 1/n with the increasing system
size [3]. This contributes to a factor of n in the preparation time and is again only polynomial with the system size.

In the original derivation of Ref. [1], only the source and the detection efficiencies are considered, but the results can be easily
generalized to include a finite retrieval efficiency ηr of the quantum memories

T ≈ t0
ηr
ηsηd

[
1− ηr/2− ηrηd/4
ηrηd(1− ηr/2)

]log2 n
(

2

ηr

)(log2 n)(log2 n−1)/2
. (S2)

In the limit ηr → 1, we recover the result of Eq. (S1). Again, here we have a leading-order term of (2/ηr)(log2 n)(log2 n−1)/2 ∼
nlogn which is subexponential in the system size.

Finally, note that in the above analysis we focus on tree-graph states (Fig. S5a and S5b). By having more than one qubits in
each subgraph for connections, we can also obtain more complicated graph states as shown in Fig. S5c and Fig. S5d, although
the detailed scaling will then depend on the structure of these graphs.

Section S7. Calibration and compensation of relative phase in the GHZ state

To compensate the relative phase φ in Eq. (3) of the main text, we introduce another tunable phase shift φ′ between the
H component and the V component by inserting a pair of quarter-wave plates parallel to each other at an angle of 45◦ to
the H/V axes, and a half-wave plate in the middle. We measure the 4-photon coincidence counts under the correlation basis
(|H〉+|V 〉)⊗4/4, which is proportional to cos(φ−φ′). By fitting this curve as shown in Fig. S6, we can thus set φ′ to compensate
the relative phase φ.

∗ These authors contributed equally to this work.
† Present address: ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
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FIG. S5. Illustration of generating arbitrary graph states. a, b, First two levels of generating tree-graph states. c, d, With more than one
connection qubits in each subgraph, more complicated graph states can be obtained.
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FIG. S6. Compensation of the relative phase φ in the GHZ state. By rotating the angle θ of the half-wave plate, a tunable phase shift of
φ′ = 4θ is achieved between the H and the V components, so that we observe a periodicity of π/2 in the experimental data. Fitted with a
cosine function, we extract the maximizer of the curve at θ = 75.8◦, by which we can compensate the relative phase φ in the GHZ state.
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