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Using geometric phases to realize noise-resilient quantum computing is an important method to enhance
the control fidelity. In this work, we experimentally realize a universal nonadiabatic geometric quantum
gate set in a superconducting qubit chain. We characterize the realized single- and two-qubit geometric
gates with both quantum process tomography and randomized benchmarking methods. The measured
average fidelities for the single-qubit rotation gates and two-qubit controlled-Z gate are 0.9977(1) and
0.977(9), respectively. Besides, we also experimentally demonstrate the noise-resilient feature of the
realized single-qubit geometric gates by comparing their performance with the conventional dynamical
gates with different types of errors in the control field. Thus, our experiment proves a way to achieve high-
fidelity geometric quantum gates for robust quantum computation.
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In quantum physics, wave functions up to a global phase
are equivalent, and thus the important role played by the
phase factors had been ignored for a long time. However,
the evolution of a quantum state can be traced in some
extent by a geometric phase factor. A famous example is
the Aharonov-Bohm effect [1], which shows that the phases
with a geometric origin can have observable consequences
[2]. Different from the dynamical phase, geometric phases
[2–4] are gauge invariant and depend only on the global
properties of the evolution path. Therefore, besides their
fundamental importance, geometric phases have been
tested in a variety of settings and have found many
interesting applications [5–7].
Recently, there is a renewed interest in applying geo-

metric phases into the field of quantum computation
[8–10], which is potentially capable of handling hard
problems for classical computers [11]. The reason is that
the global properties of the geometric phases can be
naturally used to achieve noise-resilient quantum manipu-
lation against certain local noises [12–14], which is
essential for practical quantum computation. With adiabatic
cyclic evolutions, recent experiments have reported the
detection of geometric phases [15–23] and the realization
of elementary gate operations [24–27] in several physical
systems. However, the speed of the adiabatic quantum gates
is rather slow, and thus decoherence will introduce con-
siderable errors [28,29].
To overcome the dilemma between the limited coherence

times and the long duration of adiabatic evolution,

implementation of quantum gates based on nonadiabatic
geometric phases has been proposed [28–31]. Recently, in
the non-Abelian case [30,31], elementary quantum gates
[32–42] have been experimentally demonstrated in various
three-level physical systems. However, the noise resilience
of the geometric phases is not shared by this type of
implementation [43–45]. Indeed, robust quantum gates with
non-Abelian geometric phases can actually be implemented
with two degenerated dark states [46,47]. However, it is
experimentally difficult because of the need of complex
control of quantum systems with four energy levels. On the
other hand, experimental demonstration of universal quan-
tum computation with nonadiabatic Abelian geometric
phase is also lacking, due to the challenge of exquisite
control among quantum systems. In addition, so far there is
no direct experimental verification of the noise-resilient
feature of geometric quantum gates over the dynamical
ones yet.
Here, with a multiqubit superconducting quantum circuit

architecture [48–50], we experimentally demonstrate a
robust nonadiabatic geometric quantum computation
(GQC) scheme [51,52]. The measured average fidelities
for the realized single-qubit rotation gates and two-qubit
controlled-Z (CZ) gate are 0.9977(1) and 0.977(9), respec-
tively, characterized by both quantum process tomography
(QPT) and randomized benchmarking (RB) methods. The
numbers in the brackets are the uncertainties obtained from
repeated experiments of QPT and the bootstrapping tech-
nique on the RB data, respectively. These gates are realized
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by merely using simple and experimentally accessible
microwave controls over capacitively coupled supercon-
ducting transmon qubits, each of which involves only two
states [53]. The leakage of qubit states can be effectively
suppressed and the coupling between the two qubits can be
parametrically tuned in a large range [54–57]. Meanwhile,
our demonstration only utilizes conventional resonant
interaction for both single- and two-qubit gates, and thus
simplifies the experimental complexity and decreases the
error sources. Furthermore, we experimentally demonstrate
the noise-resilient feature of the geometric quantum gates
over the dynamical ones. Therefore, our experiment proves
the way to achieve robust universal GQC on a large-scale
qubit lattice.
We first explain how to construct the single-qubit geo-

metric gate on a superconducting qubit in the fj0i; j1ig
subspace, where j0i (j1i) denotes the ground (excited) state
of the qubit. Conventionally, single-qubit control is realized
by applying a microwave drive on resonance with the qubit
transition j0i ↔ j1i, as described by the Hamiltonian of

H1 ¼
1

2
ΩðtÞeiϕðtÞj0ih1j þ H:c:; ð1Þ

where ΩðtÞ and ϕðtÞ are the time-dependent driving
amplitude and phase of the microwave field. To achieve
a universal set of single-qubit nonadiabatic geometric gates
in a single-loop way [52], we divide the evolution time τ
into three intervals: 0 → τ1, τ1 → τ2, and τ2 → τ, with the
driving amplitude and phase in each component satisfying

8>><
>>:

R τ1
0 ΩðtÞdt¼ θ; ϕ¼ φ− π

2
; t ∈ ½0; τ1�;R

τ2
τ1
ΩðtÞdt¼ π; ϕ¼ φþ γþ π

2
; t ∈ ½τ1; τ2�;R

τ
τ2
ΩðtÞdt¼ π − θ; ϕ¼ φ− π

2
; t ∈ ½τ2; τ�:

ð2Þ

Consequently, two orthogonal states jψþi¼cosðθ=2Þj0iþ
sinðθ=2Þeiφj1i and jψ−i ¼ sinðθ=2Þe−iφj0i − cosðθ=2Þj1i
undergo a cyclic orange-slice-shaped evolution on the single-
qubit Bloch sphere [58], as shown in Fig. 1(a), resulting in a
geometric phase γ (−γ) on the quantum state jψþi (jψ−i).We
note that this construction can be recognized as a special type
of composite pulses, but whose robustness is originated from
the pure geometric nature [59,60]. This construction is
however different from other traditional composite pulses
[61–63], where complex concatenated pulses are optimized
to compensate the specific error for a certain gate and a larger
pulse area than our scheme is generally required, resulting in
a higher gate infidelity from decoherence. Therefore, the
obtained single-qubit gate of the total geometric evolution is

U1ðθ; γ;φÞ ¼ cos γ þ i sin γ

�
cos θ sin θe−iφ

sin θeiφ − cos θ

�

¼ exp ðiγn⃗ · σ⃗Þ; ð3Þ

which corresponds to a rotation operation around the axis
n⃗ ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ by an angle −2γ. The
parameters θ, γ, φ are determined by the drive.
Our experiment is performed on a five-Xmon-qubit chain

sample [57,64], with the simplified circuit schematic shown
in Fig. 1(b). Only two adjacent qubitsQA andQB are used in
this experiment, with j0i ↔ j1i transition frequency of
ωA=2π¼4.602GHz and ωB=2π¼5.081GHz, respectively,
and a static capacitive coupling strength gAB=2π ≈ 17 MHz
between them. Only the lowest two energy levels are
considered here due to the large anharmonicity αA=2π ¼
−202 MHz and αB=2π ¼ −190 MHz for the Xmon qubits
QA andQB, respectively. Each qubit has individualXYandZ
drive lines for qubit state manipulation and frequency
tunability, and is coupled to a separate λ=4 resonator for
individual and simultaneous readout. More details about the
experimental setup and device parameters can be found
in Ref. [65].
We first demonstrate the single-qubit nonadiabatic geo-

metric gates on qubit QB, with the experimental pulse
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FIG. 1. Single-qubit nonadiabatic geometric gates. (a) Bloch
sphere representation of the evolution trajectory to realize single-
qubit geometric gates. (b) Simplified circuit schematic of the five-
Xmon-qubit chain sample, with only the first two adjacent qubits
QA and QB being considered in this work. (c) The experimental
pulse sequence to characterize the performance of the single-
qubit nonadiabatic geometric gates with the QPT method. The
geometric gate is realized by three truncated Gaussian pulses with
different amplitudes and phases. (d) Bar charts of the real and
imaginary parts of χexp of four specific gates: X, X=2, Y=2, and
Hadamard H, giving an average process fidelity of 0.9980(14).
The numbers in the x and y axes correspond to the operators in the
basis set fI; σx;−iσy; σzg in the fj0i; j1ig subspace. The solid
black outlines are for the ideal gates.
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sequence shown in Fig. 1(c). As a demonstration, here we
fix θ ¼ π=2, and realize single-qubit π and π=2 rotations
around X and Y axes (denoted as X, Y, X=2, and Y=2,
respectively), which construct a basis set to generate single-
qubit Cliffords. The geometric gate consists of a π rotation
sandwiched by two π=2 rotations with a total width of
80 ns. The envelope of each pulse is a truncated Gaussian
pulse with the correction of “derivative removal by adia-
batic gate” method in order to suppress the leakage to the
undesired energy levels [70].
We first characterize the single-qubit geometric gates by

the QPT method [65], with the experimental sequence
shown in Fig. 1(c). The experimental process matrices χexp
of four specific geometric gates X, X=2, Y=2, and
Hadamard H (implemented with a Y=2 rotation followed
by a X rotation) are shown in Fig. 1(d) with an average
process fidelity of 0.9980(14). The process fidelity is
calculated through Fp ¼ TrðχexpχidealÞ, where χideal is the
ideal process matrix for the corresponding gate.
Another conventional method, Clifford-based RB [71–

73], is also used to characterize the geometric gates, with
the sequences for both the reference RB and interleaved RB
experiments shown in the inset of Fig. 2. The experimen-
tally measured ground state probability (the sequence
fidelity) decays as a function of the number of single-qubit
Cliffords m for both the reference RB and interleaved RB
experiments are shown in Fig. 2. Both curves are fitted to
F ¼ Apm þ B with different sequence decays p ¼ pref and
p ¼ pgate. The reference RB experiment gives an average
fidelity Favg ¼ 1 − ð1 − prefÞ=3.75 ¼ 0.9977ð1Þ for the
realized single-qubit nonadiabatic geometric gates in the
Clifford group. The measured interleaved gate fidelities
Fgate ¼ 1 − ð1 − pgate=prefÞ=2 of the four specific geo-
metric gates X, Y, X=2, and Y=2, inserted in the random

Cliffords in the interleaved RB experiment, are 0.9976(1),
0.9975(1), 0.9981(1), and 0.9975(1), respectively.
With the realized single-qubit nonadiabatic geometric

gates, we further demonstrate their robustness against two
different types of errors: control amplitude error and qubit
frequency shift-induced error, which will be the dominant
gate error sources for a large scale qubit lattice. In our
experiment, we compare the geometric gates with the
conventional dynamical gates under the same driving
strength, with the pulse envelopes shown in Fig. 3(a). We
have experimentally characterized the performance of three
geometric gates: X=2, H, and T phase gate with a single-
qubit QPTmethod, as a function of Rabi frequency error ϵ (a
relative offset in Rabi frequency) and qubit frequency
detuning Δ, as well as that for the corresponding dynamical
gates. The experimentally measured process fidelities as a
function of these two errors are shown in Figs. 3(b)–3(g).
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FIG. 2. RB of single-qubit nonadiabatic geometric gates. Inset
is the experimental pulse sequences to perform both the reference
RB and interleaved RB experiments. Fit to the reference decay
curve gives an average fidelity of 0.9977(1) for the single-qubit
geometric gates in the Clifford group. The difference between the
reference and the interleaved decay curves gives the gate fidelity
of four specific gates: X, Y, X=2, Y=2.
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FIG. 3. Noise-resilient feature of single-qubit geometric gates.
(a) Pulse shapes of both geometric gates and dynamical gates,
which are constrained to have the same driving strength.
Hadamard gate Geo H (Dyn H) is implemented with a geometric
(dynamical) Y=2 rotation followed by a geometric (dynamical) X
rotation, while T phase gate Geo T (Dyn T) is realized with a
geometric (dynamical) X rotation followed by a geometric
(dynamical) π pulse along an axis in the xy plane with an angle
of π=8 to the x axis. (b)–(d) The experimental process fidelities of
single-qubit gates: X=2 (b), H (c), and T (d) realized by both
geometric and dynamical means, as a function of Rabi frequency
error ϵ. The experimental results are also consistent with the
numerical simulations (solid lines). (e)–(g) The experimental
process fidelities of single-qubit gates: X=2 (e), H (f), and T
(g) realized by both geometric and dynamical means, as a
function of qubit frequency detuning Δ, consistent with the
numerical simulation results (solid lines).
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The geometric gates are realized with two different
configuration settings, corresponding to two different geo-
metric evolution trajectories. In configuration A, the geo-
metric gates are realized with the geometric evolution
described in Eq. (2) and have distinct advantages over
the dynamical gates against additional Rabi frequency error
ϵ, as shown in Figs. 3(b)–3(d). In configuration B, the
geometric gates are realized by setting the phase ϕ ¼
φþ γ − π=2 at [τ1, τ2] interval in Eq. (2), while the unitary
of the geometric gate remains the same as that in Eq. (3)
when θ ¼ π=2. The noise-resilient feature of the geometric
gates still persists for different detuning errors, as shown in
Figs. 3(e)–3(g). All experimental results also agree very
well with the numerical simulations. The comparisons
clearly illustrate the distinct advantages of the realized
nonadiabatic geometric gates. We note that the noise-
resilient feature of the geometric gates depends on the
types of errors and the cyclic evolution paths of the
geometric gates [65]. The geometric gates realized with
configuration A do not always outperform the dynamical
gates with additional frequency detuning errors, and the
geometric gates realized with configuration B also do not
perform better than the dynamical gates with different Rabi
frequency errors. However, one can always find a specific
evolution path of the control pulse to realize a noise-
resilient geometric gate against the dominant error in the
system.
In order to achieve a universal quantum computation,

two-qubit entangling operations are also necessary. In our
experiment, a nontrivial two-qubit geometric gate is also
realized in a similar way to the single-qubit case by using a
parametric modulation drive of one qubit frequency.
Considering two adjacent qubits QA and QB (with anhar-
monicities αA and αB) capacitively coupled to each other,
the qubit frequency of QA is modulated with a sinusoidal
form: ωAðtÞ ¼ ωA þ ε sinðνtþΦÞ, where ωA is the mean
operating frequency, and ε, ν, and Φ are the modulation
amplitude, frequency, and phase, respectively. Ignoring the
higher-order oscillating terms, when the modulation fre-
quency satisfies ν ¼ ωB − ωA þ αB, the parametric drive
will induce a transition operation between the two energy
levels j11i ↔ j02i in the two-qubit subspace with the
effective Hamiltonian in the interaction picture as

H2 ¼
1

2
g̃eiϕ̃j11ih02j þ H:c:; ð4Þ

where g̃ ¼ 2gABJ1ðε=νÞ and ϕ̃ ¼ −Φþ π=2 are the effec-
tive coupling strength and phase of the parametric drive,
with J1ðε=νÞ being the first order Bessel function of the
first kind. Similar to the single-qubit geometric gates with
the Hamiltonian of Eq. (1), we can realize arbitrary geo-
metric gates in the subspace fj11i; j02ig by modulating the
effective coupling strength and phase in three time inter-
vals. As a demonstration, we fix θ ¼ 0, resulting in two

time intervals of the gate, and realize the geometric phase
gate ðeiγ

0
0

e−iγÞ in the subspace. When only considering the
unitary in the two-qubit computational space
fj00i; j01i; j10i; j11ig, the resulting unitary operation cor-
responds to a controlled-phase gate with an entangled
phase γ:

U2ðγÞ ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiγ

1
CCCA: ð5Þ

The two-qubit geometric controlled-phase gate is per-
formed with two sinusoidal modulation drives applied in
series. Each has a square pulse envelope with sine squared
rising and falling edges to suppress the adverse impact
of sudden phase changes. The modulation frequency
ν=2π ¼ 268.2 MHz and the modulation amplitude ε=2π ¼
150 MHz lead to an effective coupling strength
g̃=2π ≈ 10 MHz. Thus, the two-qubit gate is implemented
with a duration of 112.8 ns. As an example, we here fix
γ ¼ π and realize a CZ gate for the two qubits. We first use
the two-qubit QPT method to benchmark the performance
of the realized CZ gate, with the experimental sequence
shown in Fig. 4(a). The experimentally reconstructed
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FIG. 4. Two-qubit geometric CZ gate. (a) Experimental pulse
sequence to perform two-qubit QPT of the geometric CZ gate,
which is realized with two square pulses with additional rising
and falling edges (black dotted box). (b) Real part of the
experimental process matrix χexp for the geometric CZ gate,
giving a process fidelity of 0.941(13). Measured imaginary part is
smaller than 0.09 and not shown. The numbers in the x and y axes
correspond to the operators in the basis set fI; σx;−iσy; σzg⊗2 in
the fj00i; j01i; j10i; j11ig subspace. The solid black outlines
are for the ideal CZ gate. (c) Two-qubit RB data of the geo-
metric CZ gate between qubits QA and QB, with an extracted
FCZ ¼ 0.977ð9Þ.
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process matrix χexp is shown in Fig. 4(b) and indicates a
process fidelity of 0.941(13) for the realized geometric
CZ gate.
Besides, a two-qubit Clifford-based RB experiment is

also performed to characterize the fidelity of the realized
geometric CZ gate. The final measured ground state
probability (sequence fidelity) decays as a function of
the number of two-qubit Cliffords are displayed in Fig. 4(c)
for both the two-qubit reference RB and CZ-interleaved RB
experiments. We extract the geometric CZ gate fidelity
FCZ ¼ 1 − 3

4
½1 − ðpCZ=prefÞ� ¼ 0.977ð9Þ from fitting both

the reference and interleaved RB decay curves. This result
is consistent with that from the two-qubit QPT method,
when considering the state preparation and measurement
error of about 0.03. The infidelity of the CZ gate mainly
comes from the decoherence of the two qubits, also
confirmed with our numerical simulations. The extracted
average Clifford fidelity FC2

¼ 0.859ð4Þ, mainly limited
by qubit decoherence and crosstalk between the two
qubits [65].
In conclusion, we experimentally realize single-qubit

nonadiabatic geometric gates with an average fidelity of
0.9977(1). The noise-resilient feature of the realized single-
qubit geometric gates is also verified by comparing the
performances of both the geometric and dynamical gates
with different errors. In addition, a two-qubit nonadiabatic
geometric CZ gate is also implemented with a fidelity of
0.977(9). Therefore, the demonstrated universal geometric
quantum gate set opens the door to implement high-fidelity
quantum gates for robust geometric quantum computation.
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Note added.—Recently, we noticed a similar implementa-
tion of nonadiabatic single-qubit geometric gates with a
superconducting qubit [74].
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