782 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 4, DECEMBER 2016

Predicting Inter-Data-Center Network Traffic Using
Elephant Flow and Sublink Information

Yi Li, Student Member, IEEE, Hong Liu, Wenjun Yang, Dianming Hu, Xiaojing Wang, and Wei Xu

Abstract—With the ever increasing number of large scale
Internet applications, inter-data-center (inter-DC) data transfers
are becoming more and more common. Traditional inter-DC
transfers suffer from both low utilization and congestion, and
traffic prediction is an important method to optimize these trans-
fers. Inter-DC traffic is harder to predict than many other
types of network traffic because it is dominated by a few large
applications. We propose a model that significantly reduces the
prediction errors. In our model, we combine wavelet transform
with artificial neural network to improve prediction accuracy.
Specifically, we explicitly add information of sublink traffic and
elephant flows, the least predictable yet dominating traffic in
inter-DC network, into our prediction model. To reduce the
amount of monitoring overhead for the elephant flow informa-
tion, we add interpolation to fill in the unknown values in the
elephant flows. We demonstrate that we can reduce prediction
errors over existing methods by 5%~30%. Our prediction is in
production as part of the traffic scheduling system at Baidu, one
of the largest Internet companies in China, helping to reduce the
peak network bandwidth.

Index Terms—Datacenter network, network management,
network traffic prediction, elephant flow, sublink.

I. INTRODUCTION

ARGE scale and geographically distributed applications
L are on the rise. These applications, such as Web search,
video streaming and file sharing are commonly distributed
to several data centers. Partitioning applications into multiple
data centers can help reducing cost and improve service
reliability.

All these applications can lead to heavy network traf-
fic among the data centers. We call this type of traffic
inter-data-center (inter-DC) traffic to differentiate it from the

Manuscript received March 15, 2016; revised June 30, 2016; accepted
July 2, 2016. Date of publication July 7, 2016; date of current version
December 8, 2016. This research is supported in part by the National
Natural Science Foundation of China Grants 61361136003, 61379088, China
1000 Talent Plan Grants, Tsinghua Initiative Research Program Grants
20151080475, and a Google Faculty Research Award. The associate editor
coordinating the review of this paper and approving it for publication was L.
Granville. (Corresponding author: Wei Xu.)

Y. Li and W. Xu are with the Institute for Interdisciplinary
Information Sciences, Tsinghua University, Beijing 100084, China (e-mail:
li-yil3 @mails.tsinghua.edu.cn; weixu@mail.tsinghua.edu.cn).

H. Liu and X. Wang are with Baidu Inc., Beijing 100083, China (e-mail:
liuhong03 @baidu.com; wangxiaojing@baidu.com).

W. Yang was with Baidu Inc., Beijing 100083, China. He is now with Didi
Inc., Beijing 100085, China (e-mail: yangwenjunreo @didichuxing.com).

D. Hu was with Baidu Inc., Beijing 100083, China. He is now with
NovuMind Inc., Beijing 100193, China (e-mail: dianming.hu@gmail.com).

Digital Object Identifier 10.1109/TNSM.2016.2588500

traffic from end-users accessing these applications from the
Internet (which we call Internet traffic). Many large service
providers use dedicated fibers either owned or leased to han-
dle inter-DC traffic [4]. Given the cost of inter-DC bandwidth,
it is essential to keep the inter-DC links highly utilized.

Many Internet service providers (ISPs) charge for band-
width by the peak bandwidth that a customer uses. Pure
traffic shaping might be useful to reduce the peak bandwidth
but it may hurt the performance of some critical applica-
tions (esp. when the priority is not configured correctly).
Thus scheduling traffic over multiple links available with traf-
fic engineering methods to reduce peak bandwidth of each
link is important to reduce costs. Existing work such as
Google’s B4 and Microsoft’s SWAN uses software defined net-
work (SDN) to accurately monitor and schedule the inter-DC
data transfers. However, most conventional data centers do
not have the infrastructure to support flow-level monitoring
and scheduling, and thus rely on an accurate prediction of
the future traffic to perform short-term / long-term traffic
scheduling.

With the high utilization of inter-DC links, spikes and fluctu-
ations in the traffic can cause congestions, which are especially
harmful to interactive applications. Accurate network traffic
prediction is an important component for tasks like network
resource provisioning, scheduling and traffic engineering [1].
For example, if we can predict short-term traffic patterns
(1 minute or less), we can move latency sensitive flows out of
a network link, if we predict that the link will be congested
soon. This is especially helpful as we always have multiple
redundant paths between data centers. If we can predict even
longer-term traffic, say 30 minutes, we can help the job sched-
uler to decide if it should delay some batch jobs to further
reduce network bandwidth cost. Thus traffic prediction has
been a hot research topic. However, to our knowledge, there
is no work taking the special inter-DC traffic patterns into
account.

In this paper, we present our new model for predicting the
network traffic on inter-DC links at Baidu, one of largest
Internet companies in China. The links serve as Baidu’s
inter-DC backbone, connecting multiple data centers with tens
of thousands of servers. These data centers host hundreds of
large scale applications, both interactive and batch. Using our
prediction method, we can reduce the prediction errors by
10%~30% and Baidu is able to reduce the peak bandwidth
for about 9% on average.

While researchers have proposed many network prediction
models under different network environments, these models

1932-4537 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LI et al.: PREDICTING INTER-DC NETWORK TRAFFIC USING ELEPHANT FLOW AND SUBLINK INFORMATION 783

do not work well for inter-DC traffic prediction. There are
several reasons why it is hard to predict inter-DC traffic.

First, inter-DC traffic neither represents linear processes
nor has stable statistical properties, thus widely used linear
models for time-series prediction, such as Autoregressive
models (AR) [17], Autoregressive moving average models
(ARMA) [18] and Autoregressive Integrated Moving Average
models (ARIMA) [20] do not work well. As we will show
in Section IV, much of the inter-DC traffic exhibits a highly
non-regular and non-linear pattern, mainly because of the exis-
tence of many network-resource hungry applications. Linear
methods like ARIMA, though proven good for Internet traffic,
not enough for inter-DC traffic. Our evaluation confirms the
fact. Thus, we need some models to capture the non-linearity
in the data.

Second, inter-DC traffic exhibits different patterns compared
to Internet backbone traffic. Studies have shown that data cen-
ter traffic is bursty and unpredictable at such long time-scales
(especially at 100 seconds or longer timescales) [2]. In fact,
with the data collected at Baidu, we can predict the Internet
traffic 10 minutes ahead with only about 2% error from the
real value. However, the inter-DC traffic prediction error is as
high as 8% to 9%.

Third, the recurring patterns in inter-DC traffic are not obvi-
ous because this traffic is often generated by a small number of
large applications. For example, in our case, the top 5 appli-
cations account for about 80% of the inter-DC traffic. The
elephant flows generated by these applications usually occupy
large portion of traffic [24] and impact more on the total traf-
fic than mice flows. Usually, the number of elephant flows is
far smaller than the number of mice flows, which is referred
to as “the elephants and mice phenomenon” [8]. A network
flow is called an elephant flow if it occupies a large propor-
tion of network traffic. Specifically, in this paper, we take the
largest few flows that contribute to at least 80% of the total
traffic as elephant flows. In our application, we only observe
five applications producing such flows.

Fourth, usually a data center is connected to multiple other
data centers and thus the incoming/outgoing traffic is con-
tributed by many data centers. If a link connects two data
centers and its traffic contributes to the total traffic of one
data center, we call it a sublink, as Figure 1 shows. A sublink
not only carries the traffic between two data centers, but also
acts as a bypass for other data centers, thus different sublinks
may reveal different traffic patterns and they have different
impacts on the total incoming/outgoint traffic, which makes
the total traffic more unpredicable.

There are five key ideas in our prediction method.

First, we apply wavelet transform [22] to decompose the raw
time domain traffic to capture both the time and frequency
features. We apply Daubechie’s 4 (Db4) wavelets with ten
levels of decomposition [23] and show that it works well in
reducing prediction errors.

Second, we put incoming and outgoing traffic together for
training. Thus we can predict incoming and outgoing traffic
using a single model, greatly saving the model training time.

Third, we recognize the contribution of elephant flows
to the inter-DC traffic. We explicitly add information about

DC2

Q&
s\)\(‘\\(\
link of DC1 ~ sublink2 E E
Sup,.
ks DC3

DC1 E
DC4

Fig. 1. The view of sublinks. A sublink connect two data centers and the
network traffic of the link of DC1 in the figure is contributed by traffic of
many sublinks. We can use sublink traffic information to help predict the total
incoming/outgoing traffic of the link of DCI.

elephant flows as separate feature dimensions in the prediction.
A practical difficulty is that it is quite expensive to capture all
elephant flow information frequently enough to help with the
short term prediction. We use different interpolation methods
to fill in the missing values of elephant flow traffic, which
allow us to incorporate elephant flow information without
introducing much data collection overhead.

Fourth, we also add sublink traffic information as dimen-
sions for training to separate the impacts of different data
centers so that our model can capture more features of the
total traffic.

Last but not least, as the patterns are highly non-linear,
we use artificial neural network (ANN) to build the predic-
tion model. ANN not only handles non-linearity well, but also
allows us to combine different features into the same model.

Note that all the features from wavelet transform, elephant
flows and sublink traffic can be regarded as decompositions.
The wavelet transformation is an internal decomposition as we
are decomposing the traffic time series using the series itself,
while separating out the elephant traffic and sublink traffic is
an example of external decomposition using additional infor-
mation. Combining the internal and external decomposition is
the key for our prediction accuracy improvements.

We make the following three contributions:

1) We propose a network traffic prediction model for
inter-DC traffic, a traffic type that is hard to predict using
previous models, by including the elephant flow and sublink
information into our model explicitly. We show that by com-
bining wavelet transform and artificial neural networks, we
can reduce prediction errors significantly.

2) We introduce effective interpolation methods to reduce
the amount of expensive flow-level observations for the ele-
phant flows.

3) We evaluate our model on a real world, massive scale
inter-DC network with tens of thousands of servers and reduce
prediction errors by 10%~30% over existing work.

The rest of this paper is organized as follows. Section II
presents the researches on network traffic prediction in recent
years. Section III describes our model. Section IV shows the

784 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 4, DECEMBER 2016

experiment results, including comparisons between different
strategies. We conclude in Section V.

II. RELATED WORK

Many studies have been done on network traffic pre-
diction with traditional linear models. Hu er al. [26] used
Seasonal Trend Decomposition using Loess (STL) [21]
to decompose original series into three components: sea-
son component, trend component and irregular component
and then used X11-ARIMA for network traffic prediction.
Yoo and Sim [10] developed a model to support prediction
on high-bandwidth network. FARIMA, known as autoregres-
sive fractionally integrated moving average, which captures
the characters of long-memory time series, is also widely
used in traffic prediction [28]. Zhou et al. [27] combined
ARIMA and GARCH, which is a non-linear model, to
create a conditional mean and conditional variance model
called ARIMA/GARCH, and compared the differences of
the performance between ARIMA/GARCH and FARIMA.
Periyanayagi and Sumathy [29] proposed a time series model
called S-ARMA, using Swarm intelligence and ARMA, for
the network traffic prediction in wireless sensor networks.
Wavelet transform have been used to preprocess series before
the prediction with linear models [7], [32]. However, as inter-
DC traffic is bursty and unpredictable at long-time scales,
linear models are not suitable for inter-DC traffic prediction,
especially for long-time-ahead prediction.

Learning methods are useful in network traffic prediction.
Researchers have applied Support Vector Machine (SVM)
based classification and regression for time series prediction.
For example, Feng ef al. [33] applied SVM for one-step-ahead
prediction on WLAN and compared the performance for vari-
ous prediction methods. Qian et al. [34] used Empirical Mode
Decomposition (EMD) to reduce the noise in the data before
applying SVM for prediction.

Another important and useful learning model for time-series
prediction is artificial neural networks (ANNs) [15]. ANNs have
the capability to do non-linear modeling and approximate any
continuous function to any desired accuracy theoretically [19],
thus ANNSs can be used to predict complex time series. Some
variants of ANNs have been proposed. For example, algorithms
such as PSO [6] can be used to optimize the training process. We
can also embed new tools such as wavelet transformation into
a neural network, like [12] did. Zhang [14] proposed a hybrid
approach to time series forecast using both linear ARIMA
model and the nonlinear ANN to predict complex series data
with both linear and nonlinear correlation structures. Wavelet
Neural Network (WNN) employs nonlinear wavelet basis func-
tions to solve nonlinear fitting problems and have been used
for traffic prediction [12]. Xiao et al. [36] studied fuzzy-
neural network prediction models with wavelet decomposition.
Alarcon-Aquino and Barria [13] combined maximal overlap dis-
crete wavelet transform (MODWT) with ANNs and proposed a
multi-resolution finite-impulse-response (FIR) neural-network-
based learning algorithm, which would be suitable for capturing
low- and high-frequency information as well as the dynamics
of time-varying signals.

Elephant| |Elephant| Elephant

Flow 1 Flow 2 Flow M
I | | |

l Interpolate

Total
Incoming/Outgoing
Flow

Interpolated
Elephant Flows

Incoming/Outgoing
Traffic of L Sublinks

Wavelet Transform

Decomposed Data
(2+2L+2M)x11
Dimensions

Train with ANN

Predict Function

‘ New Inputs ‘

Predict

Predicted Inter-DC
Network Traffic

Fig. 2. The process flow of our model. After training, when we get a
new data item, which contains the total incoming and outgoing traffic, the
sublink traffic and the sampled or interpolated traffic data of elephant flows,
we perform decomposition to it. Then we take the features of previous k steps,
including this step, as the input of the predict function, and get the predicted
future total traffic.

On our inter-DC traffic dataset, we experimented different
prediction models, and did not find significant improvements
on prediction accuracy. It is not coincidental: the inter-DC traf-
fic is consisted of traffic of different sublinks and dominated
by a combination of elephant flows, which demonstrates less
patterns. In this work, instead of keep improving the predic-
tion models, we focus on designing better features to capture
information of the elephant flow and link traffic.

III. MODEL OVERVIEW

In our model, we collect the total incoming/outgoing traffic
data, traffic data of elephant flows and traffic data of differ-
ent sublinks. As the traffic data of elephant flows is sampled
less frequently than the total traffic and sublink traffic, we use
interpolation methods to construct the missing values so that
we can align total traffic data samples with that of the elephant
flows. Then we decompose the collected data with wavelet
transform to reveal additional frequency information for train-
ing. After decomposition, we normalize the data and train it
with ANN to get a prediction function. With the prediction
function and new inputs, we can predict the total incom-
ing/outgoing traffic data in near future. Figure 2 shows the
process flow of our model.

A. Data Collection

We collect three types of data from each inter-DC link:
the total traffic for both incoming and outgoing directions,

LI et al.: PREDICTING INTER-DC NETWORK TRAFFIC USING ELEPHANT FLOW AND SUBLINK INFORMATION 785

a sample of elephant flows and the traffic of sublinks for
both directions. Given a time series (¢, 2, ..., t;), we denote
the total incoming/outgoing traffic at time #; as in’ and out'.
To reduce useless information and improve the efficiency
of computation, we only use information from the top M
applications which account for a great proportion of total traf-
fic (we use 80% in this paper). We use a 2M-dimensional
vector to represent the raw elephant flow information at
each sample time: (einy, eouty, einy, eouty, . . ., einy, eoutyr),
where ein; and eouty(where k = 1,2,..., M) denotes the
number of incoming/outgoing traffic of the k-th largest appli-
cation. To represent the traffic values of sublinks, we use a 2L-
dimensional vector: (sinp, souty, siny, souty, ..., sing, soutr),
where L is the number of sublinks that connects other data
centers with this data center.

As the traffic data of elephant flows is sampled less fre-
quently, we use interpolation methods to construct the missing
values to roughly align the data sample of the total traf-
fic and the elephant flow samples. Thus for each timestamp
ti, we get a (2 + 2M + 2L)-dimensional vector as our raw
data: (ini, out', ein"l, eout’i, einé, eouté, e, einfw, eout}i,,, siny,
souty, siny, souty, . .., sing, souty).

The goal of the prediction is that given all the history, we
want to predict the traffic at different time points in the near
future. Formally, we want to predict the next k-step total traffic
tuple (in'**, our' %), where k = 1,2,

Note that we have an alternative approach to model
the incoming and outgoing traffic separately, using two
(1 +M + L)-dimensional vectors for each. Intuitively, the
incoming and outgoing traffic of a data center are highly corre-
lated. Using a combined model can help us save model training
cost by about 40% while not affecting the prediction accuracy
much. We compare these two models in Section IV.

B. Interpolation

The elephant flow data are sampled less frequently to reduce
the resource cost. We fill in the missing values using interpola-
tion, a common method in numerical analysis. There are many
interpolation methods. In this paper, we compare the following
four methods.

One of the simplest methods is zero interpolation, which
fills zeros for all unknown points. Surprisingly, even with this
simple method, we can still significantly reduce the predic-
tion errors compared to methods without using elephant flow
information.

We call the second method scale interpolation. As the ele-
phant flows occupy large part of the total traffic, we construct
the missing values by filling in a number that is proportional
to the total traffic. Given the total incoming traffic in’ and in*s
at time #; and t;4; respectively, assume that the traffic data of
elephant flows is sampled at that two time points but not sam-
pled at ti11, tit2,...,tiys—1. Then the unsampled incoming
traffic einfj‘sl (0 < & < s) of application k, the interpolation
value, namely the incoming traffic of the elephant flow, is
ini+s’

. it
el”lk

= einj, X —

in'

Intuitively, this method may reduce the effectiveness of adding
elephant flow information, as we “pollute” the elephant flow
data with numbers that is highly correlated with the total
traffic, and our experiments confirm the intuition.

The third method is linear interpolation. Using the same
notations as above, the interpolation value is

. i+s .
Ly : eint™ — ein
ein}js = einy, + (t,-_H/ - t,-) x —K k

ligs — 1

which means (#;y, einfjs,) is a point in a line segment linking
(t;, ein}) and (tig1, ein}).

The last interpolation method we use is spline interpolation.
With spline interpolation, we can get a smooth curve linking
points. To make the interpolation error small and make the
computation simple, we decide to use third order polynomials
as interpolation functions (also known as cubic spline interpo-
lation) [25]. It is more complex than zero interpolation, scale
interpolation and linear interpolation. With spline interpola-
tion, we can get a smooth curve linking points. Given different
kinds of spline functions, we can get different kinds of spline
interpolations. Then the interpolation function S(f), which is
used to construct the missing values of the incoming traffic of
k-th elephant flow, is a piecewise function:

So(t) 1€ [to, 1]

S — S1(0) | 1€ [ty 15,]

S (1) Y € [t5,. 1]

where 19, t5,, ts,, ..., I5, and t, are the time points at which
the elephant flows are sampled.

To ensure the curve is smooth, for each adjacent point pair
(t5;, eings;) and (f;,,, eings;,), where k =1,2,...,n, and the
corresponding interpolation function S;, we have

Si(ts,.) = eingy;

Si(tSiJrl) = €l
Sg(tsz') = SLI(ZS:‘)
S (t5;) = 57 (15:)

For each i, §; is a third order polynomial of ¢, which means
S; can be written in the form of ;> + b;* + c;t + d;, where a;,
b;, c; and d; are constants. Thus, there are total 4n unknowns
and 4n — 2 equations. With some initial conditions, such as
S7(0) = S, (t,) = 0, we can solve the equation sets and get
the smooth curve passing through given points. With S(7), we
have ein};, = S(1;).

Using interpolations allows us to use the elephant flow
information while keeping the monitoring cost low. We eval-
uated all four kinds of interpolations and show the results in
Section IV.

(i=1
(i=1

C. Decomposition

As we use learning algorithms to predict the traffic, we
need “features” (in machine learning terminology) to cap-
ture the predictable information at each time point. We use
decomposition to provide better features.

786 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 4, DECEMBER 2016

Level O the raw series S
l—k—l
Level 1 Al Dl
l—‘—l
Level 2 AZ D2
l—‘—l
Level3 eeeeee D3
l—l—l
Leveln An Dn
| |
New series Series n+1 Seriesn s+ Series3 Series2 Series1

Fig. 3. Wavelet Decomposition. A; is the low-frequency part at level i, which
represents the trend of the series, while D; is the high-frequency part at level i,
which represents the details of the series. After the preprocess, we can get
n+ 1 new time series: Dy, Do, ..., Dy, A,

We decompose the raw data into new series using wavelet
transform, which extract deeper information from the raw
data. Wavelet transform is a powerful technique to analyze
time series. Comparing to Fourier transform, wavelet trans-
form has advantages in processing time-domain series data
as it can reserve both time and frequency information while
Fourier transform can only reserve frequency information.
Wavelet transform uses wavelet functions to decompose time
series. A wavelet is a function W that is used to decompose
the time series to a low-frequency part and a high-frequency
part:

+o00 _
X(a. b) = %f x(t)\If(tTa>dt

where a is the scaling parameter and b is the translation
parameter. In practice, we use discrete wavelet (DWT) instead
of continuous wavelet transform (CWT) as CWT compu-
tation is much more expensive than DWT. We recursively
decompose the low-frequency part, adding one new series per
recursive run. This process continues to produce more new
series until some conditions, such as enough number of levels,
are satisfied. For example, we choose to 10-level decom-
position in our paper, following the choice in [23]. Fig. 3
shows this.

Assuming we use wavelet transform with w levels of decom-
position, we decompose each series in the raw data into w1
new series. We directly feed all the w + 1 dimensions to
the machine learning algorithms for training. We are able to
do so because the neural network algorithm handles multi-
dimensional data with different types of correlations well.
Intuitively, the dimensions represent a mix of different fre-
quencies at a time point, which may be correlated to the
current mixture of workloads running in the data centers. We
expect the learning algorithm to capture the correlations and
thus improve prediction results. Assume the raw time series
data of total incoming traffic is (in', in?, ..., in"). Given a
time point # and length /(/ <« n), we decompose the time series

data s = (n'~™1 in'="2 ... in") using Db4 into (w + 1)
series

51 = (inll_lH, intl_l"'z, ., m’l)

§7 = (in’z_l"’l, in’2_1+2, e m’2>

Sw = (iniv_“rl, i zn@)

Then we choose (intl, intz, ...,iniv) as new features of time
point ¢. Note that the relationship between in’ and the new
features is

w
in' = E m;
i=1

The new features can be regarded as decomposition of the
raw value and contain the relationship information between the
value and the old values. As we can see, each raw dimension
is decomposed into w dimensions. Now we have (2 4+ 2M +
2L) time series data, where M is the number of applications
generating elephant flows and L is the number of sublinks
related with the data center. With decomposition, we get (2 +
2M +2L) x (w+ 1) - dimensional features for each time point.
We denote the new features by f;. We can choose the parameter
[heuristically. In our experiment, we find that / = 60, or using
30 minutes of data for decomposition, provides good results.

We then normalize the data before training. The goal of
normalization is to scale the data to a given bound. Data
normalization can help the learning algorithms avoid com-
putational problems and facilitate network learning [19]. We
use z-score [39] to standardize the series data. The z-score is
defined as

Z:
o

where x is the raw data to be scaled, p is the mean of dataset
and o is the standard deviation of the dataset. The same p and
o used to normalized training data are also used to normalize
new inputs for prediction.

D. Prediction

We train the normalized data with Artificial Neural
Networks (ANNs). ANNs are inspired by biological neural
networks. Generally, an ANN consists of multiple layers,
including an input layer, a number of hidden layers and an
output layer. ANNs can capture non-linear characteristics and
find complex relationships between inputs and outputs. ANNs
are widely used in function approximation, classification, data
processing and robotics [37]. The architecture (e.g., the num-
ber of layers, the number of nodes in each layer and so on) of
an ANN and optimization algorithms used can affect the final
training results.

As usual, we need to specify features and labels for training.
Without loss of generality, a data item can be represented as
di = (f;,1;), where f; stands for the feature vector while I;
stands for the label vector. Usually, we first train a dataset
to get a predict function. Then we can predict the labels (I;)

LI et al.: PREDICTING INTER-DC NETWORK TRAFFIC USING ELEPHANT FLOW AND SUBLINK INFORMATION 787

with the function and the features (f;). As mentioned above,
by decomposing the total traffic data and the traffic data of
elephant flows, we get (24-2M+2L) x w new features, denoted
by f;, for each time point. Obviously, we should use previous
data to predict in’ and out’. Assume we use the data of k
previous steps for one-step-ahead, then we have

fi = fickrts fikras -0 fi]

I, = [ini"'l, outH'l]

As to multiple-step-ahead prediction, we just need to
replace each element of /; with the corresponding one (e.g.,
[in'+2, our+?] for two-step-ahead prediction and [in'**, our'*]
for s-step-ahead prediction). Thus f; is a vector of length
(24+2M +2L) x w x k. This means that when we get a predict
function F, we pass the (2+2M +2L) x w x k features derived
from the k previous steps as input to F' and get the predicted
in' and out'.

E. Measure Prediction Errors

We use Relative Root-Mean-Squared Error (RRMSE) to
measure prediction errors. It is calculated as follows:

~ 2
1 <6 —0;

RRMSE = | — =1,
}’ZZ(9,‘

i=1

where 6; is the predicted value and 6; is the raw value. We
can see that it is unitless and can reflect variance and bias at
the same time [38].

IV. EXPERIMENTAL RESULTS

We first describe the dataset we use in the evaluation. Then
we show that we can achieve significant prediction error reduc-
tion over existing methods. Finally we provide details on the
effects of different methods and parameters in our prediction
model.

A. Experiment Setup

We collect the inter-DC network traffic data of multiple con-
nected production data centers from Baidu for six weeks and
our goal is to predict the total incoming/outgoing traffic of a
specific data center. The total incoming/outgoing traffic data
are direct snapshots of the counters on the edge routers of
the specific data center using SNMP, and we collect traffic
data for both directions every 30 seconds. We use the data
of the last day for testing and the rest for training. Figure 4
shows the total incoming and outgoing traffic of the data cen-
ter whose total incoming/outgoing traffic is to be predicted.
Due to confidentiality concerns, we normalize the Y-axis of
all figures so we do not reveal the actual amount of data
transfers. The normalization does not affect the results of
this paper. For the same reason, as we discuss in the pre-
vious section, we present the prediction errors using relative
root-mean-square-error (RRMSE), instead of RMSE directly.

We use tags, such as source and destination IPs, port, proto-
col ids, type of service and input/output interface, to identify a
flow. We collect the number of packets each flow contributes

— total incoming traffic total outgoing traffic

1.0

0.8

0.6 -

normalized network traffic

0.0 ‘

Fig. 4. The total incoming/outgoing traffic.

during a certain period of time and then calculate the aver-
age traffic. We sample the flow statistics every five minutes
(comparing to the 30 seconds sampling rate for the total traf-
fic) due to the limit of computation and storage resource. We
observe the distribution of the traffic and see that the elephant
flows from the top-5 applications dominate the traffic, which
account for about 80% of the total traffic. In our data center,
which runs a few large applications, we only observe these
five applications contributing to the vast majority of traffic.
Of course, we can add more flows to the elephant flow list,
but we feel that 80% is good enough to capture the impact
of the large applications on the overall traffic. Figure 5 shows
the total traffic of elephant flows we choose. We can see that
the traffic of the chosen elephant flows displays a substantial,
but not perfect correlation with the traffic of the total flows.
The production data center connects with 4 other data centers,
so we collect the traffic data of 4 sublinks. Note that the sum-
mation of incoming/outgoing traffic of the sublinks equals the
total incoming/outgoing traffic of the production data center.

In our experiment, we use one day data as test data.
As we take a sample every 30 seconds, there are 2880 values
we are predicting for the day. We then perform 30-second-
ahead, 1-minute-ahead, 5-minute-ahead, 10-minute-ahead,
15-minute-ahead and 20-minute-ahead prediction and compare
the differences between among strategies in each case.

B. Overall Prediction Measurement

We reduce the prediction error by performing wavelet trans-
formation, and adding interpolated traffic data of elephant
flows and sublinks. We also put the total incoming and outgo-
ing traffic together for training, thus we can use one model to
predict both the incoming and outgoing traffic. We then found
a suitable training set size.

We compare our model with two well-known models: one
is a representative traditional linear model ARIMA [20], the
other is ANN without wavelet transform and interpolation, as
many existing works do [6], [19].

In the following evaluation, we use one input layer, one
hidden layer and one output layer for the artificial neural
network. We also evaluate the prediction accuracy using more

788 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 4, DECEMBER 2016

— total traffic total traffic of elephant flows
Incoming Inter-DC Network Traffic

L 07 T T

Outgoing Inter-DC Network Traffic

g
=)

o
)

o
)

N
'S

o
N

normalized network traffic

o
=)

time

Fig. 5. Correlations between total traffic and the total traffic of the elephant
flows. The elephant flows occupy a large portion of the total traffic.

TABLE I
PREDICTION ERRORS (RRMSE) FOR INCOMING TRAFFIC

30s 1min Smin 10min 15min | 20min

ANN 0.0439 | 0.0525 0.080 0.096 0.105 0.113

ARIMA | 0.0398 | 0.0496 | 0.0793 | 0.0971 0.111 0.119

Ours 0.0305 | 0.0444 | 0.0751 | 0.0901 | 0.0993 | 0.107
TABLE 11

PREDICTION ERRORS (RRMSE) FOR OUTGOING TRAFFIC

30s 1min Smin 10min 15min | 20min

ANN 0.0439 | 0.0522 | 0.0808 | 0.0967 | 0.1089 | 0.117
ARIMA | 0.0396 | 0.0492 | 0.0795 | 0.0980 0.112 0.122
Ours 0.0306 | 0.0444 | 0.0766 | 0.0909 0.102 0.109

than one hidden layers and did not find much difference. We
use Stochastic Gradient Descent (SGD) [11] as the optimiza-
tion algorithm for model training. To include elephant flow
data, we use zero interpolation method. We will evaluate other
interpolation methods in the next section.

Table I, IT and Figure 6 show the comparison results. We
show that for 30-second-ahead prediction, our model reduces
the prediction errors by about 30% for incoming/outgoing traf-
fic compared to the linear model and 23% compared to the
conventional ANN. Also, for 1-minute-ahead prediction and
longer-time-ahead prediction, our model reduces the prediction
errors by 5%~15% for incoming/outgoing traffic compared to
the linear model and conventional ANN.

The accuracy improvement is essential for production: using
the improved prediction results as guidance for traffic schedul-
ing, Baidu is able to reduce the peak inter-DC link utilization
(the ISP’s billed utilization) by about 9%. The actual imple-
mentation and the evaluation of the prediction-based traffic
scheduling system is out of the scope of the paper and thus
omitted here.

C. Effect of Different Factors in Our Model

The prediction error reduction is the result of a combination
of different methods and parameters. We evaluate the effects
of the key components in our model.

[Compared with ARIMA [Compared with ANN
Incoming Inter-DC Network Traffic Prediction

gmﬂmmmm

Outgoing Inter-DC Network Traffic Prediction

35
301
25k
201

ig|_H’_1_‘h|—|l_l_||_|_||_|_l

-5t
-10

Prediction Error Reduction(%) Prediction Error Reduction(%)

30s 1min 5min 10min 15min 20min

Fig. 6. Prediction error reduction over ARIMA and ANN. Positive numbers
mean that we reduce the prediction errors actually while negative numbers
mean the opposite. We can see that our model reduces prediction errors
significantly for long-term-ahead prediction.

1) Length of Training Set: Intuitively, using longer history
as training set can help reducing the data noise and thus predic-
tion errors can be reduced to a certain point. A large training
set may be of little use while bringing in extra and unnecessary
training cost. Our evaluation confirms this intuition.

Thus we need to balance the advantages with the disad-
vantages of increasing the training set size. We compare the
performance of different training set sizes. Figure 7 shows that
using a training history of longer than 4 weeks, we can obtain
a good enough model. We are still evaluating if it is related to
a regular monthly pattern, collecting data for a much longer
term, which is an important future work for us.

2) Effectiveness of Wavelet Transform: We use
Daubechie’s 4 (Db4) wavelets with ten levels of decompo-
sition, as [23] did. For each time point, we decompose the
subseries consisting of 60 values (including the current one)
to get 11 new feature as Section III-C describes. We use a
4-week history for training. Figure 8 compares the prediction
errors with and without wavelet transform.

Wavelet transform is an essential preprocessing step: for
different steps prediction, the wavelet transform reduces the
average prediction errors by 5.4% and 2.9% for incoming and
outgoing traffic. Intuitively, learning methods like ANNs work
because they capture the (non-linear) correlations among mul-
tiple dimensions of data. Wavelet transform adds dimensions
representing the reoccurring patterns of the data and reveals
another level of important correlations. Thus the combination
of wavelet transform and ANN brings a satisfying prediction
error reduction.

3) Combining Incoming/Outgoing Traffic in the Same
Model: As we discussed in Section III-A, we can either train
separate models for incoming and outgoing traffic, or we can
combine both traffic numbers into the same model. This is a
key benefit of using learning methods like ANN — we have
the flexibility to combine prediction models without changing

LI et al.: PREDICTING INTER-DC NETWORK TRAFFIC USING ELEPHANT FLOW AND SUBLINK INFORMATION 789

3 3 weeks
I 4 weeks

3 5 weeks
N 6 weeks

3 1 week
I 2 weeks

Incoming Inter-DC Network Traffic Prediction

RRMSE

Outgoing Inter-DC Network Traffic Prediction

w
%)
=
[°4
o
30s 1min 5min 10min 15min 20min
Fig. 7. Prediction errors of the models with different training set sizes.
I without wavelet transform [with wavelet transform
0.12 Incoming Inter-DC Network Traffic Prediction
0.10
0.08
w
(%]
= 0.06
[-4
-4
0.04
0.02

Outgoing Inter-DC Network Traffic Prediction

RRMSE
=]
=]
=

10min 15min 20min

5min

30s 1min

Fig. 8. The reduction in prediction errors with/without wavelet transform.

to the model itself. Here we compare the result of these two
alternatives.

Figure 9 shows the comparison results. There is no signif-
icant difference in prediction accuracy. This is as expected
because the incoming and outgoing traffic are highly corre-
lated.

It is beneficial to use the combined model. The single model
is not only easier to implement and maintain, but also it needs
less time to train comparing to the two separate models. In
our experiments, using the combined model approach reduces
the training time by about 40% comparing with the separate
models.

4) Elephant Flows: The elephant flows play an important
role in our model. Figure 10 shows the results of adding ele-
phant flow information using different interpolation methods.
We have the following observations from the figure.

First, elephant flow information reduces the prediction
errors. For both incoming and outgoing traffic, adding ele-
phant flows information reduces prediction errors, especially
for the 5-minute or longer time ahead prediction.

[train separately 3 train together
Incoming Inter-DC Network Traffic Prediction

0.12
0.10- E
0.08 1
0.06- E

RRMSE

0.041 R
0.02F R
0.00

Outgoing Inter-DC Network Traffic Prediction

0.12

0.10f R
0.08f- R

0.06 R

RRMSE

0.041 R

0.02 i

0.00

30s 1min 5min 10min 15min 20min

Fig. 9. Prediction errors: combining incoming flows and outgoing flows vs.
training separate model for them. We can see that they provide similar results.
Giving that the combined model trains faster, we use the combined model.

3 no elephant flows I linear interpolation
[zero interpolation 3 cubic spline interpolation
[scale interpolation
012 Incoming Inter-DC Network Traffic Prediction
w
(%]
=
o
o
0.12 Outgoing Inter-DC Network Traffic Prediction
w
%)
=
[°4
o
30s 1min 5min 10min 15min 20min
Fig. 10. Prediction errors of the models with/without elephant flows using

different kinds of interpolations.

Second, different interpolation methods have similar effects,
except for the scale interpolation. As we have discussed in
Section III-B, as ANN works on the correlations among dif-
ferent dimensions, the assumed correlation between the traffic
of elephant flows and total traffic actually negatively affects
the power of ANN. Interpolation methods that consider the
neighbor values (e.g., the linear or cubic interpolation) perform
slightly better than zero interpolation, which is as expected.
Given the good balance between simplicity and performance
of zero interpolation, we choose it as our interpolation method
in production.

Third, we observe that the more accurate number of elephant
flow is, whether the measurement comes from interpolation or
actual measurements from flow sampling, the better the overall
prediction accuracy is.

Intuitively, the wavelet transform and ANN capture all the
recurring patterns of the total traffic, but the elephant flows
contribute to the overall traffic in a much more random way.

790 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 4, DECEMBER 2016

3 Compared with ARIMA [Compared with ANN
Incoming Inter-DC Network Traffic Prediction

35
30F
25k
201
15

lgum mrﬂl_l_lﬂﬂﬂﬂ:

51
-10

3 Outgoing Inter-DC Network Traffic Prediction

30F
25k
201
15 E
10 E
51 |—|—| '—l '—l ,
0] P
_s []
-10

Prediction Error Reduction(%) Prediction Error Reduction(%)

30s 1min 5min 10min 15min 20min

Fig. 11. Prediction errors of the models with elephant flows (but without
sublink traffic information).

We use the traffic data of elephant flows to “calibrate” the
total traffic prediction, and thus the accuracy of elephant flows
plays an important role. As an on-going future work, we are
improving our elephant flow monitoring system to provide
more frequent measurements.

We compare the prediction errors of the models using
these four kinds of interpolations, as Fig. 10 shows. We can
see that cubic spline interpolation performs the best. Linear
interpolation performs similar with cubic spline interpolation,
especially for long-term-ahead prediction. Zero interpola-
tion performs a little worse than the two pervious ones,
but performs better than scale interpolation. Scale interpola-
tion performs worst among the four kinds of interpolations.
For incoming inter-DC network prediction, the model with-
out elephant flows performs a little better than the models
with elephant flows for 30-second-ahead prediction (namely
one-step-ahead here), but performs worse for 1-minute-ahead
or longer time ahead prediction. For outgoing inter-DC net-
work prediction, the model without elephant flows performs
worse than most of the models with elephant flows, espe-
cially for long-term-ahead prediction. The reason why zero
interpolation and scale interpolation perform a little worse
than linear interpolation and cubic spline interpolation may
be that, each traffic value is not independent with the previous
and next ones, but zero interpolation and scale interpola-
tion use only the previous values to interpolate new values
while the other two methods consider both the previous and
future ones.

However, as we know, when we perform linear interpola-
tion at x between x; and x;41, we should know x; and x4+
in advance. Cubic spline interpolation even require that all
the points should be known in advance (see Section III).
In practice, we have no way to know the future traffic so
that we cannot perform such interpolations correctly while
trying to construct the missing values of the traffic of the ele-
phant flows for prediction. On the other hand, interpolations

[Compared with ARIMA [Compared with ANN
Incoming Inter-DC Network Traffic Prediction

1§|_‘_"—ﬂ.—|—|l_l—||—l—|l_‘—.

Outgoing Inter-DC Network Traffic Prediction

-5t
-10

Prediction Error Reduction(%) Prediction Error Reduction(%)

30s 1min 5min 10min 15min 20min

Fig. 12. Prediction errors of the models with/without sublink traffic

information.

like zero interpolation and scale interpolation don’t require
this. As we can see, zero interpolation performs better than
scale interpolation, we use zero interpolation in real-world
applications.

As the better interpolation methods here (i.e., linear
interpolation and cubic spline interpolation) take the depen-
dency of missing traffic values and previous and future ones,
the interpolated values using these methods may be closer to
the real ones. Besides, we found that the average prediction
errors at the time point where the traffic data of elephant flows
were sampled were a little smaller than the average prediction
errors at the time point where the traffic data of elephant flows
were interpolated. Thus, we can say that, the more frequently
we sample the elephant flows, the more real traffic data we
get, the smaller the bias between the constructed values and
the real values is and the better results we can get.

Figure 11 shows the comparison results between ANN
and ARIMA and our model with elephant flows. From the
figure, we can see that our model with elephant flows (with-
out sublinks) performs worse than convential methods for
30-second-ahead and 1-minute-ahead prediction but better for
5-minute-ahead or longer-ahead prediction.

5) Sublink Traffic: Adding explicitly the sublink traffic
information to our model is as important as adding the
elephant flows. To see the effectiveness of adding traffic data
of sublinks, we first remove traffic data of elephant flows and
test our model with sublink traffic. Figure 12 shows the com-
parison results between ANN and ARIMA and our model
with sublink traffic (but without elephant flows). From the fig-
ure, we can see that our model with sublink traffic performs
pretty better than convential methods for 30-second-ahead and
I-minute-ahead prediction and a little better for 5-minute-
ahead or longer-time-ahead prediction. Meanwhile, we should
notice that for 5-minute-ahead or longer-time-ahead predic-
tion, our model with sublink traffic information performs a
little worse than that with elephant flows. In other words,

LI et al.: PREDICTING INTER-DC NETWORK TRAFFIC USING ELEPHANT FLOW AND SUBLINK INFORMATION

elephant flows help improve the prediction accuracy of long-
term-ahead prediction while we benefit more from sublink
traffic for short-term-ahead prediction. That is, sublink traffic
and elephant flows are complementary.

Why does this happen? One possible explanation is that the
elephant flows, such as the flows generated by Hadoop, always
last for a relatively long time but may fluctuate significantly
during their lifetime, so elephant flows help long-term-ahead
prediction a lot but may interfere short-term-ahead prediction.
On the other hand, traffic of each sublink consists of many
flows generated by different jobs, thus the statistical charac-
teristics are relatively stable and will not be affected by the
changes of a fraction of jobs in a short time. Thus the sub-
link traffic data can help more for short-term-ahead prediction.
Based on this, we decide to include both elephant flows and
sublink traffic information in our model to help improving the
prediction accuracy, as Figure 6 shows, from which we can see
that both the short-term-ahead and long-term-ahead prediction
errors are reduced significantly.

V. CONCLUSION

We propose a new model for inter-DC network traffic
prediction. In contrast with normal network traffic, inter-DC
traffic are dominated by a few large applications producing
elephant flows and the combination of sublink traffic further
complicates the issue. We can view the traffic as a combination
of reoccurring patterns and some large noise.

The key for the traffic prediction is decomposing the various
components from the combined traffic pattern. We decompose
the traffic in two ways: first we use Db4 wavelet transform
to decompose the time domain traffic data. Then we also
add explicit information about elephant flows and sublink
traffic. The elephant flow information provides multiple cal-
ibration points that significantly reduce the prediction errors,
especially for 5-minute-ahead or longer-time-ahead predic-
tion. Traffic of sublinks, on the other hand, helps more for
30-second-head and 1-minute-ahead prediction. We show that
using the combination of wavelet transform, elephant flows
and sublink traffic data, we can reduce the prediction errors
significantly.

We emphasize on practical issues in the prediction model
design, especially the cost of measurements. We show that
we can significantly reduce the flow sampling overhead using
interpolation methods. We also evaluate the possibility of
reducing the training overhead by combining both incoming
and outgoing traffic into the same model, reducing the train-
ing overhead by 40%. Our prediction method can help Baidu
reduce the peak bandwidth for about 9% on average. The
monetary cost reduction is significant for large scale inter-DC
network. Thus the accuracy improvement is necessary and
worthwhile.

As future work, we will extend the prediction to a longer
time periods (weeks to months) to support tasks like resource
provisioning. We will also explore models to predict the traffic
on core switches within a data center. On the engineering side,
we are improving the technique to elephant flows traffic at a
higher frequency.

[1]

[2

—

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

REFERENCES

H. Wang et al., “COPE: Traffic engineering in dynamic networks,”
ACM SIGCOMM Comput. Commun. Rev., vol. 36, no. 4, pp. 99-110,
2006.

T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.
Exp. Technol., Tokyo, Japan, 2011, Art. no. 8.

C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 15-26, 2013.

S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 314, 2013.

S. L. Ho, M. Xie, and T. N. Goh, “A comparative study of neural network
and Box-Jenkins ARIMA modeling in time series prediction,” Comput.
Ind. Eng., vol. 42, nos. 2-4, pp. 371-375, 2002.

W. Cheng and P. Feng, “Network traffic prediction algorithm research
based on PSO-BP neural network,” in Proc. Int. Conf. Intell. Syst.
Res. Mechatron. Eng., Zhengzhou, China, 2015. [Online]. Available:
http://www.atlantis-press.com/php/pub.php?publication=isrme- 15

H. Feng and Y. Shu, “Study on network traffic prediction techniques,”
in Proc. Int. Conf. Wireless Commun. Netw. Mobile Comput., Wuhan,
China, 2005, pp. 1041-1044.

K. Papagiannaki er al., “A pragmatic definition of elephants in Internet
backbone traffic,” in Proc. 2nd ACM SIGCOMM Workshop Internet
Meas., Marseilles, France, 2002, pp. 175-176.

G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527-1554,
2006.

W. Yoo and A. Sim, “Network bandwidth utilization forecast model
on high bandwidth networks,” in Proc. Int. Conf. Comput. Netw.
Commun. (ICNC), Garden Grove, CA, USA, 2015, pp. 494-498.

L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. COMPSTAT’2010. Heidelberg, Germany: Physica-
Verlag HD, 2010, pp. 177-186.

K. Zhang, Y. Chai, and X.-A. Fu, “A network traffic prediction
model based on recurrent wavelet neural network,” in Proc. 2nd Int.
Conf. Comput. Sci. Netw. Technol. (ICCSNT), Changchun, China, 2012,
pp. 1630-1633.

V. Alarcon-Aquino and J. A. Barria, “Multiresolution FIR neural-
network-based learning algorithm applied to network traffic prediction,”
IEEE Trans. Syst, Man, Cybern. C, Appl. Rev., vol. 36, no. 2,
pp. 208-220, Mar. 2006.

G. P. Zhang, “Time series forecasting using a hybrid ARIMA and neural
network model,” Neurocomputing, vol. 50, pp. 159-175, Jan. 2003.

B. Yegnanarayana, Artificial Neural Networks. New Delhi, India:
PHI Learn. Pvt. Ltd., 2009.

J. Liu and Y.-L. Huang, “Nonlinear network traffic prediction based on
BP neural network,” J. Comput. Appl., vol. 7, no. 7, pp. 1770-1772,
2007.

H. Akaike, “Fitting autoregressive models for prediction,” Ann. Inst.
Stat. Math., vol. 21, no. 1, pp. 243-247, 1969.

J. L. Torres, A. Garcia, M. De Blas, and A. De Francisco, “Forecast
of hourly average wind speed with ARMA models in Navarre (Spain),”
Sol. Energy, vol. 79, no. 1, pp. 65-77, 2005.

G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial
neural networks: The state of the art,” Int. J. Forecasting, vol. 14, no. 1,
pp. 35-62, 1998.

J. Contreras, R. Espinola, F. J. Nogales, and A. J. Conejo, “ARIMA
models to predict next-day electricity prices,” IEEE Trans. Power Syst.,
vol. 18, no. 3, pp. 1014-1020, Aug. 2003.

R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “STL:
A seasonal-trend decomposition procedure based on loess,” J. Off. Stat.,
vol. 6, no. 1, pp. 3-73, 1990.

C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets
and Wavelet Transforms: A Primer. Upper Saddle River, NJ, USA:
Prentice-Hall, 1997.

H. He and J. A. Starzyk, “A self-organizing learning array system for
power quality classification based on wavelet transform,” IEEE Trans.
Power Del., vol. 21, no. 1, pp. 286-295, Jan. 2006.

T. Mori, R. Kawahara, S. Naito, and S. Goto, “On the characteristics
of Internet traffic variability: Spikes and elephants,” IEICE Trans. Inf.
Syst., vol. 87, no. 12, pp. 2644-2653, Feb. 2004.

C. De Boor, “A practical guide to splines,” in Mathematics of
Computation. New York, NY, USA: Springer, 1978.

792

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 13, NO. 4, DECEMBER 2016

K. Hu, A. Sim, D. Antoniades, and C. Dovrolis, “Estimating and fore-
casting network traffic performance based on statistical patterns observed
in SNMP data,” in Machine Learning and Data Mining in Pattern
Recognition. Heidelberg, Germany: Springer, 2013, pp. 601-615.

B. Zhou, D. He, Z. Sun, and W. H. Ng, “Network traffic modeling
and prediction with ARIMA/GARCH,” in Proc. HET-NETs Conf., 2005,
pp. 1-10.

C. W. J. Granger and R. Joyeux, “An introduction to long-memory time
series models and fractional differencing,” J. Time Series Anal., vol. 1,
no. 1, pp. 15-29, 1980.

S. Periyanayagi and V. Sumathy, “S-ARMA model for network traffic
prediction in wireless sensor networks,” J. Theor. Appl. Inf. Technol.,
vol. 60, no. 3, pp. 524-530, 2014.

R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk, “A multi-
fractal wavelet model with application to network traffic,” IEEE Trans.
Inf. Theory, vol. 45, no. 3, pp. 992-1018, Apr. 1999.

H. Zhao and N. Ansari, “Wavelet transform based network traffic predic-
tion: A fast on-line approach,” J. Comput. Inf. Technol., vol. 20, no. 1,
pp. 15-25, 2012.

X. Tan, W. Fang, and Y. Qu, “Network traffic prediction algorithm based
on wavelet transform,” Int. J. Adv. Comput. Technol., vol. 5, no. 5, p. 183,
2013.

H. Feng, Y. Shu, S. Wang, and M. Ma, “SVM-based models for
predicting WLAN traffic,” in Proc. IEEE Int. Conf. Commun. ICC,
vol. 2. Istanbul, Turkey, 2006, pp. 597-602.

Y. Qian, J. Xia, K. Fu, and R. Zhang, “Network traffic forecasting
by support vector machines based on empirical mode decomposi-
tion denoising,” in Proc. 2nd Int. Conf. Consum. Electron. Commun.
Netw. (CECNet), Yichang, China, 2012, pp. 3327-3330.

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition:
A noise-assisted data analysis method,” Adv. Adap. Data Anal., vol. 1,
no. 1, pp. 1-41, 2009.

H. Xiao, H. Sun, B. Ran, and Y. Oh, “Fuzzy-neural network traffic
prediction framework with wavelet decomposition,” Transp. Res. Rec. J.
Transp. Res. Board, vol. 1836, no. 1, pp. 16-20, 2003.

M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network Design,
vol. 20. Boston, MA, USA: PWS, 1996.

D. Mouillot and A. Leprétre, “A comparison of species diversity
estimators,” Res. Popul. Ecol., vol. 41, no. 2, pp. 203-215, 1999.

E. Kreyszig, Applied Mathematics. New York, NY, USA: Wiley, 1979.

Yi Li (S’16) received the B.S. degree from Peking
University, Beijing, China, in 2013. He is cur-
rently pursuing the Ph.D. degree with the Institute
for Interdisciplinary Information Sciences, Tsinghua
University, Beijing. His current research interest
includes network management, big data analysis,
cloud computing and privacy.

Hong Liu received the M.S. degree from the Beijing
University of Posts and Telecommunications,
Beijing, China, in 2014. He has been a Senior
Research and Development Engineer with Baidu
Inc., since 2014. His interests lie in statistical
machine learning and deep learning.

Wenjun Yang received the M.S. degree from
Tsinghua University, Beijing, China, in 2013. He is
with Didi Inc., as a Senior Engineer. His interests
lie in data mining and computer architecture.

Dianming Hu has been a Principal Engineer
and the Director of the Cloud and Embedded
Platform Group, NovuMind Inc., Beijing, China,
since 2016. He was the Leader of Baidu’s Datacenter
Intelligence Research and Development Team for the
past five years. His main fields of research include
device intelligence, cloud, and datacenter system.

Xiaojing Wang received the M.S. degree from the
Department of Computer Science and Technology,
Northeastern University, Shenyang, China, in 2008.
She is currently a Senior Project Manager with the
Data Center Intelligence Team, Baidu Inc., Beijing,
China. She and her team are currently working on
decision optimizing in data center with big data and
machine learning.

Wei Xu received the B.S. degree from the University
of Pennsylvania in 2003 and the Ph.D. degree in
computer science from the University of California
at Berkeley in 2010. He is an Assistant Professor
with the Institute for Interdisciplinary Information
Sciences, Tsinghua University, Beijing, China. He is
the Director of Open Compute Project Certification
Laboratory, China. He was a Software Engineer with
Google working on logging and debugging. He has
broad research interests in distributed system design,
big data, data center networking, system manage-

ment and debugging, large scale system for machine learning and data mining,
as well as various big data applications. He was a recipient of the National
Youth 1000 Program of China in 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

