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Abstract—Network verification has been recently proposed to
detect network misconfigurations. Existing work focuses on the
reachability. This paper proposes a framework that verifies the
Service Level Agreement (SLA) compliance of the network using
static verification. This work proposes a quantitative model and
a set of algorithms for verifying performance properties of a
network with switches and middleboxes, i.e., service chains. We
develop SLA-Verifier and evaluate its efficiency using simulation
on real-world data and testbed experiments. To improve the SLA
violation detection accuracy, our system uses verification results
to optimize online monitoring.

I. INTRODUCTION

Meeting network Service Level Agreements (SLAs) is crit-

ical for network service providers. SLAs specify performance

assurance metrics such as packet loss, delay, jitter, and network

availability. Failing to meet SLA guarantees can result in

poor performance and significant revenue loss. Thus, SLA

compliance verification, i.e., verifying whether the network in

a given configuration can deliver the performance within the

SLA bounds, is critical for the operators. This becomes even

more important in emerging new network environments, such

as Software-Defined Networks (SDN) and Network Function

Virtualization (NFV), which increase the dynamics of network

routing and resource allocation. SDN enables fine-grained

flow-level dynamic routing, which can be triggered by various

network state changes (e.g., failures). NFV enables virtualizing

and scaling network services up or down with changes in

demand. Upon workload changes or failures, flows may be

steered to different paths or through different middleboxes to

react to the changes. Thus, it is crucial to verify that SLAs

are satisfied in these new dynamic settings.

Recently, network verification has been used to detect

configuration errors. Current techniques focused on verify-

ing basic connectivity invariants such as loop free-ness and

reachability [1], [2], [3]. However, while connectivity is the

basic guarantee that the network should provide, performance

guarantees are equally important to customers, for metrics such

as latency, packet loss rate, bandwidth, availability, etc. We call

verifying these performance properties as SLA verification.

Traditionally, SLA compliance/violations are checked via

active measurements [4] or passive modeling [5]. However, we

propose that a two-step SLA compliance checking mechanism

consisting of static verification and online measurements may

be more efficient than just measurements alone. Even though

the traffic changes fast, by analyzing the traffic distribution and

the configuration of the network, we can identify possible SLA

violations using static analysis even before traffic arrives. We

can combine the static verification and online measurement to

accommodate the inaccuracy in traffic distribution estimation.

TABLE I. EXAMPLE SLA QUERIES

1.Are the minimum bandwidths for all flows from A to B
within the bounds defined in SLA?
2.Are the average end-to-end latency for all flows to B within 100ms?
3.Does QoS class X always have higher bandwidth than QoS class Y?
4.Under a single one failure, no link utilization will exceed 95%.
5.The probability of any flow with latency>300ms is below 0.001.

For example, a minimum bandwidth guarantee may not be met

because of a misconfiguration of rate limiters or classifying a

flow into a low priority class, or wrongly allocating a smaller

amount of bandwidth than what is required to the virtual links.

Furthermore, in NFV scenarios, the selection of Virtualized

Network Functions (VNFs) placements for a particular service

chain could be sub-optimal: for example, consider that one

VNF is in one Point of Presence (PoP) and the next VNF in

the chain is in another PoP. If the propagation delay between

the two PoPs is larger than the required latency guarantee,

then clearly the latency SLA will not be satisfied even if none

of the nodes along the path is congested.

We give a few representative examples of questions related

to SLAs that we can verify in Table I. To answer the first

question, we need to first verify the reachability from A to B.

This can be done using standard techniques like HSA [2] and

new techniques that are being developed to verify reachability

in the presence of middle-boxes. In addition to reachability,

we need to identify the switch and middlebox configurations

(e.g., rate limiting, priority setting, buffer sizing, etc.) along

the paths and compute the minimum bandwidth along the

paths. The second question is verifying the latency metric,

requiring a hop-by-hop reverse trace of all the flows destined

to B and computing the average delay across all flows. The

third question asks the comparison between two classes of

packets, which can be represented as two disjoint cubes in the

hyper-dimensional header space. The fourth question is about

the link utilization after a failure given the current flow rules.

Finally, the fifth question checks if the probability of a latency

violation is bounded by a threshold. QNA [6] has an initial

proposal on quantitative verification. But it does not handle

probability and stateful boxes.

We extend our current connectivity verification tool [7]

to answer the above questions. However, it is not a trivial

extension. First, when computing the performance metric, we

need to support the composition of different performance

metrics on different header spaces together. Second, in order to

verify networks that include middleboxes, we need to account

for the dynamic properties of each middlebox. Middleboxes
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maintain internal state variables and corresponding actions on

packets. Therefore, the middlebox may forward packets of

a flow to different paths according to its internal states [8].

For example, a cache server forwards a flow along a path

with certain probability, depending on whether the object is

in its cache. The state changes within the middlebox are often

dependent on the prior packets within the flow. The middlebox

will make future decisions based on the state changed by

current packets. Thus, the performance of a flow could depend

on the sequence of packets. Third, the static verification

estimates performance based on historical traffic/performance

distribution. However, due to the real-time traffic dynamics,

the static verification may be inaccurate.

In this paper, we propose a system called SLA-Verifier that

performs SLA verification on service chaining: a network with

SDN switches and middleboxes (VNF/NFs). It computes the

performance metrics by first finding the path that a packet

header space traverses. To the best of our knowledge, this

is the first paper addressing SLA verification considering

middleboxes. We make the following contributions.

• We propose a model of switches and middleboxes that

incorporates SLA performance metrics. We then propose a

static SLA verification algorithm. It takes the configuration,

traffic distribution, and network statistics and then answers

various queries. We present three algorithms for queries on

flow space, states, and performance.

• To support online update, we propose a graph based online

SLA verification algorithm, because a graph data structure is

efficient and well suited for online verification.

• To accommodate the inaccuracy of verification due to run-

time traffic dynamics, we introduce a verification assisted

SLA monitoring component. It uses the verification result

to allocate monitoring resources in order to maximize the

probability of detecting SLA violations.

• We develop a prototype call SLA-Verifier. We use extensive

simulation and testbed evaluation to show that static verifi-

cation is feasible and our solution is scalable. We can verify

a network with 1000+ nodes in less than 20 ms. We have

tested it on OpenStack with Neutron-based service chaining

implementation, which illustrates its practical usage.

II. SYSTEM OVERVIEW

We describe a high level overview of SLA-Verifier and list

the challenges in this section.

Architecture. The input to SLA-Verifier includes the network

topology, SDN flow tables, the Network Function (NF) con-

figurations, NF models, and the performance model generated

from historical measurements. Examples of the distribution

model include delay distribution and load distribution on each

link. For service chaining applications, when flows traverse a

sequence of NFs, we also need to have the NF performance

models. The main component of SLA-Verifier is the static

verification module, which contains two sub modules. The

offline module takes a snapshot of the configuration and

answers various performance related queries. It checks if

there is any SLA violation given the current configuration.

VM1

OVS

VM2
OVS

flow f

UDP max BW 50Mbps

Tenant max BW 1Gbps

DPI

Local PoP

Remote PoP

Delay distribution: mean 50ms; 90th:110ms

Original SFC

New SFC

FW LB DPI

DPI

Fig. 1. SLA violation examples

Using the offline analysis results, the online module builds

a quantitative and stateful forwarding graph. At run time,

upon any configuration or routing changes, this module uses

the forwarding graph to identify if the changes will lead to

an SLA violation. Its equivalence in reachability testing is

NetPlumber [9] or Veriflow [1]. The verification may find

some paths that have not violated SLAs yet but could be

likely violate it when traffic dynamics change. This is the

fundamental problem of static SLA violation because the

traffic input may not be accurate. To handle this, we couple the

SLA verification with an online monitoring module. Different

from general SLA monitoring, it uses the verification results

to optimize the monitoring resources.

Target problems. SLA-Verifier aims at detecting two types

of problems: hard mis-configuration and soft probabilistic
violation. We illustrate them using two examples in Figure 1.

The first example is that the guaranteed SLA for a tenant is a

minimum bandwidth of 1 Gbps. This is provided by setting the

rate limiter in the hypervisor to 1 Gbps for a VM of this tenant.

Along the path of a flow originating out of this VM, there is

a Deep Packet Inspection (DPI) NF. The switch connecting to

the DPI NF has a configuration to rate limit any UDP flow to

50 Mbps in order to prevent DoS attack to the DPI. Thus, flow

f of this tenant, which happens to be a UDP flow, experiences

50 Mbps, which violates the original SLA. In this case, the

switch should have a higher priority rule to create an exception

for this flow. The second example is shown in the right of

Figure 1. A tenant’s traffic traverses a service function chain

with a Firewall, Load Balancer, and a DPI NF. It requires

a maximum latency of 100 ms. This SLA is easier to satisfy

when all the NFs are in the same PoP. However, upon detecting

a failure or a traffic spike, the network controller decides to

use the DPI in a remote PoP. The 90th percentile of the inter-

PoP link delay is 110 ms. Thus, the new path will have at

least 10% chance of violating the SLA.

Challenges. We believe that the extension of reachability

verification to SLA verification is not trivial. First, the perfor-

mance metric can be defined on different header space. When

doing path analysis, we need to compose different performance

metrics across the header space. For example, in the top of

Figure 1, the QoS configuration for the tenant at OVS needs

to be composed with the configuration of UDP at intermediate

switch. One composition may yield the following: a UDP

flow from VM1 to VM2 should have a maximum bandwidth

of 50 Mbps. The composition used in HSA focuses on set

operations, not quantitative metrics.

Second, advanced network functions may have complex

configurations that can affect performance depending on the
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states. For example, F5 load balancer performs rate limiting if

the number of requests exceeds a certain threshold [10]. Exist-

ing work has found that NFs’ performance also depends on its

internal states [11]. Currently there is no general performance

model for NFs and certainly no stateful performance model.

III. QUANTITATIVE NETWORK MODELS

In this section, we first define two kinds of algebra to

describe network forwarding and performance behaviors, and

then model stateful networks. Finally, we formulate the ver-

ification goals of SLA-Verifier. Our key differences with

HSA [2] and QNA [6] are the modeling of probability dis-

tribution and stateful devices.

A. Operational Algebras
The first kind of algebra is about header space operations,

which describes how switch rules on a path are composed

as a symbolic flow traverses along the path. The second

kind is about performance operations, which describes how to

compute a path’s end-to-end performance metrics according

to the metrics on individual hops along the path.

1) Header Space Algebra: We describe algebra below. A

packet header can be viewed as a sequence of 0 and 1, i.e.,

{0, 1}+. While a switch rule’s match field is a sequence of

0, 1 and *, i.e., {0, 1, *}+, where * is a wildcard for 0 and

1. For example, a switch rule with match field 100xxx means

all packet headers with prefix 100 followed by any three bits.

TABLE II. INTERSECT OPERATION

∩ 0 1 *
0 0 ∅ 0
1 ∅ 1 1
* 0 1 *

Intersection operation “∩” is defined between bits as is

shown in Table II, where a wildcard (*) intersecting with a

concrete value (0, 1) is the concrete value, a concrete value

intersecting with itself is still itself, and 0 intersecting 1 is ∅.

The intersection of two sequences is computed bitwisely; if

any bit in the result is ∅, the whole result is ∅; otherwise, the

result is the sequence of intersecting all bit pairs.

2) Performance Metric Algebra: For each hop or link in

the network, its performance is described by a performance

vector P = (p1, p2, ..., pn). Each dimension of the vector

describes a certain performance metric. In this work, we

consider the following metrics: hop count, bandwidth, link

load, and latency.
Referring to Network Calculus and QNA [6], we adopt the

join operation “�” to merge performance metrics. The join
of two performance vectors results in a vector, where each
dimension of the result vector is the join of the two original
vectors’ corresponding dimensions.

P1 = (p11, p12, ..., p1n), P2 = (p21, p22, ..., p2n)

P1 � P2 = (p11 � p21, p12 � p22, ..., p1n � p2n)

The join operation of different metrics is defined differently.

QNA defines this operation for metrics with concrete values

such as hop count, QoS bandwidth. The join operation of the

above four metrics is straightforward. For example, hop count

is joined by summing up all the per-hop counts (=1), and QoS

bandwidth is joined by computing the minimum bandwidth

assignment in QoS policies along the path.

TABLE III. DEFINITION OF p1 � p2 FOR DIFFERENT METRICS

Metric Definition
Hop Count p1 + p2, (usually p1, p2 is 1 on each hop)
Bandwidth min(p1, p2), p1 and p2 are defined in QoS

Latency/Load
∫+∞
−∞ f1(x− t)f2(t)dt, p1 ∼ f1, p2 ∼ f2

In SLA-Verifier, we extend the scope of this operation

to metrics with varying values, i.e., metrics that follow a

distribution. For example, the link load and latency are not

a constant value in the entire duration of a flow; instead, each

of their values follows a given or measured distribution. Two

important questions arise: how to aggregate individual flow’s
load of a link to get the link’s load distribution? and how to
accumulate per-link latency on a path to get the distribution of
end-to-end latency? SLA-Verifier defines the join operation of

two distributions to be the convolution of the two distributions’

probability density function (Table III).

B. The Network Model

TABLE IV. TERMINOLOGIES

Symbol Meaning
B the set of network boxes (e.g., switches, middleboxes)
E the set of directed network links
F the flow header space (i.e., {0, 1, *}+)
Px the performance vector of entity x, x ∈ B ∪ E ∪ F
Sb the state set of box b

Table IV defines the terminologies in SLA-Verifier to de-

scribe a network with quantitative metrics. A network topology

is modelled by a set of boxes and directed links between boxes.

We use “box” to denote both stateless switches and stateful

boxes and introduce unified model to describe their behaviors.

In the table, B and E are network entities, F is the set of flow

entities. For each entity x, vector Px is defined to describe its

performance behavior. SLA-Verifier verifies stateful networks,

thus, it also defines the state set (i.e., Sb in Table IV).

Packet processing is the basic functionality of a network

box. In this procedure, a box reads a packet and its internal

states, and then possibly transforms the packet, sends it out

and updates the internal states. This procedure can be formally

expressed as a processing function: h : S × F �→ S × F ×B,

where the input (S, F ) indicates reading states and packets,

and output (S, F,B) indicates the updated states, (possibly)

transformed packets and next hop in the network respectively.

For a stateless device, such as switches, the processing func-

tion falls back to traditional rules, i.e., h(f, ∗) = (f, ∗, b),
where ∗ is a wildcard matching anything, f ∈ F and b ∈ B.

For boxes that may transform packets, SLA-Verifier in-

troduces transformation function T to express this behavior.

Then the packet processing function becomes h(f, sin) =
(T (f), sout, b). We also use identity function I to denote

packet processing without transformation, where I(f) = f .

With these definitions, a rule in a network box can be

expressed in the format of (fin, sin, T, sout, nxt). For end
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hosts that sending packets, the rule is (∗, ∗, I, ∗, nxt), and

stateless switch rules are (f, ∗, I, ∗, nxt).
C. Verification Goals

SLA-Verifier aims to verify the reachability, loop-free, no-

black-hole and performance properties in a network. We

first define a per-path reachability for a flow. A path is

defined as a sequence of pairs of box and state, i.e.,

[(b1, s1), (b2, s2), ..., (bn, sn)], where bi is in state si. A flow

f is reachable on a path if and only if the following three

conditions are satisfied. Compared to HSA [2], our description

includes quantities.

1) The flow f ’s header space can be matched and transformed

on each hop of the path. That is, on each box bi, there exists

a rule (fin,i, sin,i, Ti, sout,i, nxt), where fout,i−1 = fin,i,
sin,i = si and Ti(fin,i) = fout,i (f = fin,0).

2) The states of all boxes on the path are satisfied, i.e., ∀i, box

bi’s states si can hold simultaneously.

3) Performance metrics for the flow and all on-path entities

(including boxes and links) can be satisfied. Flow-based

performance metrics (i.e., hop count, bandwidth, latency) are

accumulated along the path, and the end-to-end metric should

satisfy the performance requirements; link-based metric (i.e.,

link load) is computed by accumulating per-flow load on

the link, and per-link requirements should be satisfied (e.g.,

within maximum load threshold).

SLA-Verifier checks the following invariants of a network.

• Reachability. For any flow f that is expected to be reachable

from source s to destination d, there exists a set of paths,

where the flow space of all paths equals f . If the disjunction

of all paths box states is always true (i.e., ∨p∈paths ∧bi∈p

P(bi, si)
1 is true, and paths are from s to d), the flow is fully

reachable, otherwise it is conditionally reachable.
• No leakage. For any flow f that is expected not to be

reachable from source s to d, there is no path from s to

d. That is, there exists no path that satisfies the three per-path

reachability requirements.

• Loop-free. For any path p that satisfies a flow f , the flow

does not traverse the same box with the same state twice.

That is, there is no (bi, si) and (bj , sj) on p where bi = bj ,

si = sj and i �= j.

• No black holes. For any maximal path p that satisfies a

flow f , if it cannot be forwarded at the last hop of a p, then

p should be an end host.

IV. SLA-VERIFIER METHODOLOGY

This section is the main methodology in SLA-Verifier to

verify quantitative metrics of stateful networks. SLA-Verifier

first preprocesses rules to get a disjoint rule set for each

network box, and then verifies flow header space, box state

space and performance constraints respectively.

A. Rule Refinement
In an actual box configuration, there are usually multiple

rules, which may overlap with each other. To reason about

which rule would be applied to a certain flow, it is necessary

1P(b, s) is a predicate meaning box b is in state s.

Algorithm 1 SLA-Verifier Methodology

1: function REFINERULES(B)
2: for b ∈ B do
3: refRules := ∅, rules := b.rules.sort() � Descend by Priority
4: for r ∈ rules do
5: newRule := r − ∪refRules, refRules.add(newRule)

6: b.rules := refRules
7: function VERIFYFLOWSPACE(src)
8: paths := ∅, cand := ∅
9: flow := *, path := [(src, *)], perf := *, cand.add( (flow, path, perf) )

10: while cand �= ∅ do
11: c := cand.pop()
12: if c.length ≥ K then continue

13: flow := c.flow, box:= c.path.lastHop()
14: for r ∈ box.rules do
15: (f, si, T, so, n) := r
16: if flow ∩ f == ∅ then continue

17: fo := T(flow ∩ f), path := c.path.append( (n, si) )
18: perf := c.perf � b.perf
19: if n == drop or n ∈ EndHosts then
20: paths.add( (fo, path, perf) )

21: else cand.add( (fo, path, perf) )

22: function VERIFYSTATES( path )
23: for (b, s) ∈ path do
24: Hb := GETHISTORY(b, s)

25: return ∩ Hb == ∅
26: function VERIFYPERFORMANCE(paths)
27: for p ∈ paths do
28: VERIFY(p.perf)

29: for l ∈ E do
30: l.perf := �p∈paths p.flow.perf, VERIFY(l.perf)

31: function SLA-VERIFIER(G(B, E))
32: REFINERULES(B)
33: paths := ∪b∈BVERIFYFLOWSPACE(b)
34: for p ∈ paths do
35: VERIFYSTATES(p)

36: VERIFYPERFORMANCE(paths)

to refine the rules first. For example, there is a high-priority

rule with flow matching and next hop (11 ∗ ∗, n1) and a low-

priority rule (1 ∗ ∗∗, n2) on the same box, the overlapping

flow space is 11 ∗ ∗. If a symbolic flow ∗ ∗ ∗∗ is input to this

box, and rules are matched one by one, the final output would

be (11 ∗ ∗, n1) and (1 ∗ ∗∗, n2) causing incorrect verification

result: flows 11 ∗ ∗ to arrive at multiple destinations.

Therefore, SLA-Verifier first refines all rules in a box. For

original rules, it expects to output a new set of rules where

(1) new rules do not overlap with each other and (2) cover the

same space with the original set, and (3) each flow would be

taken same actions on in both rule sets.

The RefineRule function in Algorithm 1 performs this task.

It first sorts all original rules in descending order according to

priority breaking ties by prefix length. Then the sorted rule set

is iterated, and each rule is refined by subtracting the union

of all previous rules. Thus a refined rule set that satisfies the

three requirements is finally got.

B. Flow Space Verification
SLA-Verifier models network devices behaviors. Specifi-

cally, it statically computes all possible flow paths in the

network. To achieve this, SLA-Verifier starts a symbolic flow

from each end host, adopt breadth first search (BFS) to find

all paths whose length is smaller than K. In each network
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box, the symbolic flow matches each rule using ∩ operation.

The symbolic flow is refined and split as it matches with more

fine-grained rules, and then forwarded to its next hop.

The VerifyFlowSpace() function (Algorithm 1) computes all

K-hop paths originated from src. It initially puts (src, ∗) into

candidate paths, meaning that the flow starts from src with

wildcard state ∗. In each round of the search a candidate

path is chosen, and then the incoming flow matches with

each rule. Once the flow matches a rule, the outgoing flow is

computed using the transformation function. The next hop and

the outgoing flow is appended into the path, and the internal

state and the aggregated performance vector of the box is also

recorded. If the next hop is an end host or drop, this path

(communication) is complete; otherwise, the flow reaches an

intermediate box and is put back into the candidate set.

C. Box States Verification
Flow space verification only guarantees possible data paths

for flows in the topology without considering box states along

the path. In the final output of flow verification, flow paths are

an output together with the box states that satisfy that path

(i.e., P(b, s)). For stateful network verification, SLA-Verifier

must prove (or disprove) the states of boxes along the path is

(un)satisfiable. The internal states of NFs can be built via [12].

The main idea of states verification is to turn states into

packet histories. In each box, a certain state would be triggered

only after processing certain sequence of packets. For the state

sb of each box b along a data path, SLA-Verifier computes the

possible packet history hb can trigger this state; and then SLA-

Verifier checks there exists a packet sequence that satisfies all

these histories to confirm whether is data path is satisfiable

(i.e., ∩bhb == ∅).

For example, a cache state “cached flow f” can be expressed

by history ∗f∗, and a firewall state “at least 2 connections of

flow f” can be expressed by ∗f ∗ f∗. Then, to check whether

both states can be satisfied simultaneously is equivalent to

check whether (∗f∗) ∩ (∗f ∗ f∗) is ∅.

D. Performance Verification
Performance verification includes both hard performance

configurations (e.g., QoS bandwidth allocation) and soft prob-

abilistic violation (e.g., possible bursty load). Among the

performance metric in Table III, hop count, bandwidth and

latency are flow-based metric, that is, the performance metric

accumulates (i.e., the join operation �) along the flow’s path;

while link load is link-based metric, multiple flow’s traffic load

on each link they traversed.

SLA-Verifier outputs a flow with its accumulated perfor-

mance vector, thus, the flow-based metrics can be verified

easily. For link-based metric, the flow’s performance metric

(e.g., load) needs to be added to the link, and then the metric

is verified per link.

When verifying a hard configuration metric (e.g., hop count,

QoS bandwidth), the metric is compared with the pre-set goal.

For example, SLA-Verifier user can verify whether a flow is
completed within 10 hops, or whether a flow is allocated 10
Mbps along its path. When verifying a soft probability (e.g.

latency of a flow or load on a link), the accumulated (�)

d2
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Fig. 2. Quantitative Forwarding Graph example

metric is checked by computing the probability of violating

a requirement. For example, with latency accumulated along

a flow’s path (i.e., convolution of the probability density func-

tion), SLA-Verifier user can verify whether 90% of packets
can be delivered within 100ms.

V. IMPLEMENTATION

In this section, we describe the implementation and algo-

rithms that use the above models to answer various quantitative

verification questions. To support efficient online verification,

we transform the model to a forwarding graph and then operate

on the graph. This idea is similar to NetPlumber [9] extending

HSA model [2] to a graph representation in order to support

efficient query and incremental update.

A. Quantitative Forwarding Graph Representation
Performing checks in real-time on a large network topology

with complex network boxes is challenging. One approach

that has been widely used to speed up the checking process is

slicing the network to equivalence classes (EC). Each EC is

defined as the set of packets that are treated the same across

the network. Our EC definition has two key improvements

compared to NetPlumber [9] or Veriflow [1]. 1) Quantitative:
packets are in the same equivalent class not only if they

traverse the same path but also if they are in the same

performance group. We consider the performance group by

parsing performance related configurations and by analyzing

the performance distribution. 2) Stateful: packets traverse a

sequence of NFs. The path may be changed according to the

status of the intermediate NF. This is often known as dynamic

service chain. Thus, packets in the same equivalence class will

also have the same treatment in any NF states.

We define a Quantitative Forwarding Graph (QFG) that

represents how packets are forwarded, what performance they

are getting, and what NF states they change. QFG is built on

top of our existing work on the stateful forwarding graph [7].

In a QFG, each node is denoted as a tuple of packet header

space, device, state and performance group, i.e., (H,D, S,G),
representing any packet in the packet header space H arriving

at a network device (switch or NF) D, when the network

device is at a particular state S with performance G. An

edge pointing from one node (H1, D1, S1, G1) to another
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(H2, D2, S2, G2) means when a packet in H1 arrives at D1

with state S1 in performance group G1, it will be modified to

H2 and forwarded to a device D2 at state S2 in performance

group G2. If D1 does not modify the packet header, then H1

is equal to H2. If the packet H1 does not trigger the state

transition, S1 is equal to S2. If both devices treat the packet

in the same way, then G1 = G2.

An example of QFG is shown in Figure 2. The topology

is shown in Figure 2 (a). There are 4 switches and 1 stateful

middlebox d2. For example, d2 can be an IDS. If the traffic

is normal, it sends to d3, otherwise to d5. The tables and

relationship between headers are shown in (b). Using them,

we can create a QFG in (c).

A key advantage of QFG representation is that whenever the

network device configurations are updated, it is easier to find

the affected QFG nodes as well as their dependencies, thus, the

verification can be limited to only those affected flows/boxes.

B. Verification implementation
Finding EC. We build the QFG graph from parsing the

OpenFlow table rules in all switches and NF configurations.

For tables in each network device (switch or NF), we first

group all the rules based on the actions. Then we create one

node for each group, which contains four fields (H, d, s, A),
i.e., header, device, state, and action. Next, we compute the

path starting from each node by tracing its next hop in the

action. For each hop, we create a corresponding node and

insert it to the path. In the meanwhile, we need to backtrack

to split the parent nodes along the path. For example, as shown

in Figure 2, h1 is split to h7, h8, and h6. Nodes are added

to the path iteratively until the next hop is “ to drop” or is

outside the network.

Verification on a header space. Given a header space h,

we find the paths that intersect with h, then we go through

the nodes of each path. Along the traversal, we compose

the performance metrics. Taking minimum bandwidth as an

example, the composition will be the minimum between the

current value of the bandwidth of the path and the bandwidth

of the nodes in QFG.

VI. VERIFICATION ASSISTED SLA MONITORING

In this section, we show how the verification results can

be used for SLA monitoring. Different from existing work

which uses either active measurement [4] or passive measure-

ment [13], we consider using both and use the verification

result to optimally pick the right set of measurements.

A. Measurements
In the result of SLA-Verifier includes per-flow performance

metrics, the difference of the performance metric and the

expected property indicate the stretch to accommodate viola-

tions. For example, for a flow with expected bandwidth alloca-

tion 10Mbps, if SLA-Verifier verifies bandwidth configuration

(QoS policies) to be less than 10Mbps, a violation is identified;

but if the verification result is larger than 10Mbps, due to

the dynamic runtime throughput, it is still possible that there

exist violations (e.g., burst traffic). In the case of this possible

violation, if the stretch is larger, the violation probability is

less. For example, if the verified QoS bandwidth allocation

is 100Mbps, the bandwidth violation is less likely to happen

than an allocation with exact 10Mpbs.

Therefore, measurement techniques are needed to monitor

any SLA violation due to traffic dynamics that cannot be solely

discovered by static verification. We consider two types of

measurements: Active end-to-end measurement actively injects

probes into the network, such as ping, traceroute, bandwidth

measurement, to measure the network performance in real

time. SDN-based passive measurement installs rules on SDN

switches to passively collect performance counters such as

packet drops, packet/byte counts. These counters can be used

to detect performance issues.

Our goal is to assign a measurement for each path. Normally

a path can be measured by end-to-end active probes, such as

ping, traceroute, bandwidth measurement. Active measurement

is known to have good accuracy to measure the dynamic

performance of the network. However, active probes will

introduce overhead to both end host and the network. On the

other hand, counters reported by each switch along the path

can be used for SLA measurement. However, it is often coarse-

grained and is also limited by the switch’s available rule space.

Given the pros and cons, we will pick the most appropriate

one for measuring each path.

B. Analysis
Passive measurements are preferred because they have light-

weighted overhead to the system, but there are only a limited

amount of them. For example, there are limited number of

traffic counters on a switch. Thus, we consider monitoring

as many flows by passive counters as possible and leaving

the remaining flows using active probing. We show that the

“stretch” computed by SLA-Verifier can assist the counter-to-

flow assignment.
For a flow i the probability of violation is negative corre-

lated with its stretch, i.e., P (Vi) ∝ 1/Si. If a flow i is not
assigned a counter, the probability to detect the violation is 0;
if it owns a counter exclusively, the probability is 1; if a flow
share a counter2, the probability is a conditional probability
where the aggregated flows violate under the condition flow i
violates. The equation is

P (Di|Vi) =

⎧⎪⎨
⎪⎩
0, flow i is not assigned a counter,

1, flow i exclusively owns a counter,

P (VS |Vi), flow i share a counter with flow set S.

The probability P (Vi) can be assumed to known by measuring

flows performance profile (e.g., throughput/latency distribution

in the history), and P (VS |Vi) can be got by Monte Carlo

simulation if all flows violation probability in S is known.

The counter-to-flow assignment problem can be formulate

as an optimization problem as is shown in Figure 3. {xijk}
are 0-1 variables representing that flow i is assign to the j-

th counter on box k. The goal is maximize the probability

of detecting the violations, with the constraints of reasonable

2Only flows in the same equivalent class can share a counter.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications



maximize ΣiP (Di|Vi), s.t.,
xijk ∈ {0, 1} (1)
Σjkxijk ≤ 1, ∀i (2)
Sjk = {i|xijk = 1,∀i}, ∀j, k (3)
|{Sjk|Sjk �= ∅, ∀k}| ≤ K,∀j (4)

Fig. 3. Optimization for counter-to-flow assignment

Algorithm 2 Find monitoring strategy

1: function MONITOR(QFG)
2: for p ∈ QFG.paths do
3: p.stretch := p.perf − p.expected

4: QFG.paths.sort() � Ascending by stretch
5: for p ∈ QFG.paths do
6: n := arg minn∈p (n.bw)
7: if n.paths < n.capacity then
8: n.paths.add(p), p.covered := True
9: n.highFreq −− ≤ 0 ? p.freq := high : p.freq := low

10: for p ∈ {p | p∈ QFG.paths and p.covered = False} do
11: e2eprobe.add(p)
12: highFreq −− ≤0 ? p.freq := high : p.freq := low

assignment (constraints 1, 2 and 3) and limited counters per

switch (constraint 4).

This integer program (IP) reveals two key insights, (1) flows

with tight stretch should be allocated first to increase the

probability of detecting violations, and (2) bottleneck nodes

on the path should be considered first to satisfy the monitoring

resource constraints (i.e., the number of counters). Due to

time complexity (NP-hard for IP, and thousands of flows and

boxes), we turn to a heuristic algorithm below based on the

two insights.

C. Heuristic Counter Assignment Algorithm
The main idea of the heuristic counter-to-flow assignment

is to make flow is loose stretch share counters and assign the

counter on the bottleneck node first for each flow. These two

heuristics can increase the likelihood of finding out violations.

The algorithm that searches for the best monitoring strategy

is shown in Algorithm 2. We use bandwidth as an example per-

formance metric. Using the verification result, it first computes

the stretch of each EC. Then we sort all the paths according

to their stretch in descending order. For each ranked path,

the bottleneck node of each path is identified and used for

monitoring this path. If the node has enough capacity, and if

the current path is not covered by any existing counter, we

assign a rule on the node to measure this path. After all the

counters in all the nodes are used up, for the remaining paths

that still have a high likelihood of violating SLA, we assign

end-to-end (e2e) probes for them.

As another optimization, each node may only satisfy limited

polling requirements for counters or support a limited amount

of probes. We also assign a measurement frequency for each

path. For simplicity, we use two levels of frequency: low and

high. Paths with a high violation possibility as assigned a

high polling/probing frequency. If a node’s polling/probing

frequency quota is used up, the remaining paths that are

assigned to it would be given a low polling/probing frequency.

We illustrate this process using the same example shown

in Figure 2. The input to the algorithm is the constraints

of monitoring capacity and the QFG. Assuming the network

can only afford 2 e2e probes, because h7 and h8 have a

tighter budget (compared to their SLAs), we use e2e probes to

monitor them. The remaining ECs are covered using counters.

h9 and h4 both have bottleneck node d1. So we use two

counters on d1 to measure their bandwidth. Finally, assuming

h2 is the best effort, we use d5 which has the most resource

to monitor it.

VII. EVALUATION

In this section, we use experiments to answer the following

questions: 1) given the dynamic nature of traffic, is it even

possible to do static quantitative verification? 2) How accurate

is our quantitative model on real-world performance data? 3)

how does our algorithm scale? 4) what is the benefit when we

use verification results to guide online SLA monitoring?

A. Evaluation methodology
Dataset: To answer the first two questions regarding

the model accuracy, we use real-world measurement data

and topology to evaluate. We use the traceroute data from

iPlane [14]. The data set contains 10 days of traceroute data,

from 163 locations to 90,193 destination prefixes, covering

2185 distinct ASes and 925K PoPs.

Given 2800K measurements per day, we parse all the

traceroute data and generate PoP level network topology and

PoP level delay. More specifically, we map each IP in the

traceroute to a PoP using IP to PoP mapping database, and then

compute the latency between any two PoPs that appear in the

path. At the end, we get 98M PoP pairs, which we call them

PoP level links or links in the rest of the paper. Because some

links may not have sufficient delay measurements, we pick

the top 2000 links that have at least 45K delay measurements.

Thus, in our input, each link is represented as (PoP1, PoP2)
and is associated with a list of delays {d1, d2, . . . dn}.

Implementation: We developed a prototype in approximately

3K lines of Java. Our prototype takes as input routing rules

from Mininet [15] to create a network topology. We evaluated

the time complexity on both a linear topology with generic

NFs which we can change the number of states.

B. Model accuracy
There are two sources of inaccuracy in our quantitative

model. First, we assume that the distribution of a metric is

given. However, the distribution is derived from history data

and it may not capture all the traffic dynamics in the run

time. We first divide the data points to two sets: two thirds

of them are used for training set and the remaining are the

testing set. We compute the distribution from the training set.

We use two ways to describe the model: mean+/-2std or the

range below 90th percentile. Each method gives a range. We

then compute what fraction of the testing set that are covered

by this distribution, which is referred as prediction accuracy.

Figure 4 shows the fraction across all the links. We can that

the model is fairly accurate, especially using the first method.

All of them are above 92% and half of them are above 97%.

We compute the path performance by combining the

link performance together. This is the second source of
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Fig. 4. Model prediction error. Fig. 5. Compose distribution: link3=link1+link2. Fig. 6. Delay composition accuracy: relative
difference.

inaccuracy. Assuming link1 = (PoP1, PoP2), link2 =
(PoP2, PoP3), link3 = (PoP1, PoP2, PoP3), we examine

whether the distribution of link3 is indeed a sum of the other

two links. Figure 5 shows an example where three links have

similar shape of distribution. We systematically examine how

accurate the composition is. We take 7380 sets of triple links.

For each triple, we compute the
link3−(link1+link2)

link3
using both

mean and median value. Figure 6 shows the fraction: 70% of

the links have a difference less than 10%. Figure 7 shows the

absolute difference: 80% are less than 5ms. Going beyond 3

links, we increase the hop count of the path and see that the

error is all below 10% in Figure 8. Note that our experiment

is different from the network triangular inequality works [16].

In their case, PoP1 to PoP3 does not traverse PoP2.

C. Verification efficiency
We test the scalability of SLA-Verifier as the network size

increases. For each network size, we assume each switch has

4 or 8 QoS classes. Each switch randomly assigns one class

to each flow. This increases the ECs based on QoS metrics.

We first check the time it takes to find the equivalence class

(EC) in Figure 9. The EC build time increases as the network

size and the number of QoS classes. With 1000 nodes, the

time to build the EC graph is 400ms for 4-QoS and 500ms

for 8-QoS. Next, we compute the time to answer the first two

queries in Table I with both 4-QoS and 8-QoS in Figure 10.

Both queries can be answered within 20ms. Query 2 takes

longer time because it needs to examine all the paths to a

particular destination. 8-QoS has slightly longer time because

it has more ECs.

D. Benefit of verification assisted SLA monitoring
We use the same iPlane dataset to quantify the benefit of our

monitoring method. We take five ASes that have the largest

number of PoPs in our dataset. Their statistics are shown in

Table V. The fourth column path is the number of PoP level

paths found. It is also the amount of probes needed per time

slot if we only use active probing. The fifth column max
counter shows the maximum number of counters on all the

nodes if we only use passive counter based measurement. The

last two columns show the average probability of detecting

SLA violations for all paths. For each path, we randomly

assign an maximum delay requirement and compute the gap

between it and the estimated value from verification. We

assume the detection probability for active probing to be 0.9

and counter based measurement to be 0.6. Comparing the last

two columns, we see an 8x improvement. Finally, we vary the

delay SLA setting. In Figure 11 we can see that when SLAs

are more relaxed, we need fewer active probes and slightly

more counters.

E. Testbed evaluation
We test our method on an Openstack service chaining

testbed. Our testbed is comprised of 2 HPE ProLiant DL120

Gen9 servers with 128GB of RAM powered by Intel Xeon

E5-2600 v3 series processors. We deployed a multi-node

DevStack cluster running the Liberty release of OpenStack

with one server acting as controller node and the second as

compute node. Static SFC chaining is realized via OpenStack’s

Neutron reference implementation using Open vSwitch.3

We spawn four different virtual machines in our single

compute node and connect all of them to a single virtual

network (via OVS). Two of the VMs act as source (server
VM) and destination (client VM) for video traffic that traverses

a service chain. Using the remaining two VMs, we created

a 2-VNF service chain using two instances of a commercial

network firewall image. Both firewalls have QoS rules. We

created two flow classifiers for traffic from both directions.

Figure 12 shows a logical diagram of our service chain and

the flow of traffic in the network.

We test SLA-Verifier on this testbed in two ways. path
checking: We manually remove the rules that forward packet

to the second VNF. SLA-Verifier reports that the chain re-

constructed from the table only traverses one VNF, which

conflicts with the SFC requirement. The verification time is

3.2ms. performance checking: We further insert a QoS config-

uration on the firewall, which sets the maximum and minimum

bandwidth of a flow to be 5Mbps. Then SLA-Verifier reports

an SLA violation because the required minimum bandwidth is

100Mbps. This checking takes 2.8ms.

VIII. RELATED WORK

SLA monitoring ISPs often monitors SLAs by active

measurement, which periodically injects probes into the net-

work [18], [19], [20]. From the probes, it computes delay,

delay variation, loss rate metrics that are statistically signifi-

cant. Active measurement may incur additional overhead to the

network. And it can only discover problems after it manifests.

Our work is orthogonal to active SLA monitoring. We could

be used to detect misconfigurations even before deployment.

3Neutron’s reference implementation is based on programming Open
vSwitch with flow table entries that override the default MAC-based forward-
ing with arbitrary user-defined frame forwarding ordering using the Neutron
SFC API. [17]
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on a single OpenStack compute node.

TABLE V. MONITORING EXPERIMENT SUMMARY. (VAM: VERIFICATION

ASSISTED MONITORING)

ASN Name # # max detect prob. detect prob.
PoPs paths cnt naive VAM

174 Cogent 105 6752 981 0.3 0.73
4134 ChinaT 77 1242 323 0.22 0.83
3356 Level 3 52 627 78 0.15 0.75
3549 GBLX 41 267 61 0.11 0.92
15557 RIPE 38 132 58 0.09 0.89

Network verification Our work extends existing network

verification [2], [1], [9], [21] to quantitative metrics. Our work

is also related to middlebox debugging. BUZZ [22] builds the

FSM from NFs’ source code and then generates testing packets

based on the FSM. Our work is orthogonal as we focus on

network-wide verification instead of each individual NF.
IX. CONCLUSION

In this paper, we have proposed SLA-Verifier, a system

that verifies the high level SLAs by examining the low level

performance implementations such as QoS, bandwidth, buffer

sizing and rate limiting configurations. While existing work

focuses on reachability properties, this paper goes further to

handle performance metrics. The method proposed is efficient

and general as it handles both stateless and stateful NFs in a

uniform way.
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