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Abstract. Recently, [8] defined the class of Linear Nash Bargaining
Games (LNB) and obtained combinatorial, polynomial time algorithms
for several games in this class. [8] also defines two natural subclasses
within LNB, UNB and SNB, which contain a number of natural Nash
bargaining games. In this paper we define three basic game theoretic
properties of Nash bargaining games: price of bargaining, fairness and
full competitiveness. We show that for each of these properties, a game
in UNB has this property iff it is in SNB.

1 Introduction

The bargaining game was first modeled in John Nash’s seminal 1950 paper [5]
using the framework of game theory given a few years earlier by von Neumann
and Morgenstern [9]. Since bargaining is perhaps the oldest situation of conflict
of interest, and since game theory develops solution concepts for negotiating in
such situations, it is not surprising that this paper led to a theory (of bargaining)
that lies today at the heart of game theory (e.g., see [3, 7, 6]).

In a recent paper, Vazirani [8] initiated a study of Nash bargaining games
via combinatorial, polynomial time algorithms. [8] defines LNB (Linear Nash
Bargaining Games) – the class of games whose feasible set of utilities is defined by
finitely many packing constraints. [8] also defines two natural subclasses within
LNB: UNB and SNB. These classes contain a number of natural Nash bargaining
games. In this paper we define three basic game theoretic properties of Nash
bargaining games and show that for each of these properties, a game in UNB
has this property iff it is in SNB. Below we intuitively define the classes UNB and
SNB and then state the three properties; formal definitions appear in Section 2.

UNB is the subclass in which for each available resource, each agent who
uses this resource uses it in the same way, i.e., the coefficients in the packing
constraints are 0/1. Clearly, only 2|A| such constraints are needed, where A is
the set of agents – one for each subset of A. We can now view the right hand
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sides of these constraints as being given by a set valued function over the power
set of A. If this function is submodular, the game is said to be in the subclass
SNB of UNB.

We define price of bargaining in a way that is analogous to the notion of
price of anarchy [4], i.e., it measures the loss in efficiency in resorting to the
Nash bargaining solution as compared to the most efficient solution that can
be obtained in a centralized manner. We will say that a Nash bargaining game
is fully competitive if whenever one player increases his disagreement utility,
no other player’s utility can increase in the resulting Nash bargaining solution.
We consider max-min and min-max fairness of the Nash bargaining solution in
relation to all feasible solutions that are Pareto optimal. For all these properties,
we gave a complete characterization of bargaining games in UNB. That is, any
bargaining game in UNB has one of these properties if and only if it is in SNB.

2 Uniform Nash Bargaining Games

For a set of agents A, a Nash bargaining game is defined by a pair (c,P), where
P ⊆ R

|A|
+ is a compact and convex set which defines the feasible set of utilities

of all the agents, and c ∈ P is known as the disagreement point which defines
the amount of utility each agent will get if the bargaining process fails.

Nash [5] defined the bargaining solution u ∈ P of this game to be the
one which satisfies four axioms: Pareto optimality, Invariance under affine
transformation, Symmetry, and Independence of irrelevant alternatives. Nash
proved that there is a unique point in P which satisfies these axioms, and
moreover this point (u ∈ P) is the one that maximizes

∏
i∈A(ui − ci) or

equivalently
∑
i∈A log(ui − ci).

The class Linear Nash Bargaining Games (LNB), defined in [8], consists
of games whose feasible set P is defined by a finite number of linear packing
constraints. The main focus of our paper will be on a natural subclass of LNB
called Uniform Nash bargaining games (or UNB) which was also defined in [8].
In these games, the coefficients of the variables in the linear packing constraints
are either 0 or 1. Clearly there can be at most 2|A| such constraints, thus a
function of the form v : 2A → R+ uniquely encodes a feasible set in UNB games.

Now given a disagreement point c, and a fixed set of agents T ⊆ A, the
solution to a UNB game can be captured by the following convex program:

max
∑
i∈T

log(ui − ci)

s.t. ∀S ⊂ T :
∑
i∈S

ui ≤ v(S)

∀i ∈ T : ui ≥ 0 (1)

For a fixed function v : 2A → R+, we will define a family of games F (v)
to be the set of all Nash bargaining games for various choices of disagreement
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points c and set T ⊆ A. An instance (c, T ) ∈ F (v) will refer to a particular Nash
bargaining game in F (v) with a fixed set T and disagreement point c. A UNB
game is called an SNB if the function v is a submodular function.

We will assume that the following two natural conditions are satisfied by the
function v :

1. Non degenerate: v(∅) = 0.
2. Non redundancy of sets: ∀S ⊆ A, there exists a feasible utility vector u

such that set S is tight w.r.t. u, i.e.
∑
i∈S ui = v(S).

We will call such functions to be valid functions. Note that the second
condition above implies 1)Monotonicity: for any Z1 ⊂ Z2 ⊆ A, we have
v(Z1) ≤ v(Z2), and 2)Complement freeness: v(Z1 ∪ Z2) ≤ v(Z1) + v(Z2).

In this paper, we are interested in the following three game theoretic
properties of UNB games:

Price of Bargaining: For any valid function v : 2A → R+, we define the
Price of bargaining of F (v) to be min

(c,T )∈F (v)

u(c,T )
v(T ) , where u(c, T ) is the total

utility obtained by set T of agents in the bargaining solution of the instance
(c, T ).

Full competitiveness: For any valid function v : 2A → R+, we say that
F (v) is fully competitive if, for all games in F (v), the following property holds:
On increasing the disagreement utility ci of an agent i, the bargaining solution
doesn’t increase the utility for any other agent j, where j 6= i.

Fairness: For any instance I = (c, T ) ∈ F (v), define core(I) to be the set
of all feasible Pareto optimal solutions. For any vector u, let udec be the vector
obtained by sorting the components of u in decreasing order. A vector x min-
max dominates y if xdec is lexicographically smaller than ydec. Also let u∗ be
bargaining solution of instance I. Instance I is said to be min-max fair if the
vector u∗ − c min-max dominates y − c for all y ∈ core(I). F (v) is said to be
min-max fair if all the instances in F (v) are min-max fair. Similarly we define
the notion of max-min fairness.

Main results of this paper are described in theorems 1, 2, and 3.

3 Preliminaries

For any valid function v, we say that S is tight w.r.t. u if
∑
i∈S ui = v(S). Let

u∗ be the solution to the convex program given in (1). Then by KKT conditions,
there must exist variables {pS , ∀S ⊆ T} such that:

1. ∀S ⊆ T, pS ≥ 0.
2. ∀S ⊆ T, pS > 0 ⇒ u∗ makes set S tight.
3. ∀k ∈ T , we have

∑
S:k∈S

pS = 1
u∗k−ck

.
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We will call pS to be the price of set S.

Now we give some properties of the submodular and non-submodular functions
which will be used in our proofs.

Property 1. Given a valid submodular function v : 2A → R+, and a utility vector
u, if Z1, Z2 ⊆ A are tight sets w.r.t. u, then Z1 ∪ Z2 and Z1 ∩ Z2 are also tight
sets w.r.t. u.

By using the uncrossing argument and the above property, we get the
following corollary.

Corollary 1. Given any SNB instance specified by v, c and T , we can choose
the prices for all subsets of T in the KKT conditions, such that the tight sets with
positive prices form a nested set family, i.e. T = T1 ⊃ T2 ⊃ · · ·Tk ⊃ Tk+1 = ∅.

Also, we will use the following property of non-submodular functions which
is similar to the one given in [1]. Proof is given in the full version.

Property 2. Given a valid non-submodular function v : 2A → R+, there exists
set S ⊂ A, i, j ∈ A \ S, l ∈ S and a feasible utility vector u such that:

1. S ∪ {i}, S ∪ {j} are both tight w.r.t. u.
2. Let T = S ∪ {i, j}, Fk = {Z ⊆ T : k ∈ Z, and Z is tight w.r.t. u}. Then

following holds
Fl = Fi ∪ Fj , Fi ∩ Fj = ∅ .

3. uk > 0, ∀k ∈ T .

4 Price of Bargaining

Theorem 1. For any valid function v, F(v) has Price of bargaining equal to 1
if and only if v is submodular.

Proof. ⇐: Suppose v is submodular. We want to show that for any disagreement
point c, and set S ⊆ A, if we restrict to the subproblem among agents in S, the
Nash bargaining solution u∗ satisfies

∑
i∈S u

∗
i = v(S).

Since u∗ is the solution of Nash bargaining game, it must be Pareto optimal.
Therefore every agent i is in some tight set Ti. Therefore by Property 1, we have
S = ∪i∈STi is also tight, which means

∑
i∈S u

∗
i = v(S).

⇒: Suppose v is not submodular. By Property 2, there is a set T = S ∪{i, j}
and a feasible utility vector u = (uk)k∈T such that: (1) uk > 0,∀k ∈ T , (2) S ∪ i
and S ∪ j are tight w.r.t. u, (3) T is not tight w.r.t. u. This is obtained from
Fi ∩ Fj = ∅.

Now for any k ∈ T , k is in some tight set w.r.t u, hence by the lemma 1
below (proof in full version), there exists c such that u is the Nash bargaining
solution corresponding to c.

By condition 3 above, we have
∑
k∈T uk < v(T ), which implies the Price of

bargaining is strictly less than 1.
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Lemma 1. Given any valid function v, an instance (c, T ) in F(v), and a utility
vector u with ui > 0,∀i ∈ T , u is Pareto optimal if and only if there exists
a vector c, with ci > 0 ∀i ∈ T , such that u is the bargaining solution for the
instance (c, T ).

5 Full Competitiveness

Theorem 2. For any valid function v, F(v) is fully competitive if and only if v
is submodular.

Proof. ⇐: We first describe the algorithm for finding the optimal solution to the
convex program (1) when the function v is a submodular function. Let y := u−c.
Then, an equivalent convex program is max{

∑
i log yi : y(S) ≤ f(S); y ≥ 0},

where f(S) := v(S) − c(S). Call a set tight if y(S) = f(S). Call an agent
free if w.r.t the current y it is not in any tight set. The algorithm maintains
a set of tight sets T initially empty. For all agents i which are free increase yi
simultaneously until some new set X gets tight. If X intersects with any set
in T , then since v is submodular, their union must be tight. Pick X to be the
maximal (inclusion-wise) tight set and put it in T . Continue till T (the set of all
agents) becomes tight. We have the following lemma (Proof in the full version):

Lemma 2. The utility allocation returned by the above algorithm is an optimal
solution to the convex program.

Now we prove that SNB games are fully competitive. Suppose the disagree-
ment of agent i goes from ci to ci + δ. Call the new disagreement vector c′. Let
f ′(S) := v(S)− c′(S) for all S. To show full competitiveness, it suffices to show
that the optimum, y′ of the convex program max{

∑
i log yi : y(S) ≤ f ′(S); y ≥

0} is dominated by y, the solution to the original convex program with f(). We
will use the continuous time algorithm above to prove this.

Firstly, note that f ′(S) = f(S) for all sets not containing i and f ′(S) =
f(S) − δ for all others. This implies, that there is at least one agent j with
y′j < yj . Secondly, observe from the description of the algorithm that for any
agent j with y′j < yj , there must be a corresponding tight set in T ′ which
contains both j and i.

We now show that if an agent j became non-free at time t in the original run
(which means yj = t), then by time t it must be in a tight set in the new run.
We do so by showing that at time t if y′j = t, then some set containing j at that
time is tight (or over-tight which would imply y′j < t).

Let A be the set containing j which went tight in the original run of the
algorithm. Consider the set A in the new run of the algorithm at time t. Let
Q := {j ∈ A : y′j < yj}. Note that if j ∈ Q, we are done. Assume j /∈ Q. By
the second observation made above and using the submodularity of v (to show
union of intersecting tight sets is tight), we know there must exist a set Z which
contains both Q and i, and which is tight. That is, y′(Z) = f ′(Z) = f(Z) − δ.
We claim that y′(Z ∪A) ≥ g′(Z ∪A) and thus we are done.
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This is because

y′(Z ∪A) = y′(A \Q) + y′(Z) ≥ y(A \Q) + f ′(Z) = y(A)− y(Q) + f ′(Z)
≥ f(A)− f(Q) + f(Z)− δ ≥ f(A ∪ Z)− δ = f ′(A ∪ Z)

The first inequality follows from definition of Q, the second from the tightness
of A under y and feasibility of y and the last follows from submodularity of f .

⇒: Suppose v is not submodular, then by property 2 there must exist a set
S and agents i, j ∈ A \ S, l ∈ S, and a feasible utility vector u such that: (1)
S∪{i}, S∪{j} are both tight w.r.t. u, (2)Fl = Fi∪Fj , Fi∩Fj = ∅ , (3) uk > 0,
∀k ∈ T , where T = S ∪ {i, j}.

We will now construct an instance (c, T ) ∈ F (v) which is not fully
competitive. Let δ = mink∈T uk > 0. For tight sets S ∪ {i}, S ∪ {j}, we set
their prices to be pS,i, pS,j respectively, where pS,i = pS,j = P = 2

δ . For any
other set Z ⊆ T , we set its price pZ to be zero.

Let
∀k ∈ T ck = uk −

1∑
Z⊆T,k∈Z pZ

Since S ∪ {i} and S ∪ {j} are both tight, so for any k ∈ T , there exist at least
one Z ⊆ S such that pZ = P , and we have

ck ≥ uk −
δ

2
> 0.

By the definition of c, all the KKT conditions hold, thus u is the bargaining
solution w.r.t. (c, T ).

We will now construct a c′ and its corresponding bargaining solution u′, such
that: (1) ∀k ∈ T, k 6= j, c′k ≥ ck, and (2) c′j = cj and u′j > uj .

Note that if the above conditions hold, then we can show that there exists
a game in F(v) which is not fully competitive. This is because c′ can be
obtained from c by increasing only the coordinates other than j. If F (v) is
fully competitive, then each time a coordinate of c is increased utility allocated
to j shouldn’t increase. But if u′j > uj is true then we get a contradiction.

Now we give the construction of u′ and c′. Let u′ equals u except that
u′j = uj + ε, u′i = ui + ε, u′l = ul − ε. Using arguments similar to the proof of
property 2, one can show that there exists small enough ε (given below) so that
u′ is feasible.

ε < min{ε0, ul/2}, where ε0 := min
non-tight Z⊆T

(v(Z)−
∑
k∈Z uk)

2
.

Now we construct c′, so that it satisfies the condition mentioned above and
the KKT conditions.

Note that for the KKT conditions, if we only assign positive price to tight sets
S ∪ i, S ∪ j, say p′S,i and p′S,j respectively, then u′, c′ satisfy the KKT conditions
and the above requirements iff
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– c′i = u′i − 1
p′S,i

= ui + ε− 1
p′S,i
≥ ui − 1

pS,i
= ci;

– c′j = u′i − 1
p′S,i

= uj + ε− 1
p′S,j

= uj − 1
pS,j

= cj ;

– c′l = u′l − 1
p′S,i+p

′
S,j

= ul − ε− 1
p′S,i+p

′
S,j
≥ ul − 1

pS,i+pS,j
= cl;

– c′k = u′k − 1
p′S,i+p

′
S,j

= uk − 1
p′S,i+p

′
S,j
≥ uk − 1

pS,i+pS,j
= ck, ∀k 6= l, k ∈ S.

The above conditions can be reduced to the following:

p′S,j =
1

ε+ 1
pS,j

, p′S,i ≥
1

1
pS,i+pS,j

− ε
− p′S,j

This can be satisfied as long as ε < 1
pS,i+pS,j

= δ
4 .

To sum up, by setting ε = min{ε0/2, δ/8}, we can find p′S,i, p
′
S,j such that:

p′S,j =
1

ε+ 1
pS,j

, p′S,i ≥
1

1
pS,i+pS,j

− ε
− p′S,j

Note that this value of ε is consistent with the previous mentioned upper
bound on it. Therefore, we can construct c′ such that u′ is the bargaining solution
w.r.t. c′ and c′k ≥ ck, ∀k ∈ T , c′j = cj . Thus (c, T ) ∈ F (v) is not fully competitive.

6 Fairness

Theorem 3. For any valid function v, F(v) is min-max and max-min fair if
and only if v is submodular.

Proof. ⇐: Suppose v is submodular. let u∗ be the Nash bargaining solution for
(c, T ) where T ⊆ A. By corollary 1, we can choose the prices such that the tight
sets w.r.t u∗ with positive price form a nested set family, T = T1 ⊃ T2 ⊃ ...... ⊃
Tt ⊃ ∅.

Pick any element g in core((c, T )) i.e. g is Pareto optimal. If u∗ does not
min-max dominate g, then g min-max dominates u∗. In this case we will show
that g = u∗, which leads to a contradiction.

Since g is Pareto optimal therefore every agent is in some tight set w.r.t g.
Hence by property 1, T1 is tight, i.e.

∑
k∈T1

gk = v(T1). Since g is feasible, we
have ∑

k∈T2

gk ≤ v(T2)

T1 and T2 are tight sets w.r.t u∗, so we have∑
k∈T1−T2

gk ≥
∑

k∈T1−T2

u∗k (2)

Since each agent i in T1 − T2 has the highest ui − ci among all the agents, if g
min-max dominates u∗, then for any k ∈ T1 − T2, we have gk ≤ u∗k. Then by
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(2), we have gk = u∗k,∀k ∈ T1 − T2. Then we can use induction to show for any
1 ≤ i ≤ t and any k ∈ Ti − Ti+1, gk = u∗k. Hence g = u∗.

This proof also shows that u∗ is the unique min-max fair utility vector. By
using an argument similar to [2], we can show that any unique min-max fair
utility vector is also max-min fair.

⇒: Suppose v is not submodular, then by property 2, there is a set T =
S ∪ {i, j} and a g = (gk)k∈T such that: (1) gk > 0,∀k ∈ T , (2) S ∪ {i} and
S ∪ {j} are tight w.r.t g, (3) Fl = Fi ∪ Fj , Fi ∩ Fj = ∅.

For each k ∈ T , let ck = gk − ε, where 0 < ε < mink∈T {gk}. Clearly g is
a feasible core element corresponding to c, since each k is in a tight set (either
S ∪ {i} or S ∪ {j} ).

Let u∗ be the Nash bargaining solution corresponding to (c, T ). Since g is
the unique min-max and max-min feasible solution, thus if u∗ min-max and
max-min dominates g, then u∗ must equal g. Next we show that this is not
possible.

Suppose u∗ = g, by KKT conditions, we can price all the subsets of T such
that:

1
gl − cl

=
∑
Z∈Fl

pZ =
∑
Z∈Fi

pZ +
∑
Z∈Fj

pZ =
1

gi − ci
+

1
gj − cj

which contradicts the fact that gl − cl = gi − ci = gj − cj = ε.
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