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On the Complexity of t-Closeness Anonymization and Related

Problems

Hongyu Liang∗ Hao Yuan†

Abstract

An important issue in releasing individual data is to protect the sensitive information from
being leaked and maliciously utilized. Famous privacy preserving principles that aim to ensure
both data privacy and data integrity, such as k-anonymity and l-diversity, have been extensively
studied both theoretically and empirically. Nonetheless, these widely-adopted principles are still
insufficient to prevent attribute disclosure if the attacker has partial knowledge about the overall
sensitive data distribution. The t-closeness principle has been proposed to fix this, which also has
the benefit of supporting numerical sensitive attributes. However, in contrast to k-anonymity
and l-diversity, the theoretical aspect of t-closeness has not been well investigated.

We initiate the first systematic theoretical study on the t-closeness principle under the
commonly-used attribute suppression model. We prove that for every constant t such that
0 ≤ t < 1, it is NP-hard to find an optimal t-closeness generalization of a given table. The proof
consists of several reductions each of which works for different values of t, which together cover
the full range. To complement this negative result, we also provide exact and fixed-parameter
algorithms. Finally, we answer some open questions regarding the complexity of k-anonymity
and l-diversity left in the literature.

1 Introduction

Privacy-preserving data publication is an important and active topic in the database area. Nowa-
days many organizations need to publish microdata that contain certain information, e.g., medical
condition, salary, or census data, of a collection of individuals, which are very useful for research
and other purposes. Such microdata are usually released as a table, in which each record (i.e., row)
corresponds to a particular individual and each column represents an attribute of the individuals.
The released data usually contain sensitive attributes, such as Disease and Salary, which, once
leaked to unauthorized parties, could be maliciously utilized and harm the individuals. Therefore,
those features that can directly identify individuals, e.g., Name and Social Security Number, should
be removed from the released table. See Table 1 for example of an (imagined) microdata table that
a hospital prepares to release for medical research. (Note that the IDs in the first column are only
for simplicity of reference, but not part of the table.)
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Quasi-identifiers Sensitive

Zipcode Age Education Disease

1 98765 38 Bachelor Viral Infection
2 98654 39 Doctorate Heart Disease
3 98543 32 Master Heart Disease
4 97654 65 Bachelor Cancer
5 96689 45 Bachelor Viral Infection
6 97427 33 Bachelor Viral Infection
7 96552 54 Bachelor Heart Disease
8 97017 69 Doctorate Cancer
9 97023 55 Master Cancer
10 97009 62 Bachelor Cancer

Table 1: The raw microdata table.

Quasi-identifiers Sensitive

Zipcode Age Education Disease

1 98⋆⋆⋆ 3⋆ ⋆ Viral Infection
2 98⋆⋆⋆ 3⋆ ⋆ Heart Disease
3 98⋆⋆⋆ 3⋆ ⋆ Heart Disease

4 9⋆⋆⋆⋆ ⋆⋆ Bachelor Cancer
5 9⋆⋆⋆⋆ ⋆⋆ Bachelor Viral Infection
6 9⋆⋆⋆⋆ ⋆⋆ Bachelor Viral Infection
7 9⋆⋆⋆⋆ ⋆⋆ Bachelor Heart Disease

8 970⋆⋆ ⋆⋆ ⋆ Cancer
9 970⋆⋆ ⋆⋆ ⋆ Cancer
10 970⋆⋆ ⋆⋆ ⋆ Cancer

Table 2: A 3-anonymous partition.

Nonetheless, even with unique identifiers removed from the table, sensitive personal information
can still be disclosed due to the linking attacks [27, 28], which try to identify individuals from the
combination of quasi-identifiers. The quasi-identifiers are those attributes that can reveal partial
information of the individual, such as Gender, Age, and Hometown. For instance, consider an
adversary who knows that one of the records in Table 1 corresponds to Bob. In addition he knows
that Bob is around thirty years old and has a Master’s Degree. Then he can easily identify the
third record as Bob’s and thus learns that Bob has a heart disease.

A widely-adopted approach for protecting privacy against such attacks is generalization, which
partitions the records into disjoint groups and then transforms the quasi-identifier values in each
group to the same form. (The sensitive attribute values are not generalized because they are usually
the most important data for research.) Such generalization needs to satisfy some anonymization
principles, which are designed to guarantee data privacy to a certain extent.

The earliest (and probably most famous) anonymization principle is the k-anonymity principle
proposed by Samarati [27] and Sweeney [28], which requires each group in the partition to have
size at least k for some pre-specified value of k; such a partition is called k-anonymous. Intuitively,
this principle ensures that every combination of quasi-identifier values appeared in the table is
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Quasi-identifiers Sensitive

Zip Code Age Education Disease

1 98⋆⋆⋆ 3⋆ ⋆ Viral Infection
2 98⋆⋆⋆ 3⋆ ⋆ Heart Disease

3 9⋆⋆⋆⋆ ⋆⋆ ⋆ Heart Disease
5 9⋆⋆⋆⋆ ⋆⋆ ⋆ Viral Infection
8 9⋆⋆⋆⋆ ⋆⋆ ⋆ Cancer
9 9⋆⋆⋆⋆ ⋆⋆ ⋆ Cancer

4 97⋆⋆⋆ ⋆⋆ Bachelor Cancer
6 97⋆⋆⋆ ⋆⋆ Bachelor Viral Infection

7 9⋆⋆⋆⋆ ⋆⋆ Bachelor Heart Disease
10 9⋆⋆⋆⋆ ⋆⋆ Bachelor Cancer

Table 3: A 2-diverse partition of Table 1.

indistinguishable from at least k − 1 other records, and hence protects the individuals from being
uniquely recognized by linking attacks. The k-anonymity principle has been extensively studied,
partly due to the simplicity of its statement. Table 2 is an example of a 3-anonymous partition of
Table 1, which applies the commonly-used suppression method to generalize the values in the same
group, i.e., suppresses the conflicting values with a new symbol ‘⋆’.

A potential issue with the k-anonymity principle is that it is totally independent of the sensitive
attribute values. This issue was formally raised by Machanavajjhala et al. [19] who showed that
k-anonymity is insufficient to prevent disclosure of sensitive values against the homogeneity attack.
For example, assume that an attacker knows that one record of Table 2 corresponds to Danny, who
is an elder with a Doctorate Degree. From Table 2 he can easily conclude that Danny’s record
must belong to the third group, and hence knows Danny has a cancer since all people in the third
group have the same disease. To forestall such attacks, Machanavajjhala et al. [19] proposed the
l-diversity principle, which demands that at most a 1/l fraction of the records can have the same
sensitive value in each group; such a partition is called l-diverse. Table 3 is an example of a 2-
diverse partition of Table 1. (There are some other formulations of l-diversity, e.g., one requiring
that each group comprises at least l different sensitive values.)

Li et al. [17] observed that the l-diversity principle is still insufficient to protect sensitive
information disclosure against the skewness attack, in which the attacker has partial knowledge of
the overall sensitive value distribution. Moreover, since l-diversity only cares whether two sensitive
values are distinct or not, it fails to well support sensitive attributes with semantic similarities,
such as numerical attributes (e.g., the salary).

To fix these drawbacks, Li et al. [17] introduced the t-closeness principle, which requires that
the sensitive value distribution in any group differs from the overall sensitive value distribution
by at most a threshold t. There is a metric space defined on the set of possible sensitive values,
in which the maximum distance of two points (i.e., sensitive values) in the space is normalized to
1. The distance between two probability distributions of sensitive values are then measured by
the Earth-Mover Distance (EMD) [26], which is widely used in many areas of computer science.
Intuitively, the EMD measures the minimum amount of work needed to transform one probability
distribution to another by means of moving distribution mass between points in the probability
space. The EMD between two distributions in the (normalized) space is always between 0 and 1.
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We will give an example of a t-closeness partition of Table 1 for some threshold t later in Section 2,
after the related notation and definitions are formally introduced.

The t-closeness principle has been widely acknowledged as an enhanced principle that fixes the
main drawbacks of previous approaches like k-anonymity and l-diversity. There are also many
other principles proposed to deal with different attacks or for use of ad-hoc applications; see, e.g.,
[3, 20, 22, 23, 29, 30, 32, 33] and the references therein.

1.1 Theoretical Models of Anonymization

It is always assumed that the released table itself satisfies the considered principle (k-anonymity,
l-diversity, or t-closeness), since otherwise there exists no feasible solution at all. Therefore, the
trivial partition that puts all records in a single group always guarantees the principle to be met.
However, such a solution is useless in real-world scenarios, since it will most probably produce a
table full of ‘⋆’s, which is undesirable in most applications. This extreme example demonstrates
the importance of finding a balance between data privacy and data integrity.

Meyerson and Williams [21] proposed a framework for theoretically measuring the data integrity,
which aims to find a partition (under certain constraints such as k-anonymity) that minimizes the
number of suppressed cells (i.e., ‘⋆’s) in the table. This model has been widely adopted for theo-
retical investigations of anonymization principles. Under this model, k-anonymity and l-diversity
have been extensively studied; more detailed literature reviews will be given later.

However, in contrast to k-anonymity and l-diversity, the theoretical aspects of the t-closeness
principle have not been well explored before. There are only a handful of algorithms designed for
achieving t-closeness [17, 18, 8, 25]. The algorithms given by Li et al. [17, 18] incorporate t-closeness
into k-anonymization frameworks (Incognito [14] and Mondrian [15]) to find a t-closeness partition.
Cao et al. [8] proposed the SABRE algorithm, which is the first framework tailored for t-closeness.
The information-theoretic approach in [25] works for an “average” version of t-closeness. None of
these algorithms is guaranteed to have good worst-case performance. Furthermore, to the best
of our knowledge, no computational complexity results of t-closeness have been reported in the
literature.

1.2 Our Contributions

In this paper, we initiate the first systematic theoretical study on the t-closeness principle under
the commonly-used suppression framework. First, we prove that for every constant t such that
0 ≤ t < 1, it is NP-hard to find an optimal t-closeness generalization of a given table. Notice
that the problem becomes trivial when t = 1, since the EMD between any two sensitive value
distributions is at most 1, and hence putting each record in a distinct group provides a feasible
solution that does not need to suppress any value at all, which is of course optimal. Our result shows
that the problem immediately becomes hard even if the threshold is relaxed to, say, 0.999. At the
other extreme, a 0-closeness partition demands that the sensitive value distribution in every group
must be the same with the overall distribution. This seems to restrict the sets of feasible solutions
in a very strong sense, and thus one might imagine whether there exists an efficient algorithm for
dealing with this special case. Our result dashes the hope for this idea. The proof of our hardness
result actually consists of several different reductions. Interestingly, each of these reductions only
work for a set of special values of t, but altogether they cover the full range [0, 1). We note that
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the hardness of t1-closeness does not directly imply that of t2-closeness for t1 6= t2, since they may
have very different optimal objective values.

As a by-product of our proof, we establish the NP-hardness of k-anonymity when k = cn, where
n is the number of records and c is any constant in (0, 1/2]. To the best of our knowledge, this
is the first hardness result for k-anonymity that works for k = Ω(n). The existing approaches for
proving hardness of k-anonymity all fail to generalize to this range of k due to inherent limits of
the reductions. We note that k = n/2 is the largest possible value for which k-anonymity can be
hard, because when k > n/2, any k-anonymous partition can only contain one group, namely the
table itself.

To complement our negative results, we also provide exact and fixed-parameter algorithms
for obtaining the optimal t-closeness partition. Our exact algorithm for t-closeness runs in time
2O(n) · O(m), where n and m are respectively the number of rows and columns in the input table.
Together with a reduction that we derive (Lemma 1), this gives a 2O(n) ·O(m) time algorithm for
k-anonymity for all values of k, thus generalizing the result in [4] which only works for constant
k. We then prove that the problem is fixed-parameter tractable when parameterized by m and the
alphabet size of the input table. This implies that an optimal t-closeness partition can be found
in polynomial time if the number of quasi-identifiers and that of distinct attribute values are both
small (say, constants), which is true in many real-world applications. (We say a problem is fixed-
parameter tractable with respect to some parameters k1, . . . , kr, if there is an algorithm solving the
problem that runs in time h(k1, . . . , kr)n

O(1), where n is the size of the input and h is an arbitrary
computable function depending only on the parameters. Parameterized complexity has become a
very active research area. For standard notation and definitions in parameterized complexity, we
refer the reader to [10].) We obtain our fixed-parameter algorithm by reducing t-closeness to a
special mixed integer linear program in which some variables are required to take integer values
while others are not. The integer linear program we derived for characterizing t-closeness may have
its own interest in future applications. We note that both of our algorithms work for all values of
t.

Last but not least, we review the problems of finding optimal k-anonymous and l-diverse par-
titions, and answer two open questions left in the literature.

• We prove that the 2-diversity problem can be solved in polynomial time, which complements
the NP-hardness results for l ≥ 3 given in [31]. (We notice that the authors of [9] claimed
that 2-diversity was proved to be polynomial by [31]. However what [31] actually proved is
that the special 2-diversity instances, in which there are only two distinct sensitive values,
can be reduced to the matching problem and hence solved in polynomial time. They do not
have results for general 2-diversity. To the best of our knowledge, ours is the first work to
demonstrate the tractability of 2-diversity.)

• We then present an m-approximation algorithm for k-anonymity that runs in polynomial
time for all values of k. (Recall that m is the number of quasi-identifiers.) This improves the
O(k) and O(log k) ratios in [1, 24] when k is relatively large compared to m. We note that
the performance guarantee of their algorithms cannot be reduced even for small values of m,
due to some intrinsic limitations (for example, [24] uses the tight Θ(log k) approximation for
k-set cover).
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1.3 Related Work

It is known that finding an optimal k-anonymous partition of a given table is NP-hard for every
fixed integer k ≥ 3 [21], while it can be solved optimally in polynomial time when k ≤ 2 [4].
The NP-hardness result holds even for very restricted cases, e.g., when k = 3 and there are only
three quasi-identifiers [5, 6]. On the other hand, Blocki and Williams [4] gave a 2O(n) · O(m) time
algorithm that finds an optimal k-anonymous partition when k = O(1), where n and m are the
number of records and attributes (i.e., rows and columns) of the input table respectively. They
also showed this problem to be fixed-parameter tractable when m and |Σ| (the alphabet size of the
table) are considered as parameters. The parameterized complexity of k-anonymity has also been
studied in [6, 7, 11] with respect to different parameters.

Meyerson and Williams [21] gave an O(k log k) approximation algorithm for k-anonymity, i.e.,
it finds a k-anonymous partition in which the number of suppressed cells is at most O(k log k) times
the optimum. The ratio was later improved to O(k) by Aggarwal et al. [1] and to O(log k) by Park
and Shim [24]. We note that the algorithms in [21, 24] run in time nO(k), and hence are guaranteed
to be polynomial only if k = O(1), while the algorithm in [1] has a truly polynomial running time
for all k. There are also a number of heuristic algorithms for k-anonymity (e.g., Incognito [14]),
which work well in many real datasets but have poor worst-case performance guarantee.

Xiao et al. [31] are the first to establish a systematic theoretical study on l-diversity. They
showed that finding an optimal l-diverse partition is NP-hard for every fixed integer l ≥ 3 even if
m, the number of quasi-identifiers, is any fixed integer not smaller than l. They also provided an
(l ·m)-approximation algorithm. Dondi et al. [9] proved an inapproximability factor of c ln(l) for
l-diversity where c > 0 is some constant, and showed that the problem remains APX-hard even
if l = 4 and the table consists of only three columns. They also presented an m-approximation
algorithm when the number of distinct sensitive values is constant, and gave some parameterized
hardness results and algorithms.

1.4 Paper Organization

The rest of this paper is organized as follows. Section 2 introduces notation and definitions used
throughout the paper, and then formally defines the problems. Section 3 is devoted to proving the
hardness of finding the optimal t-closeness partition, while Section 4 provides exact and parameter-
ized algorithms. Sections 5 and 6 present our results for k-anonymity and 2-diversity, respectively.
Finally, the paper is concluded in Section 7 with some discussions and future research directions.

2 Preliminaries

We consider a raw database that contains m quasi-identifiers (QIs) and a sensitive attribute (SA).∗

Each record t in the database is an (m+ 1)-dimensional vector drawn from Σm+1, where Σ is the
alphabet of possible values of the attributes. For 1 ≤ i ≤ m, t[i] is the value of the i-th QI of t, and
t[m+1] is the value of the SA of t. Let Σs ⊆ Σ be the alphabet of possible SA values. A microdata
table (or table, for short) T is a multiset of vectors (or rows) chosen from Σm+1, and we denote by
|T | the size of T , i.e., the number of vectors contained in T . We will let n = |T | when the table T

∗Following previous approaches, we only consider instances with one sensitive attribute. Our hardness result
indicates that one sensitive attribute already makes the problem NP-hard. Meanwhile, it is easy to verify that our
algorithms also work for the case where multiple sensitive attributes exist.
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Quasi-identifiers Sensitive

Zip Code Age Education Disease

1 98765 38 Bachelor Viral Infection
2 98654 39 Doctorate Heart Disease
3 98543 32 Master Heart Disease

After generalization:

1 98⋆⋆⋆ 3⋆ ⋆ Viral Infection
2 98⋆⋆⋆ 3⋆ ⋆ Heart Disease
3 98⋆⋆⋆ 3⋆ ⋆ Heart Disease

Table 4: The first three records in Table 1.

is clear in the context. Note that T may contain identical vectors since it can be a multiset. We
also use T [j] to denote the j-th vector in T under some ordering, e.g., T [3][m+ 1] is the SA value
of the third vector of T .

Let ⋆ be a fresh character not in Σ. For each vector t ∈ T , let t∗ be the suppressor of t (inside
T ) defined as follows:

• t∗[m+ 1] = t[m+ 1];

• for 1 ≤ i ≤ m, t∗[i] = t[i] if t[i] = t′[i] for all t′ ∈ T , and t∗[i] = ⋆ otherwise.

The cost of a suppressor t∗ is cost(t∗) = |{1 ≤ i ≤ m | t∗[i] = ⋆}|, i.e., the number of ‘⋆’s in
t∗. It is easy to see that all vectors in T have the same suppressor if we only consider the quasi-
identifiers. The generalization of T is defined as Gen(T ) = {t∗ | t ∈ T }. (Note that Gen(T ) is
also a multiset.) The cost of the generalization of T is cost(T ) =

∑

t∗∈Gen(T ) cost(t
∗), i.e., the sum

of costs of all the suppressors. Since all suppressors in T have the same cost, we can equivalently
write cost(T ) = |T | · cost(t∗) for any t∗ ∈ Gen(T ).

As an illustrative example, Table 4 consists of the first three record of Table 1, which contains
eight QIs (we regard each digit of Zip-code and Age as a separate QI) and one SA. The generalization
of Table 4 is also shown. In this case all suppressors have cost 5, and the cost of this generalization
is 5 · 3 = 15.

A partition P of table T is a collection of pairwise disjoint non-empty subsets of T whose union
equals T . Each subset in the partition is called a group or a sub-table. The cost of the partition
P, denoted by cost(P), is the sum of costs of all its groups. For example, the partition of Table 1
given by Table 2 has cost 5 · 3 + 6 · 4 + 5 · 3 = 54.

2.1 t-Closeness Principle

We formally define the t-closeness principle introduced in [17] for protecting data privacy. Let
T be a table, and assume without loss of generality that Σs = {1, 2, . . . , |Σs|}. The sensitive
attribute value space (SA space) is a normalized metric space (Σs, d), where d(·, ·) is a distance
function defined on Σs × Σs satisfying that (1)d(i, i) = 0 for any i ∈ Σs; (2)d(i, j) = d(j, i) for all
i, j ∈ Σs; (3)d(i, j) + d(j, k) ≥ d(i, k) for i, j, k ∈ Σs (this is called the triangle inequality); and
(4)maxi,j∈Σs

d(i, j) = 1 (this is called the normalized condition).
For a sub-table M ⊆ T and i ∈ Σs, denote by n(M, i) the number of vectors whose SA value

equals i. Clearly |M | =
∑

i∈Σs
n(M, i). The sensitive attribute value distribution (SA distribu-

tion) of M , denoted by P(M), is a |Σs|-dimensional vector whose i-th coordinate is P(M)[i] =
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n(M, i)/|M | for 1 ≤ i ≤ |Σs|. Thus P(M) can be seen as the probability distribution of the SA
values in M , assuming that each vector in M appears with the same probability. For a threshold
0 ≤ t ≤ 1, we say M have t-closeness (with T ) if EMD(P(M),P(T )) ≤ t, where EMD(X,Y) is
the Earth-Mover Distance (EMD) between distributions X and Y [26]. A t-closeness partition of
T is one in which every group has t-closeness with T .

Intuitively, the EMD measures the minimum amount of work needed to transform one probabil-
ity distribution to another by means of moving distribution mass between points in the probability
space; here a unit of work corresponds to moving a unit amount of probability mass by a unit of
ground distance. The EMD between two SA distributions X and Y can be formally defined as the
optimal objective value of the following linear program [26, 17]:

Minimize

|Σs|
∑

i=1

|Σs|
∑

j=1

d(i, j)f(i, j) subject to:

|Σs|
∑

j=1

f(i, j) = X[i], ∀1 ≤ i ≤ |Σs|

|Σs|
∑

i=1

f(i, j) = Y[j], ∀1 ≤ j ≤ |Σs|

f(i, j) ≥ 0, ∀1 ≤ i, j ≤ |Σs|.

The above constraints are a little different from those in [17]; however they can be proved equiva-
lent using the triangle inequality condition of the SA space. It is also easy to see that EMD(X,Y) =
EMD(Y,X). By the normalized condition of the SA space, we have 0 ≤ EMD(X,Y) ≤ 1 for any
SA distributions X and Y.

The equal-distance space refers to a special SA space in which each pair of distinct sensitive
values have distance exactly 1. There is a concise formula for computing the EMD between two
SA distributions in this space.

Fact 1 ([17]). For any two SA distributions X and Y in the equal-distance space, we have

EMD(X,Y) =
1

2

|Σs|
∑

i=1

|X[i]−Y[i]| =
∑

1≤i≤|Σs|:X[i]≥Y[i]

(X[i] −Y[i]).

Therefore, in the equal-distance space, the EMD coincides with the total variation distance
between two distributions.

Let us go back to Table 1 for an example. We let 1,2,and 3 denote the sensitive values “Viral
Inspection”, “Heart Disease”, and “Cancer”, respectively. Let the SA space be the equal-distance
space. The SA distribution of the whole table is then (0.3, 0.3, 0.4). Suppose we set the threshold
t = 0.3. It can be verified that Table 3, although being a 2-diverse partition, is not a t-closeness
partition of Table 1. In fact, the SA distribution of the first group is (0.5, 0.5, 0), and hence the
EMD between it and the overall distribution is 0.4. (This example also reflects some property of
the skewness attack that l-diversity suffers from. If an attacker can locate the record of Alice in the
first group of Table 3, then he knows that Alice does not have a cancer. If he in addition knows that
Alice comes from some district where people have a very low chance to have heart disease, then he
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Quasi-identifiers Sensitive

Zipcode Age Education Disease

1 9⋆⋆⋆⋆ ⋆⋆ ⋆ Viral Infection
2 9⋆⋆⋆⋆ ⋆⋆ ⋆ Heart Disease
4 9⋆⋆⋆⋆ ⋆⋆ ⋆ Cancer

3 9⋆⋆⋆⋆ ⋆⋆ ⋆ Heart Disease
5 9⋆⋆⋆⋆ ⋆⋆ ⋆ Viral Infection
8 9⋆⋆⋆⋆ ⋆⋆ ⋆ Cancer
9 9⋆⋆⋆⋆ ⋆⋆ ⋆ Cancer

6 9⋆⋆⋆⋆ ⋆⋆ Bachelor Viral Infection
7 9⋆⋆⋆⋆ ⋆⋆ Bachelor Heart Disease
10 9⋆⋆⋆⋆ ⋆⋆ Bachelor Cancer

Table 5: A 0.3-closeness partition

would be confident that Alice has a viral infection.) We instead give a 0.3-closeness partition in
Table 5. We can actually verify that it is even a 0.1-closeness partition.

Now we are ready to define the main problem studied in this paper.

Problem 1. Given an input table T , an SA space (Σs, d), and a threshold t ∈ [0, 1], the t-
Closeness problem requires to find a t-closeness partition of T with minimum cost.

Finally we review another two widely-used principles for privacy preserving, namely k-anonymity
and l-diversity, and the combinatorial problems associated with them. A partition is called k-
anonymous if all its groups have size at least k. A (sub-)table M is called l-diverse if at most
|M|/l of the vectors in M have an identical SA value. A partition is called l-diverse if all its groups
are l-diverse.

Problem 2. Let T be a table given as input. The k-Anonymity (l-Diversity) problem requires
to find a k-anonymous (l-diverse) partition of T with minimum cost.

3 NP-hardness Results

In this section we study the complexity of the t-Closeness problem. The problem is trivial if
the given threshold is t = 1, since putting each vector in a distinct group produces a 1-closeness
partition with cost 0, which is obviously optimal. Our main theorem stated below indicates that
this is in fact the only easy case.

Theorem 1. For any constant t such that 0 ≤ t < 1, t-Closeness is NP-hard.

We will prove Theorem 1 via several reductions, each covering a particular range of t, which
altogether prove the theorem. We first present a result that relates t-Closeness to k-Anonymity.

Lemma 1. There is a polynomial-time reduction from k-Anonymity to t-Closeness with equal-
distance space and t = 1− k/n.

Proof. Let T be an input table of k-Anonymity. We properly change the SA values of vectors in T
to ensure that all their SA values are distinct; this can be done because the SA values are irrelevant
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Figure 1: Reduction from MinBisection to (n/2)-Anonymity.

to the objective of the k-Anonymity problem. Assume w.l.o.g. that the SA values are {1, 2, . . . , n}.
Consider an instance of t-Closeness with the same input table T , in which t = 1− k/n and the
SA space is the equal-distance space. The SA distribution of T is (1/n, 1/n, . . . , 1/n). In the
SA distribution of each size-r group Tr, there are exactly r coordinates equal to 1/r and n − r
coordinates equal to 0. It is easy to see that EMD(P(T ),P(Tr)) = (n− r)(1/n) = 1− r/n. Hence,
a group has t-closeness if and only if it is of size at least k. Therefore, each k-anonymous partition
of T is also a t-closeness partition, and vice versa. The lemma follows.

By Lemma 1 we can directly deduce the NP-hardness of t-Closeness when the threshold t is
given as input, using e.g. the NP-hardness of 3-Anonymity [21]. However, to show hardness for
constant t that is bounded away from 1, we need k/n = Ω(1) and thus k = Ω(n). Unfortunately,
the existing hardness results for k-Anonymity only work for k = O(1) and cannot be generalized
to large values of k. For example, most hardness proofs use reductions from the k-dimensional
matching problem, but this problem can be solved in polynomial time when k = Ω(n). Below we
show the NP-hardness of k-Anonymity for k = Ω(n) via reductions different from all previous
approaches in the literature.

Theorem 2. For any constant c such that 0 < c ≤ 1/2, (cn)-Anonymity is NP-hard.

To the best of our knowledge, Theorem 2 is the first hardness result for k-Anonymity when
k = Ω(n). We note that the constant 1/2 is the best possible, since for any k > n/2, a k-anonymous
partition can only contain one group, namely the table itself. We first prove the following result,
which will be used as a starting point in further reductions.

Theorem 3. (n/2)-Anonymity is NP-hard.

Proof. We will present a polynomial-time reduction from the minimum graph bisection (MinBisection)
problem to (n/2)-Anonymity. MinBisection is a well-known NP-hard problem [12, 13] defined
as follows: given an undirected graph, find a partition of its vertices into two equal-sized halves so
as to minimize the number of edges with exactly one endpoint in each half.

Let G = (V,E) be an input graph of MinBisection, where |V | ≥ 4 is even. Suppose V =
{v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. In what follows we construct a table T of size n = |V |
that contains m = |E| quasi-identifiers. (The sensitive attributes are useless in k-Anonymity

so they will not appear.) This table will serve as the input to the k-Anonymity problem with
k = n/2. Intuitively each row (or vector) of T corresponds to a vertex in V , while each column
(or QI) of T corresponds to an edge in E. The alphabet Σ is {1, 2, . . . , n}. For each i ∈ [n] and
j ∈ [m],† let T [i][j] = i if vi ∈ ej , and T [i][j] = 0 if vi 6∈ ej . Thus each column contains exactly

†We use [q] to interchangeably denote {1, 2, . . . , q}.
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two non-zero elements corresponding to the two endpoints of the associated edge. See Figure 1 for
a toy example. It is easy to see that T can be constructed in polynomial time.

Before delving into the reduction, we first prove a result concerning the partition cost of T .
Any (n/2)-anonymous partition of T contains at most two groups. For the trivial partition that
only contains T itself, the cost is n · m because all elements in T should be suppressed. Thus
an (n/2)-anonymous partition with minimum cost should consist of exactly two groups. Suppose
P = {T1,T2} is an (n/2)-anonymous partition of T where |T1| = |T2| = n/2. Let {V1, V2} be the
corresponding partition of V (recall that each vector in T corresponds to a vertex in V ). Consider
Gen(T1), the generalization of T1. For any column j ∈ [m], if some endpoint of ej , say vi, belongs
to V1, then T [i][j] = i. By our construction of T , any other element in the j-th column does not
equal to i. Since |T1| ≥ n/2 ≥ 2, column j of T1 must be suppressed to ⋆. On the other hand, if
none of ej ’s endpoints belongs to V1, then column j of T1 contains only zeros and thus can stay
unsuppressed. Therefore, we obtain

cost(T1) = |T1| · (|E11|+ |E12|) = n(|E11|+ |E12|)/2, (1)

where Epq denotes the set of edges with one endpoint in Vp and another in Vq, for p, q ∈ {1, 2}.
Similarly we have cost(T2) = n(|E22|+ |E12|)/2. Hence the cost of the partition P is

cost(P) =

2
∑

p=1

cost(Tp) = n(|E|+ |E12|)/2, (2)

noting that |E| = |E11|+ |E12|+ |E22|.
We now prove the correctness of the reduction. LetOPT be the minimum size of any cut {V1, V2}

of G with |V1| = |V2|, and OPT ′ be the minimum cost of any (n/2)-anonymous partition of T .
We prove that OPT ′ = n(|E| + OPT )/2, which will complete the reduction from MinBisection

to (n/2)-Anonymity. Let {V1, V2} be the cut of G achieving the optimal cut size OPT , where
|V1| = |V2| = n/2. Using notation introduced before, we have OPT = |E12|. Let P = {T1,T2}
where Tp = {T [i] | vi ∈ Vp} for p ∈ {1, 2}. Clearly P is an (n/2)-anonymous partition of T . By
Equation (2) we have OPT ′ ≤ cost(P) = n(|E|+OPT )/2.

On the other hand, let P ′ = {T ′
1 ,T

′
2} be an (n/2)-anonymous partition with cost(P ′) = OPT ′.

We have |T ′
1 | = |T ′

2 | = n/2. Consider the partition {V ′
1 , V

′
2} of V with V ′

p = {vi | T [i] ∈ T ′
p} for

p ∈ {1, 2}. Since |V ′
1 | = |V ′

2 | = n/2, we have OPT ≤ |E′
12| where E′

12 denotes the set of edges
with one endpoint in V ′

1 and another in V ′
2 . By Equation (2) we have OPT ′ = n(|E| + |E′

12|)/2 ≥
n(|E| + OPT )/2. Combined with the previously obtained inequality OPT ′ ≤ n(|E| + OPT )/2,
we have shown that OPT ′ = n(|E| + OPT )/2. By the analyses we also know that an optimal
(n/2)-anonymous partition of T can easily be transformed to an optimal equal-sized cut of G.
This finishes the reduction from MinBisection to (n/2)-Anonymity, and completes the proof of
Theorem 3.

Theorem 4. For any constant c such that 0 < c ≤ 1/3, (cn)-Anonymity is NP-hard.

Proof. Fix 0 < c ≤ 1/3. We reduce (n/2)-Anonymity to (cn)-Anonymity, which will prove the
NP-hardness of the latter due to Theorem 3. Let T be an instance of (n/2)-Anonymity with n
rows and m QI columns. Choose two fresh symbols λ1, λ2 not appearing in T . We construct a
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Figure 2: Reduction from (n/2)-Anonymity to (n/3)-Anonymity.

new table T ′ with n′ = n/2c rows and m′ = m + nm QI columns as follows‡. For all 1 ≤ i ≤ n,
let T ′[i][j] = T [i][j] for 1 ≤ j ≤ m, and T ′[i][j] = λ1 for m + 1 ≤ j ≤ m′. For all n + 1 ≤ i ≤ n′

and 1 ≤ j ≤ m′, let T ′[i][j] = λ2. This finishes the description of T ′. See Figure 2 for an example
where c = 1/3, λ1 = ‘A’, and λ2 = ‘B’. Clearly T ′ can be constructed in polynomial time.

Let OPT denote the minimum cost of an (n/2)-anonymous partition of T and OPT ′ be the
minimum cost of a (cn′)-anonymous partition of T ′. We next prove OPT = OPT ′, which will
complete the reduction from (n/2)-Anonymity to (cn)-Anonymity.

On one hand, let P = {T1,T2} be an (n/2)-anonymous partition of T with cost(P) = OPT . We
have |T1| = |T2| = n/2. Define a partition P ′ of T ′ as {T ′

1 ,T
′
2 ,T

′
3}, where T

′
p = {T ′[i] | T [i] ∈ Tp, 1 ≤

i ≤ n} for p ∈ {1, 2}, and T ′
3 = {T ′[i] | n+1 ≤ i ≤ n′}. We have |T ′

1 | = |T ′
2 | = n/2 ≥ c(n/2c) = cn′,

and |T ′
3 |/n

′ = (n/2c− n)/(n/2c) = 1− 2c ≥ c as c ≤ 1/3. Hence P ′ is a (cn)-anonymous partition
of T ′. It is easy to verify that cost(P ′) = cost(P) = OPT , implying that OPT ′ ≤ OPT .

On the other hand, let P ′ = {T ′
1 , . . . ,T

′
r } be a (cn)-anonymous partition of T ′ with cost(P ′) =

OPT ′. For the simplicity of expression, we call T ′[i] an old row if 1 ≤ i′ ≤ n, and call it a new row
if n+ 1 ≤ i ≤ n′. First assume that there exists T ′

p ∈ P ′ that contains both an old row and a new
row. By our construction of T ′, an old row and a new row differ in all the last nm coordinates, and
thus the cost for generalizing T ′

p is at least 2nm. Since OPT ≤ nm, we have OPT ′ > OPT in this
case, which cannot happen since we already proved OPT ′ ≤ OPT . Therefore, for any T ′

p ∈ P ′, it
either contains only old rows or contains only new rows. Assume w.l.o.g. that T ′

1 , . . . ,T
′
r′ are the

sub-tables in P ′ that contain only old rows. Since all new rows are identical by our construction,
we have

OPT ′ = cost(P ′) =

r′
∑

p=1

cost(T ′
p). (3)

We now define a partition of T as P = {T1, . . . ,Tr′}, where Tp = {T [i] | T ′[i] ∈ T ′
p} for all

1 ≤ p ≤ r′. Because |Tp| = |T ′
p | ≥ cn′ = c(n/2c) = n/2, P is an (n/2)-anonymous partition of

T . As the last nm + 1 columns are identical for all old rows of T ′, we have OPT ≤ cost(P) =
∑r′

p=1 cost(Tp) =
∑r′

p=1 cost(T
′
p) = OPT ′ by Equation (3). Combined with that OPT ′ ≤ OPT

obtained previously, we obtain that OPT = OPT ′, and that an optimal (cn)-anonymous partition
of T ′ can be easily transferred to an optimal (n/2)-anonymous partition of T . This finishes the
reduction from (n/2)-Anonymity to (cn)-Anonymity, and completes the proof of Theorem 4.

So far we have shown the hardness of (cn)-Anonymity for c ∈ (0, 1/3] ∪ {1/2}. For the
remaining case c ∈ (1/3, 1/2) we need a different reduction.

‡Here we assume n/2c is an integer, otherwise we can use ⌊n/2c⌋ instead and get the same result, with more
tedious analyses. Similar issues appear also in other proofs, which we will not mention again.

12



Theorem 5. For any constant c such that 1/3 < c < 1/2, (cn)-Anonymity is NP-hard.

Proof. Fix 1/3 < c < 1/2. We will present a polynomial reduction from the following problem
to (cn)-Anonymity: given an undirected graph G = (V,E), decide whether G contains a clique
(i.e., a subgraph in which every pair of vertices have an edge between them) that contains exactly
|V |/2 vertices. Call this problem HalfClique. The NP-hardness of HalfClique easily follows
from that of the well-known maximum clique problem, as can be seen as follows. We reduce the
classical Clique problem to HalfClique. Given a graph G = (V,E) and an integer k ≤ |V |, the
Clique problem asks whether G contains a clique with exactly k vertices. This is a well-known
NP-hard problem [12]. Now construct another graph G′ based on G as follows: if k ≥ |V |/2, then
add 2k − |V | new isolated vertices to V ; if k < |V |/2, then add |V | − 2k new vertices to V and
connecting them with each other as well as all original vertices in V . Let V ′ be the new vertex set.
It is easy to verify that G has a clique of size k if and only if G′ has a clique of size |V ′|/2, which
completes the reduction.

Let G = (V,E) be an input graph of HalfClique with |V | = n ≥ 4 and |E| = m. Assume
V = {v1, . . . , vn} and E = {e1, . . . , em}. We construct a table T with n′ = n/2c rows and m QI
columns as follows. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, let T [i][j] = i if vi ∈ ej , and T [i][j] = 0
otherwise. For n + 1 ≤ i ≤ n′ and 1 ≤ j ≤ m, let T [i][j] = i. (Note that, in some sense, this
construction can be seen as a combination of those used in the proof of Theorems 3 and 4; however
the analysis will be different and more intriguing.)

We first prove a result regarding the structure of an optimal (cn)-partition of T . Call T [i] an
old row if 1 ≤ i ≤ n, and a new row if n+ 1 ≤ i ≤ n′. We assume that n

2c − n ≥ 2, i.e., T contains
at least two new rows; this is without loss of generality because c is a constant smaller than 1/2.
Since c > 1/3, any (cn)-anonymous partition contains at most two groups. The trivial partition
that consists of T itself need to suppress every coordinate in the table, because a new row and an
old row do not share common values. Therefore, the minimum cost (cn)-partition of T contains
exactly two groups.

Denote by OPT the minimum cost of a (cn)-anonymous partition of T . We claim that G
contains a clique of size n/2 if and only if OPT ≤ n′m − (n/2)

(n/2
2

)

. First consider the “only
if” part. Assume V2 ⊆ V is a clique of size n/2, and let V1 = V \ V2. Then |V2| = |V1| = n/2.
For p, q ∈ {1, 2}, denote by Epq the set of edges with one endpoint in Vp and another in Vq. We
define a partition P = {T1,T2} of T by letting T1 = {T [i] | vi ∈ V1} and T2 = T \ T ′

1 . Since
|T1| = n/2 = c(n/2c) = cn′ and |T2|/n

′ = (n/2c− n/2)/(n/2c) = 1− c ≥ c, P is a (cn)-anonymous
partition. Similar to the proof of Theorem 3, we have cost(T1) = n(|E11|+|E12|)/2 (see Equation (1)
and its proof). Since T2 contains both old and new rows, we have cost(T2) = |T2| ·m = (n′−n/2)m.
Therefore,

OPT ≤ cost(P) = cost(T1) + cost(T2)

= n(|E11|+ |E12|)/2 + (n′ − n/2)m

= n(m− |E22|)/2 + (n′ − n/2)m

= n′m− (n/2)|E22|

= n′m− (n/2)

(

n/2

2

)

,

where the last equality holds because V2 is a clique of size n/2. This proves the “only if” part of
the claim.
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Next we consider the “if” direction. Let P = {T1,T2} be a (cn)-partition with cost(P) =
OPT ≤ n′m − (n/2)

(n/2
2

)

. As argued before, every sub-table that contains both old and new
rows need to be suppressed totally. Thus, if both T1 and T2 contain both old and new rows, then
cost(P) = n′m, which is worst possible. In this case we can change T1 to be any set of n/2 old
rows and let T2 = T \ T1 to obtain a (cn)-partition with no worse cost. Therefore, in what follows
we assume w.l.o.g. that T1 consists of only old rows.

Let V1 = {vi | T [i] ∈ T1} and V2 = V \ V1. Define Epq analogously as before for p, q ∈ {1, 2}.
Similar to the proof of Theorem 3, we have cost(T1) = |V1|(|E11|+ |E12|) (just replace n/2 with |V1|
in Equation (1)). Also cost(T2) = |T2| ·m = (n′ − |V1|)m since T2 contains both old and new rows.
Hence, cost(P) = |V1|(|E11|+|E22|)+(n′−|V1|)m = |V1|(m−|E22|)+(n′−|V1|)m = n′m−|V1|·|E22|.
On the other hand, cost(P) = OPT ≤ n′m − (n/2)

(n/2
2

)

. Thus we have |V1| · |E22| ≥ (n/2)
(n/2

2

)

.

As |V1|+ |V2| = n and |E22| ≤
(|V2|

2

)

, we obtain that

(n− |V2|)

(

|V2|

2

)

≥ |V1| · |E22| ≥
n

2

(

n/2

2

)

. (4)

Because |V1| = |T1| ≥ cn′ = n/2, we have |V2| ≤ n/2. Define a fucntion f : [0, n/2] → R as
f(x) = (n − x)

(x
2

)

= (n − x)x(x − 1)/2 for all 0 ≤ x ≤ n/2. Then Equation (4) indicates that
f(|V2|) ≥ f(n/2). Since f(0) = 0, |V2| ≥ 1 holds. Let f ′ be the derivative of f with respect
to x. It is easy to verify that f ′(x) = 1

2(−3x2 + 2(n + 1)x − n). The minimum value of f ′(x)
when 1 ≤ x ≤ n/2 can only be obtained at x ∈ {1, n/2, (n + 1)/3}. Simple calculations show that
f ′(1), f ′(n/2), and f ′((n+1)/3) are all positive. Hence f ′(x) > 0 for all 1 ≤ x ≤ n/2, which means
that f(x) is strictly monotone increasing on [1, n/2]. Since we know that f(|V2|) ≥ f(n/2) and that
1 ≤ |V2| ≤ n/2, it must hold that |V2| = n/2. Therefore (4) holds with two equalities. We thus
have |E22| =

(

n/2
2

)

, implying that V2 is a clique of size n/2.
We have shown that G has a clique of size n/2 if and only if T has a (cn)-anonymous partition of

cost at most n′m−(n/2)
(n
2

)

. This completes the reduction from HalfClique to (cn)-Anonymity,
from which Theorem 5 follows.

Now Theorem 2 follows straightforward from Theorems 3, 4 and 5. Interestingly, the three
reductions work for disjoint ranges of c, which altogether give the desired result. By Lemma 1 we
obtain:

Corollary 1. For any constant t such that 1/2 ≤ t < 1, t-Closeness is NP-hard even with
equal-distance space.

We next show the hardness of t-Closeness for 0 ≤ t < 1/2 by two different reductions from
the 3-dimensional matching problem, each of which covers a different range of t.

Theorem 6. For any constant t such that 0 ≤ t < 1/3, t-Closeness is NP-hard even if |Σs| = 3.

Proof. Fix 0 ≤ t < 1/2. We perform a polynomial-time reduction from the 3-dimensional matching
problem (3D-Matching) to t-Closeness. The input of 3D-Matching consists of three equal-
sized pairwise-disjoint sets X,Y , and Z, together with a collection S of 3-tuples from X × Y × Z.
The goal is to decide whether there exists a set of |X| tuples from S that covers each element of
X ∪ Y ∪ Z exactly once. This problem is well known to be NP-hard [12].

Consider an instance of 3D-Matching. Assume |X| = |Y | = |Z| = n, U = X ∪ Y ∪ Z =
{v1, v2, . . . , v3n, and the set of tuples is S = {e1, e2, . . . , em}. Each tuple in S is regarded as a
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subset of U of size 3. The reduction that we will use is similar to that in [31]. We construct an
instance of t-Closeness as follows. The table T has 3n rows and m QI columns as well as an
SA column. For every 1 ≤ i ≤ 3n and 1 ≤ j ≤ m, let T [i][j] = i if vi 6∈ ej and T [i][j] = 0 if
vi ∈ ej . Let T [i][m+1] be 1, 2, or 3, if vi belongs to X, Y , or Z, respectively. The SA space is the
equal-distance space. Notice that each QI column of T contains exactly three zeros, corresponding
to the three elements in the tuple associated with this column. Also note that the SA distribution
of T is P(T ) = (1/3, 1/3, 1/3) since |X| = |Y | = |Z|.

We will prove that, there exists n tuples of S whose union equals U = X ∪ Y ∪ Z if and only
if T has a t-closeness partition of cost at most 3n(m − 1). This will complete the reduction from
3D-Matching to t-Closeness.

First consider the “only of” direction. Assume that there exists S′ ⊆ S, |S′| = n, such that
⋃

e∈S′ e = U . We assume w.l.o.g. that S′ = {e1, e2, . . . , en}. Define a partition P of T as follows:
P = {T1, . . . ,Tn}, where Tp = {T [i] | vi ∈ ep} for all 1 ≤ p ≤ n. Clearly |T1| = . . . = |Tn| = 3. Since
each ep contains exactly one element from each of X, Y and Z, we have P(Tp) = (1/3, 1/3, 1/3) =
P(T ). Hence P is a t-closeness (and in fact 0-closeness) partition of T . By our construction, for
each p ∈ [n], the p-th column of Tp consists of three zeros, and every other column contains at least
two different QI values. Thus cost(Tp) = 3(m−1), and cost(P) =

∑n
p=1 cost(Tp) = 3n(m−1). The

“only if” direction is proved.
We next consider the “if” direction. Let P = {T1, . . . ,Tr} be a t-closeness partition of T with

cost at most 3n(m−1). We claim that |Tp| ≥ 3 for all p ∈ [r]. Assume to the contrary that |Tp| ≤ 2
for some p. Then P(Tp) is either (0, 1/2, 1/2) or (0, 0, 1) up to permutations of the coordinates.
It is easy to verify that EMD(P(Tp),P(T )) ≥ 1/3 > c in both cases, which contradicts the fact
that P is a t-closeness partition. Hence, |Tp| ≥ 3. If |Tp| ≥ 4, then cost(Tp) = |Tp| · m, because
each column of T consists of three zeros and 3n − 3 distinct non-zero values and thus needs to be
suppressed entirely in Tp. If |Tp| = 3, then cost(Tp) = 3(m−1) if there is a tuple in S that contains
the three elements associated with the vectors in Tp (in which case the column corresponding to this
tuple needs not be suppressed), and cost(Tp) = 3m otherwise. Since cost(P) = 3n(m − 1), every
group Tp is of size 3 and induces a tuple, say ep ∈ S. Then {e1, . . . , ep} is a set of n tuples whose
union equals U , proving the “if” direction. This completes the reduction from 3D-Matching to
t-Closeness, and Theorem 6 follows.

Finally we come to the last part t ∈ [1/3, 1/2).

Theorem 7. For any constant t such that 1/3 ≤ t < 1/2, t-Closeness is NP-hard even if |Σs| = 4.

Proof. Fix 1/3 ≤ t < 1/2. We give a reduction from 3D-Matching to t-Closeness similar to
that used in the the proof of Theorem 6, with some more ingredients. Consider an instance of
3D-Matching. The element set is U = X ∪ Y ∪ Z = {v1, v2, . . . , v3n} where |X| = |Y | = |Z| = n.
The tuple set is S = {e1, . . . , em} where each ei, 1 ≤ i ≤ m, is a subset of U of size 3 that consists of
exactly one element from each of X, Y , and Z. The goal is to decide whether there exists S′ ⊆ S,
|S′| = n, such that

⋃

e∈S′ e = U .
We set up an instance of t-Closeness as follows. The table T consists of n′ = 3n/(1 − 2t)

rows, m QI columns, and an SA column. For all 1 ≤ i ≤ 3n and 1 ≤ j ≤ m, T [i][j] = i if vi 6∈ ej
and T [i][j] = 0 if vi ∈ ej . For 1 ≤ i ≤ 3n, T [i][m+ 1] = 1 if vi ∈ X, T [i][m+ 1] = 2 if vi ∈ Y , and
T [i][m+1] = 3 if vi ∈ Z. For 3n+1 ≤ i ≤ n′, T [i][j] = i for 1 ≤ j ≤ m, and T [i][m+1] = 4. Note
that Σs = {1, 2, 3, 4}. Define the distance function of the SA space as d(1, 2) = d(1, 3) = d(2, 3) = 1
and d(4, 1) = d(4, 2) = d(4, 3) = 1/2; this clearly forms a metric on Σs. It is easy to verify that

15



P(T ) = (1−2t
3 , 1−2t

3 , 1−2t
3 , 2t). The goal is to decide whether T has a t-closeness partition. Before

showing the correctness of the reduction, we present a formula for computing the EMD between
two distributions under this metric. Let A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4) be two SA
distributions with a4 ≥ b4. Then,

EMD(A,B) =
1

2
(a4 − b4) +

∑

i∈{1,2,3}:ai≥bi

(ai − bi). (5)

This can be seen as follows. Let S≥ = {1 ≤ i ≤ 4 | ai ≥ bi} and S< = {1, 2, 3, 4} \ S≥. We
have 4 ∈ S≥ and

∑

i∈S≥
(ai − bi) =

∑

j∈S<
(bj − aj). To transform A to B, we need to move

M =
∑

i∈S≥
(ai − bi) amount of mass from S≥ to S<. a4 − b4 amount of mass at point 4 can be

moved out by distance 1/2, while the remaining amount must be moved by distance 1. Therefore
EMD(A,B) = 1

2 (a4 − b4) +
∑

i∈S≥\{4}(ai − bi) =
1
2(a4 − b4) +

∑

i∈{1,2,3}:ai≥bi
(ai − bi).

We prove that the answer to the matching instance is yes if and only if T has a t-closeness
partition of cost at most 3n(m−1). First consider the “only if” direction. Assume w.l.o.g. that S′ =
{e1, . . . , en} satisfies

⋃

e∈S′ e = U . Define a partition P = {T1,T2, . . . ,Tn}∪{T ′
3n+1,T

′
3n+2, . . . ,T

′
n′},

where Tp = {T [i] | i ∈ ep} for 1 ≤ p ≤ n and T ′
p = {T [p]} for 3n + 1 ≤ p ≤ n′, i.e., each T ′

p

consists of a single row. By similar arguments as in the proof of Theorem 6, cost(Tp) = 3(m−1) for
1 ≤ p ≤ n, and obviously cost(T ′

p) = 0 for 3n+1 ≤ p ≤ n′. Hence cost(P) = 3n(m− 1). It remains
to show that P is a t-closeness partition. For 1 ≤ p ≤ n, P(Tp) = (1/3, 1/3, 1/3, 0), by Equation (5)
we have EMD(P(Tp),P(T )) = 1

2 · 2t = t. Since P(T ′
q ) = (0, 0, 0, 1) for all 3n + 1 ≤ q ≤ n′,

EMD(P(T ′
q ),P(T )) = 1

2(1 − 2t) ≤ t as t ≥ 1/3 (actually this holds for all t ≥ 1/4). This proves
that P is a t-closeness partition, and hence the “only if” direction.

Now consider the “if” direction. Let P = {T1, . . . ,Tr} be a t-closeness partition of T with cost
at most 3n(m−1). Call T [i] an old row if 1 ≤ i ≤ 3n, and a new row if i > 3n. By our construction
of T , it is clear that cost(Tp) = |Tp| · m if |Tp| ≥ 2 and Tp contains at least one new row. Now
let Tp be a group containing only old rows. If |Tp| ≤ 2, then P(Tp)) is equivalent to (1, 0, 0, 0) or
(1/2, 1/2, 0, 0) up to permutations of the first three coordinates. By (5) and the fact that t < 1/2,
we can verify that EMD(P(Tp),P(T )) > t in both cases. Therefore |Tp| ≥ 3. Analogous to the
proof of Theorem 6, we know that cost(Tp) = 3(m−1) if Tp consists of three old rows corresponding
to three elements in the same tuple, and cost(Tp) = |Tp|·m otherwise. Thus for cost(P) = 3n(m−1)
it must be the case that there exist n groups each of which consists of three old rows, and each of
the remaining groups consists of exact one new row. As groups are disjoint, they together cover all
the 3n old rows, which naturally induces n tuples of S whose union equals U . The “if” direction is
thus proved. This completes the reduction from 3D-Matching to t-Closeness, and Theorem 7
follows.

4 Exact and Fixed-Parameter Algorithms

In this section we design exact algorithms for solving t-Closeness. Notice that the size of an
instance of t-Closeness is polynomial in n and m + 1. The brute-force approach that examines
each possible partition of the table to find the optimal solution takes nO(n)mO(1) = 2O(n logn)mO(1)

time. We first improve this bound to single exponential in n. (Note that it cannot be improved to
polynomial unless P = NP.)

Theorem 8. The t-Closeness problem can be solved in 2O(n) ·O(m) time.
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Proof. Consider an input table T of the t-Closeness problem. Assume that P = {T1, . . . ,Tr} is
an optimal t-closeness partition of T (note that we do not know P; it is only used for analysis).
Obviously there is at most one group Tp with |Tp| > n/2. We claim that, if |Tp| ≤ n/2 for all p ∈ [r],
then there is a disjoint partition (A1, A2) of {1, 2, . . . , r} such that n/4 ≤ |

⋃

p∈Ai
Tp| ≤ 3n/4 for any

i ∈ {1, 2}. This can be seen as follows. Denote by n(A) = |
⋃

p∈A Tp| for any A ⊆ [r]. Let (A1, A2)
be the partition of [r] that minimizes |n(A1) − n(A2)|. Assume w.l.o.g. that n(A1) ≤ n(A2). If
n(A2) ≤ 3n/4, the claim is proved. Otherwise, A2 contains at least two groups, and we move
an arbitrary group from A2 to A1 resulting in a new partition (A′

1, A
′
2). If n(A′

1) ≤ n(A′
2), then

|n(A′
1)− n(A′

2)| = n(A′
2) − n(A′

1) < n(A2) − n(A1) = |n(A1)− n(A2)|, which contradicts the way
in which (A1, A2) is chosen. We thus have n(A′

1) > n(A′
2), and so n(A′

1) ≥ n/2. Since each group
has size at most n/2, we have n/2 ≤ n(A′

1) ≤ n(A1) + n/2 < 3n/4, and hence n/2 ≥ n(A′
2) =

n− n(A′
1) > n/4. This proves the claim.

For any M ⊆ T , let OPT (M) denote the minimum cost of any partition of M in which each
group is t-close to T ; thus the optimal cost of the problem is OPT (T ). We now have a natural
recursive algorithm for computing OPT (T ): Enumerate all T1 ⊆ T with n/4 ≤ |T1| ≤ 3n/4 and
find the one minimizing OPT (T1) + OPT (T \ T1); denote this minimum cost by OPT1. We also
exhaustively find T ′

1 ⊆ T with |T ′
1 | > n/2 that minimizes OPT (T ′

1 ) + OPT (T \ T ′
1 ), which is

denoted by OPT2. By our previous analysis, OPT (T ) = min{OPT1, OPT2} and thus we can solve
t-Closeness by taking the better solution. Two notes on the recursive steps: (1) If we have a table
of constant size (say, less than 10) then we can directly solve it in O(m) time by the brute-force
approach. (2) If we have a table T ′ such that EMD(P(T ′),P(T )) > t then we return with cost
+∞.

We now analyze the running time of the algorithm. Let f(s) denote the running time on a
sub-table of T of size s. When s ≤ 10 we have f(s) = O(m), and when s > 10,

f(s) ≤

3s/4
∑

i=s/4

(

s

i

)

· 2f(3s/4) +
s

∑

i=s/2

(

s

i

)

f(s/2) +O(2s)

≤ 2s+2f(3s/4) +O(2s).

In the first inequality, the first term stands for the time of enumerating T1 with n/4 ≤ |T1| ≤ 3n/4,
the second term is for the enumeration of T ′

1 with |T ′
1 | > n/2, and the third term is responsible

for other works such as recording the subsets. It is easy to verify that this recursion gives f(n) ≤
2O(n) ·O(m).

In many real applications, there are usually only a small number of attributes and distinct at-
tribute values. Thus it is interesting to see whether t-Closeness can be solved more efficiently when
m and |Σ| is small. We answer this question affirmatively in terms of fixed-parameter tractability.

Theorem 9. t-Closeness is fixed-parameter tractable when parameterized by m and |Σ|. Thus
we can solve t-Closeness optimally in polynomial time when m and |Σ| are constants.

Proof. Consider an input table T with n rows and m + 1 columns (of which m are QIs and one
is SA). For v ∈ Σm and s ∈ Σs, denote by Rv,s the set of vectors in T that is identical to (v, s),
and let rv,s = |Rv,s|. We thus have

∑

v∈Σm,s∈Σs
rv,s = n. We write a integer linear program to

characterize the minimum cost of a t-closeness partition of T . For every v ∈ Σm and s ∈ Σs such
that Rv,s 6= ∅, and every v∗ ∈ (Σ∪{⋆})m that generalizes v, there is a nonnegative integer variable
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x(v∗, v, s) which means the number of vectors in Rv,s that is generalized to (v∗, s) in the partition.
We clearly have

∑

v∗:v∗ generalizes v

x(v∗, v, s) = rv,s, ∀(v, s) s.t. Rv,s 6= ∅. (6)

Each v∗ ∈ (Σ ∪ {⋆})m induces a group, denoted Gv∗ , which consists of all vectors whose QI values
are generalized to v∗. Those groups together form a partition (note that some group may be empty).
Denoting by Cv∗ the number of ‘⋆’s in v∗, the cost of the partition is precisely

∑

v∗,v,sCv∗ ·x(v
∗, v, s).

Thus the objective function is

Minimize
∑

v∗,v,s

Cv∗ · x(v
∗, v, s) . (7)

We still need other constraints to ensure that each group Gv∗ either is empty or has t-closeness. We
do this by adding a set of constraints, for every v∗, that characterizes the transportation between
the SA distributions of Gv∗ and T as in the definition of EMD. First assume that Gv∗ is non-
empty. We have |Gv∗ | =

∑

v∈Σm,s∈Σs
x(v∗, v, s). The probability mass of i ∈ Σs in P(Gv∗) is

∑

v∈Σm x(v∗, v, i)/|Gv∗ |, and that in P(T ) is
∑

v∈Σm rv,i/n. For i, j ∈ Σs, let f(v
∗, i, j) denote the

amount of mass moved from i to j in order to transform P(Gv∗) to P(T ). Let di,j be the distance
between i and j in the SA space. To guarantee the t-closeness of Gv∗ we can write the following
constraints:

∑

j∈Σs

f(v∗, i, j) =
∑

v∈Σm

x(v∗, v, i)/|Gv∗ |, ∀i ∈ Σs

∑

i∈Σs

f(v∗, i, j) =
∑

v∈Σm

rv,j/n, ∀j ∈ Σs

∑

i,j∈Σs

di,j · f(v
∗, i, j) ≤ t

f(v∗, i, j) ≥ 0, ∀i, j ∈ Σs .

The first constraint above is not linear. To overcome this, we define g(v∗, i, j) = f(v∗, i, j) · |Gv∗ |,
substitute g(v∗, i, j) for f(v∗, i, j) in the above constraints, and expand |Gv∗ |. This produces the
following equivalent constraints:

∑

j∈Σs

g(v∗, i, j) =
∑

v∈Σm

x(v∗, v, i), ∀i ∈ Σs

n
∑

i∈Σs

g(v∗, i, j) =
∑

v∈Σm

rv,j
∑

v∈Σm,s∈Σs

x(v∗, v, s),∀j ∈ Σs

∑

i,j∈Σs

di,j · g(v
∗, i, j) ≤ t ·

∑

v∈Σm,s∈Σs

x(v∗, v, s)

g(v∗, i, j) ≥ 0, ∀i, j ∈ Σs .

Note that these constraints hold even if Gv∗ is empty. Thus they force group Gv∗ to be t-closeness
or empty. The set of such constraints for all v∗, together with (6) and (7), compose a mixed
integer linear program (i.e., only some of the variables are required to take integer values) that
precisely characterizes the t-Closeness problem on T .§ The number of variables in the program

§A technical issue here is that, in order to apply results for mixed integer linear program, t needs to be a rational
number. Nevertheless, for irrational t we can use rationals to approximate the value of t to an arbitrary precision.
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is N ≤ |Σ|m(|Σ|+1)m|Σs|+(|Σ|+1)m|Σs|
2 ≤ 2(|Σ|+1)2m+1. The time spent on constructing and

writing down this linear program is polynomial in n,m, and N . By the result in [16] (Section 5 of it
deals with mixed ILP), a mixed linear integer program with N variables can be solved in NO(N)L
time, where L is the number of bits used to encode the program. In our case L is polynomial in n
and m. Therefore, we can solve this program, and hence solve t-Closeness, in h(m, |Σ|)nO(1) time
for some function h. This shows that t-Closeness is fixed-parameter tractable when parameterized
by m and |Σ|.

5 Approximation Algorithm for k-Anonymity

In this section we give a polynomial-time m-approximation algorithm for k-Anonymity, which
improves the previous best ratio O(k) [1] and O(log k) [24] when k is relatively large compared
with m. (We note that the O(log k)-approximation algorithm given in [24] is not guaranteed to run
in polynomial time for super-constant k, while our result holds for all k.)

Theorem 10. k-Anonymity can be approximated within factor m in polynomial time.

Proof. Consider a table T with n rows and m QI columns. Denote by OPT the minimum cost of
any k-anonymous partition of T . Partition T into “equivalence classes” C1, . . . , CR in the following
sense: any two vectors in the same class are identical, i.e., they have the same value on each
attribute, while any two vectors from different classes differ on at least one attribute. Assume
|C1| ≤ |C2| ≤ . . . ≤ |CR|. If |C1| ≥ k, then these classes form a k-anonymous partition with cost
0, which is surely optimal. Thus we assume |C1| < k, and let L ∈ [R] be the maximum integer for
which |CL| < k. Then |CL′ | ≥ k for all L < L′ ≤ R. It is clear that each vector in C1 ∪ . . . ∪ CL

contributes at least one to the cost of any partition of T . Thus OPT ≥
∑L

i=1 |Ci|.

Case 1:
∑L

i=1 |Ci| ≥ k. In this case we partition T into R − L + 1 groups: {C1 ∪ . . . ∪

CL, CL+1, CL+2, . . . , CR}. This is a k-anonymous partition of cost at most m ·
∑L

i=1 |Ci| ≤ m ·OPT .

Case 2:
∑L

i=1 |Ci| < k and
∑L

i=1 |Ci|+
∑R

i=L+1(|Ci| − k) ≥ k. We choose C ′
i ⊆ Ci for L+ 1 ≤

i ≤ R satisfying that |Ci\C
′
i| ≥ k and

∑L
i=1 |Ci|+

∑R
i=L+1 |C

′
i| = k. This can be done because of the

second condition of this case. We partition T into R−L+1 groups: {
⋃L

i=1 Ci ∪
⋃R

i=L+1C
′
i, CL+1 \

C ′
L+1, . . . , CR \ C ′

R}. This is a k-anonymous partition of cost at most m · k ≤ m · OPT , since
OPT ≥ k.

Case 3:
∑L

i=1 |Ci|+
∑R

i=L+1(|Ci| − k) < k. We claim that there exists i ∈ {L+1, . . . , R} such
that any vector in Ci contributes at least one to the cost of any k-anonymous partition. Assume
the contrary. Then there exists a k-anonymous partition such that, for every L+ 1 ≤ i ≤ R, there
is a vector v ∈ Ci whose suppression cost is 0, which means that v belongs to a group that only
contains vectors in Ci; denote this group by C ′

i. We also know that there is at least one group in the
partition that has positive cost. However, by removing all C ′

i, L+ 1 ≤ i ≤ R, from T , the number
of vectors left is at most n− k(R−L) =

∑R
i=1 |Ci|− k(R−L) =

∑L
i=1 |Ci|+

∑R
i=L+1(|Ci|− k) < k,

due to the condition of this case. This contradicts with the property of k-anonymous partitions.
Therefore the claim holds, i.e., there exists j ∈ {L+1, . . . , R} such that any vector in Cj contributes

at least one to the partition cost. Thus we have OPT ≥
∑L

i=1 |Ci|+ |Cj | ≥
∑L+1

i=1 |Ci|. We partition

T into R−L groups: {
⋃L+1

i=1 Ci, CL+2, . . . , CR}. This is a k-anonymous partition with cost at most

m ·
∑L+1

i=1 |Ci| ≤ m ·OPT .
By the above case analyses, we can always find in polynomial time a k-anonymous partition of

T with cost at most m · OPT . This completes the proof of Theorem 10.
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We note that Theorem 10 implies that k-Anonymity can be solved optimally in polynomial
time when m = 1. This is in contrast to l-Diversity, which remains NP-hard when m = 1 (with
unbounded l) [9].

6 Algorithm for 2-Diversity

In this part we give the first polynomial time algorithm for solving 2-Diversity. Let T be an
input table of 2-Diversity. The following lemma is crucial to our algorithm.

Lemma 2. There is an optimal 2-diverse partition of T in which every group consists of 2 or 3
vectors with distinct SA values.

Proof. It suffices to show that any 2-diverse sub-table M ⊆ T can be further partitioned into
groups each of which consists of 2 or 3 vectors with distinct SA values (note that partitioning a
group does not increase the generalization cost). We use induction on the size of M . When |M | = 2
or 3 it can be verified directly. Now consider M ⊆ T of size t ≥ 4. Suppose M contains k SA
values {1, 2, . . . , k} where k ≥ 2. Let ai be the number of vectors in M with SA value i, for i ∈ [k].
Assume w.l.o.g. that a1 ≥ a2 ≥ . . . ≥ ak. Let A1 and A2 be two vectors with SA value 1 and 2,
respectively. Partition M into {A1, A2} and M ′ = M \ {A1, A2}. We only need to show that M ′ is
2-diverse, so that we can use induction on it. We perform a case analysis as follows.

• a1 = 1. ThenM ′ consists of at least two vectors with distinct SA values, and thus is 2-diverse.

• k = 2. Since M is 2-diverse, we have a1 = a2. Then M ′ still contains the same number of SA
values 1 and 2, so it remains 2-diverse.

• a1 ≥ 2, k ≥ 3, a1 > a3. The highest frequency of any SA value in M ′ is a1 − 1 ≤ |M |/2− 1 =
|M ′|/2, and thus M ′ is 2-diverse.

• a1 = a3 ≥ 2, k ≥ 3. In this case |M | ≥ 3a3. The highest frequency of an SA value in M ′ is
a3. We have |M ′| − 2a3 = |M | − 2− 2a3 ≥ a3 − 2 ≥ 0, so M ′ is 2-diverse.

All the cases are covered above and hence Lemma 2 is proved.

Giving Lemma 2, the rest of the proof is basically the same with that of the polynomial-time
tractability of 2-Anonymity given in [4]. We restate the proof for completeness. We reduce 2-
Diversity to a combinatorial problem called Simplex Matching introduced in [2], which admits a
polynomial algorithm [2]. The input of Simplex Matching is a hypergraphH = (V,E) containing
edges of sizes 2 and 3 with nonnegative edge costs c(e) for all edges e ∈ E. In addition H is guar-
anteed to satisfy the following simplex condition: if {v1, v2, v3} ∈ E, then {v1, v2}, {v2, v3}, {v3, v1}
are also in E, and c({v1, v2}) + c({v2, v3}) + c({v1, v3}) ≤ 2 · c({v1, v2, v3}). The goal is to find
a perfect matching of H (i.e., a set of edges that cover every vertex v ∈ V exactly once) with
minimum cost (which is the sum of costs of all chosen edges).

Let T be an input table of 2-Diversity. We construct a hypergraph H = (V,E) as fol-
lows. Let V = {v1, v2, . . . , vn} where vi corresponds to the vector T [i]. For every two vectors
T [i],T [j] (or three vectors T [i],T [j],T [k]) with distinct SA values, there is an edge e = {vi, vj}
(or e = {vi, vj , vk}) with cost equal to cost({T [i],T [j]}) (or cost({T [i],T [j],T [k]})). Consider any
3D edge e = {vi, vj , vk}. Since each column that needs to be suppressed in {T [i],T [j]} must also
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be suppressed in {T [i],T [j],T [k]}, we have c(e)/3 ≥ c({vi, vj})/2. Similarly, c(e)/3 ≥ c({vi, vk})/2
and c(e)/3 ≥ c({vj , vk})/2. Summing the inequalities up gives 2c(e) ≥ c({vi, vj}) + c({vi, vk}) +
c({vj , vk}). Therefore H satisfies the simplex condition, and it clearly can be constructed in poly-
nomial time. Call a 2-diverse partition of T good if every group in it consists of 2 or 3 vectors with
distinct SA values. Lemma 2 shows that there is an optimal 2-diverse partition that is good. By
the construction of H, each good 2-diverse partition of T can be easily transformed to a perfect
matching of H with the same cost, and vice versa. Hence, we can find an optimal 2-diverse partition
of T by using the polynomial time algorithm for Simplex Matching [2]. We thus have:

Theorem 11. 2-Diversity is solvable in polynomial time.

7 Conclusions

This paper presents the first theoretical study on the t-closeness principle for privacy preserving.
We prove the NP-hardness of the t-Closeness problem for every constant t ∈ [0, 1), and give
exact and fixed-parameter algorithms for the problem. We also provide conditionally improved
approximation algorithm for k-Anonymity, and give the first polynomial time exact algorithm for
2-Diversity.

There are still many related problems that deserve further explorations, amongst which the
most interesting one to the authors is designing polynomial time approximation algorithms for
t-Closeness with provable performance guarantees. We conjecture that the best approximation
ratio may be dependent on n (e.g., O(log n)). The parameterized complexity of t-Closeness with
respect to other sets of parameters are also of interest. Some interesting parameters that have been
studied for k-anonymity can be found in [11, 6, 7].
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