
Paths Beyond Local Search: A Tight Bound
for Randomized Fixed-Point Computation∗

Xi Chen†

Department of Computer Science
Tsinghua University

Shang-Hua Teng‡

Department of Computer Science
Boston University

Abstract

In 1983, Aldous proved that randomization can speedup
local search. For example, it reduces the query complex-
ity of local search over grid [1 : n]d from Θ(nd−1) to
O(d1/2nd/2). It remains open whether randomization helps
fixed-point computation. Inspired by the recent advances
on the complexity of equilibrium computation, we solve this
open problem by giving an asymptotically tight bound of
(Ω (n))d−1 on the randomized query complexity for com-
puting a fixed point of a discrete Brouwer function over
grid [1 : n]d. Our result can be extended to the black-box
query model for Sperner’s Lemma in any dimension. It also
yields a tight bound for the computation of d-dimensional
approximate Brouwer fixed points as defined by Scarf and
by Hirsch, Papadimitriou, and Vavasis.

Since the randomized query complexity of global opti-
mization over [1 : n]d is Θ(nd), the randomized query
model over [1 : n]d strictly separates these three important
search problems:

Global optimization is harder than fixed-point
computation, and fixed-point computation

is harder than local search.

Our result indeed demonstrates that randomization does not
help much in fixed-point computation in the black-box query
model. Our randomized lower bound matches the determin-
istic complexity of this problem, which is Θ(nd−1).

∗This research is supported mostly by the NSF ITR grant CCR-
0325630.

†Part of this work was done while visiting Computer Science De-
partment at Boston University. In part supported by the National Nat-
ural Science Foundation of China Grant 60553001, the National Ba-
sic Research Program of China Grant (2007CB807900, 2007CB807901),
and the Chinese National Key Foundation R & D Plan (2003CB317807,
2004CB318108).

‡Part of this work was done while visiting Tsinghua University and
Microsoft Research Asia Lab.

1 Introduction

In this paper, we prove that randomization cannot be
used to speedup fixed-point computation (FPC) in the
black-box query model. Our result draws a striking con-
trast between FPC and local search: In 1983, Aldous proved
that randomization can significantly speedup local search
[2]. Our randomized lower bound is asymptotically tight
— it matches the deterministic upper bound [18, 6] for this
problem. Our result resolves a question that has been open
since the 1989 paper of Hirsch, Papadimitriou, and Vavasis
[18] which introduced the black-box query model for FPC.

Motivation

The Simplex Algorithm [13] is an implementation of local
search1 and finding a Nash equilibrium [25] is an exam-
ple of FPC. A general approach for local search is Iterative
Improvement with Steepest-Descent as its most popular ex-
ample. It follows a path along which the objective values
are improving, in the feasible space. The end of the path
is a local optimum. Likewise, algorithms for FPC, such
as the Lemke-Howson algorithm [24] and the algorithm for
Sperner’s Lemma [35], also follow a path whose endpoint is
an equilibrium or a fixed-point. But unlike in local search,
a path in FPC does not have an obvious locally computable,
monotonic2 measure-of-progress. Moreover, path follow-
ing in FPC from an arbitrary point could lead to a cycle
while the union of paths in Iterative Improvement is acyclic.

Do these structural differences have
any algorithmic implication?

There has been increasing evidence that local search
and FPC are different. First, Aldous [2] showed that ran-
domization can speedup local search (details below). His
method crucially utilizes the monotonicity discussed above.

1In linear programming, each local optimum is also a global optimum.
2Each path has a globally computable monotonic measure, the number

of hops from the start of the path to a node.

48th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/07 $25.00 © 2007 IEEE
DOI 10.1109/FOCS.2007.14

124

48th Annual IEEE Symposium on Foundations of Computer Science

0272-5428/07 $25.00 © 2007 IEEE
DOI 10.1109/FOCS.2007.14

124

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 24, 2008 at 00:45 from IEEE Xplore. Restrictions apply.

It remains open whether randomization helps FPC. Second,
polynomial-time algorithms have been developed for sev-
eral non-trivial classes of local search problems. These
algorithms include the interior-point algorithm for linear
and convex programming [22, 26] and edge-insertion al-
gorithms for geometric optimization [16]. However, pop-
ular fixed-point problems such as the computation of Nash
or market equilibria [3] might be hard for polynomial time
[14, 8, 12]. Other than those that can be solved by con-
vex programming, we haven’t yet discovered a significantly
non-trivial class of equilibrium problems solvable in poly-
nomial time. Third, an approximate local optimum for each
PLS (Polynomial Local Search [21]) problem can be found
in fully-polynomial time [27]. In contrast, one can apply a
fully-polynomial-time approximate Nash equilibrium algo-
rithm to find an exact Nash equilibrium in polynomial time
[9]. Same can be said about approximate market equilibria
[19]. Fourth, although they all have exponential worst-case
complexity [31, 23], the smoothed complexity of the Sim-
plex Algorithm and Lemke-Howson Algorithm (or Scarf’s
market equilibrium algorithm [34]) might be drastically dif-
ferent [36, 9, 19]. This evidence inspires us to ask:

Is fixed-point computation fundamentally
harder than local search?

Naturally, the best way to address this question is to
prove “If PPAD is in FP, then PLS is in FP.” This question
remains open and there are oracles separating PPAD and
PLS from each other [4]. Here, we show that in the black-
box query model, FPC is strictly harder than local search.

Black-Box Query Model for FPC and Local Search

For local search, we will use the model studied by Aldous
[2] and Aaronson [1] (see also [30, 39, 37]). The search
space is defined over Zd

n = [1 : n]d and we are given a
black-box function h : Zd

n → R. The local search problem
is to find a local optimum of h, a vector x ∈ Zd

n such that
h(x) ≥ h(y), ∀ y with ‖x−y‖1 ≤ 1. For FPC, we consider
the model introduced by Hirsch, Papadimitriou and Vavasis
[18]. In the HPV model, the search domain is also Zd

n =
[1 : n]d. We are given a black-box function F : Zd

n → Zd
n

that satisfies Brouwer’s condition [5] — a set of continuity
and boundary conditions (see Section 2) — that guarantees
the existence of a fixed-point. The FPC problem is to find a
fixed-point of F , a vector v ∈ Zd

n satisfying F (v) = v. The
complexity of both problems is measured by the number of
queries, of the form “What is h(x)?” or “What is F (x)?”,
needed to find a solution.

The HPV model is in fact a very good approximation
for the computation of Brouwer’s fixed points, as argued in
[18]. To be self-contained, we include a brief discussion
here. Note that Brouwer’s Fixed Point Theorem [5] — that

any continuous map f from a convex compact body, such
as a simplex or a hypercube, to itself has a fixed point — is
inherently continuous. In order to study complexity of this
continuous problem in the Turing model, some inaccuracy
must be introduced to ensure the existence of a solution with
finite description [32, 33, 28, 18, 15].

Following Scarf [32], an approximate fixed point of a
continuous map f is a point x in the convex body such that
‖f(x)−x‖ ≤ ε for a given ε > 0. In 1928, Sperner [35] dis-
covered a discrete fixed point theorem that led to the most
elegant proof of Brouwer’s Theorem. Suppose that Ω is a d-
dimensional simplex with vertices v1, v2, ..., vd+1, and that
S is a simplicial decomposition of Ω. Suppose Π assigns
to each vertex of S a color from {1, 2, ..., d + 1} such that,
for every vertex v of S, Π(v) �= i if the ith component of
the barycentric coordinate of v (the convex combination of
v1, v2, ..., vd+1 to express v), is 0. Sperner’s Lemma asserts
that there exists a cell in S that contains all colors. Consider
a Brouwer map f with Lipschitz constant L over the sim-
plex Ω. Suppose further that the diameter of each simplex
cell in S is at most ε/L. Then, one can define a color assign-
ment Πf such that each fully-colored simplex in (S, Πf)
must have a vertex v satisfying ‖f(v) − v‖ ≤ Θ(ε). Thus,
a fully-colored cell of (S, Πf) can be viewed as an approx-
imate, discrete fixed point of f . The HPV model is an ex-
tension of Sperner’s Lemma from the simplex to the hyper-
cube. Our randomized lower bound can be extended to the
black-box query model for Sperner’s Lemma and hence for
the computation of approximate fixed points.

There are some similarities between FPC and local
search over Zd

n. For both, divide-and-conquer has posi-
tive but limited success: It can solve both problems using
O(nd−1) queries [6]. An alternative approach to solve them
is path-following. When following a short path, it can be
faster than divide-and-conquer, but long and winding paths
are the cause of inefficiency. The most prominent differ-
ence between paths in these two problems is that the values
of h along a path to a local optimum are monotonic, serv-
ing as a measure-of-progress along the path. Aldous [2]
used this fact in a randomized algorithm: Randomly query
d1/2nd/2 points in Zd

n; let s be the sample point with the
largest h value; follow a path starting at s. If a path to a
local optimum is long, say much longer than d1/2nd/2, then
with high probability, the random samples intersect the path
and partition it into sub-paths, each with expected length
O(d1/2nd/2). As s has the largest h value, its sub-path
is the last sub-path of a potentially long path, but with ex-
pected length O(d1/2nd/2). So with randomization, Aldous
reduced the expected query complexity to O(d1/2nd/2). It
remains open whether randomization can reduce the query
complexity of FPC over Zd

n. The lack of a measure-of-
progress along a path makes it impossible for us to directly
use Aldous’ idea.

125125

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 24, 2008 at 00:45 from IEEE Xplore. Restrictions apply.

Our Main Result

As the main technical result of this paper, we prove that an
expected number of (Ω (n))d−1 queries are indeed needed
for FPC. Our lower bound is asymptotically tight3 as a func-
tion of n, since the divide-and-conquer algorithm in [6] can
find a fixed point by querying O(nd−1) vectors.

In contrast to Aldous’ result [2], our result demonstrates
that randomization does not help much in FPC in the query
model. It shows that, in the randomized query model over
Zd

n, a fixed-point is strictly harder to find than a local opti-
mum! The significant gap between these two problems is
revealed only in randomized computation. In the determin-
istic framework, both have query complexity Θ(nd−1).

One can show that the randomized query complexity for
finding a global optimum over Zd

n is Θ(nd). Thus, the ran-
domized query model over Zd

n strictly separates these three
important search problems:

Global optimization is harder than fixed-point
computation, and fixed-point computation is

harder than local search.

Although the beautiful question “does PPAD in FP implies
PLS is in FP?” remains open, our results uncover some fun-
damental difficulties in fixed-point and equilibrium compu-
tation. We also anticipate that a similar gap can be obtained
in the quantum query model.

Our proof has two stages: We first define a string prob-
lem (Section 2.2), and reduce it to the FPC problem over
Zd

n. We then prove a randomized lower bound for the string
problem, which implies a same bound for FPC. The lower
bound proof is obtained via a hierarchical construction of
random long strings. Our reduction exposes the hardness
of FPC, and allows us focus on the combinatorially simpler
string problem. The idea behind the reduction is illustrated
by Figure 1, in which we generate a simple graph G′ over
[3 : 27]2 from a string “1537” of integers. Our string-based
method systematically generates random, long and winding
paths in the grid graph over Zd

n. To achieve our nearly-
tight lower bound, these paths must be much longer than the
random paths constructed in [39, 37] for local search. Our
paths have expected length (Θ(n))d−1, while those paths
for local search have length Θ(nd/2). We also develop new
techniques for unknotting a self-intersecting path in Zd

n and
for realizing a path with a Brouwer function. These tech-
niques are instrumental to our analysis and could be useful
in the future complexity studies of FPC and its applications.

Related Work

Our work is partially inspired by the results of Aaronson
[1], Santha and Szegedy [30], Zhang [39], and Sun and Yao

3The constant in Ω in our lower bound depends exponentially on d.

[37] on the randomized and quantum query complexity of
local search over Zd

n. It is built on the model of Hirsch, Pa-
padimitriou and Vavasis [18], who proved a tight Θ(n) de-
terministic bound for Z2

n and an Ω(nd−2) lower bound for
Zd

n. Chen and Deng [6] improved this bound to Θ(nd−1)
for Zd

n. Friedl, Ivanyos, Santha, and Verhoeven [17] gave
an Ω(n1/4)-lower bound on the randomized query complex-
ity of the 2-dimensional Sperner problem. Our method for
unknotting self-intersecting paths can be viewed as an ex-
tension of the 2D technique of [7] to high dimensions.

2 Three High-Dimensional Search Problems

We define three search problems. The first one concerns
FPC. We introduce the last two to help the study of the first
one. For each of the three problems, we define its mathe-
matical structure, a query model for accessing this structure,
the search problem itself, and its query complexity. Below,
let Ed = {±e1,±e2, ...,±ed}. Let ‖ · ‖ denote ‖ · ‖∞. For
two vectors u �= v in Zd, we say u < v lexicographically
if ui < vi for some i, and uj = vj for all 1 ≤ j < i.

2.1 Discrete Brouwer Fixed-Points

A function f : Zd
n → {0}∪Ed is bounded if f(x)+x ∈

Zd
n for all x ∈ Zd

n; v ∈ Zd
n is a zero point of f if f(v) = 0.

Clearly, if F (x) = x+f(x), then v is a fixed point of F iff
v is a zero point of f . A function f : S → {0}∪Ed, where
S ⊂ Zd, is direction-preserving if ‖f(r1)− f(r2)‖ ≤ 1 for
all pairs r1, r2 ∈ S such that ‖r1 − r2‖ ≤ 1.

Following the discrete fixed-point theorem of [20], we
have: For every function f : Zd

n → {0} ∪ Ed, if f is both
bounded and direction-preserving, then there exists v ∈ Zd

n

such that f(v) = 0. We refer to a bounded and direction-
preserving function f over Zd

n as a Brouwer function over
Zd

n. In the query model, one can only access f by asking
queries of the form: “What is f(r)?” for a point r ∈ Zd

n.
The FPC problem ZPd that we will study is: Given a

Brouwer function f : Zd
n → {0} ∪ Ed in the query model,

find a zero point of f . Given any randomized algorithm
Υ4 for solving ZPd, we let RQ(Υ, f) denote the expected
number of queries used by Υ to output a zero point. We let

RQd
ZP(n) = min

Υ
max

f : Brouwer function over Z
d
n

RQ(Υ, f) ,

denote the randomized query complexity of ZPd. In this
paper, we will prove:

Theorem 2.1 (Main). For all d ≥ 2, there exists a constant
c such that for all sufficiently large n,

RQd
ZP(n) ≥ (c−dn)d−1.

4We assume that Υ does not stop until a zero point of f is found.

126126

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 24, 2008 at 00:45 from IEEE Xplore. Restrictions apply.

In contrast, the deterministic query complexity for solving
ZPd is at most 7nd−1 [6].

The FPC problem defined here is computationally equiv-
alent to the fixed problems studied in [18, 14, 9, 35]. Thus,
our result carries over to these FPC problems.

2.2 End-of-a-String

Suppose Σ is a finite set. A string S over Σ of length m
is a sequence S = a1a2...am with ai ∈ Σ.

Definition 2.2 (Non-Repeating-Strings). A string S = a1

a2...am over Zn = [1 : n] is d-non-repeating for d ∈ [1 :
m] if (1) each string over Zn of length d appears in S as a
substring at most once; (2) ai is odd if i is a multiple of d
and ai is even otherwise; and (3) m is a multiple of d.

We define endd (S) = am−d+1...am−1am.

Each d-non-repeating string S = a1...am over Zn de-
fines a query oracle BS : [1 : n]d → ({“no”} ∪ Zn) ×
({“no”} ∪Zn): For S′ = b1...bd ∈ [1 : n]d, if S′ is not
a substring of S, then BS(S′) = (“no”, “no”); otherwise,
there is a unique k such that ak+i−1 = bi, ∀ i ∈ [1 : d].
Then BS(S′) = (“no”, ad+1) when k = 1, BS(S′) =
(am−d, “no”) when k = m − d + 1 (i.e., S′ = endd (S)),
and BS(S′) = (ak−1, ak+d), otherwise.

Let ESd denote the search problem: Given a pair (S, n)
where S is a d-non-repeating string over Zn accessible by
BS

5, and its first d symbols a1...ad−1ad with ad = 1, find
endd (S). We let RQd

ES(n) denote its randomized query
complexity6. It is easy to show that RQ1

ES(n) = Θ(n). In
Section 4, we will prove

Theorem 2.3 (Complexity of ESd). For all d ≥ 2 and su-
fficiently large n, RQd

ES(4n + 4) ≥ 2−(d+1) (24−dn)d.

In Section 3, we will reduce ESd−1 to ZPd and prove
Theorem 2.1 as a corollary of Theorem 2.3. In the reduc-
tion, the two problems are connected via the following prob-
lem on graphs.

2.3 End-of-a-Path in Grid-PPAD Graphs

The mathematical structure for this search problem is a
directed graph G = (V, E). A vertex v ∈ V satisfies Eu-
ler’s condition if ∆I(v) = ∆O(v) where ∆I(v) and ∆O(v)
are the in-degree and out-degree of v, respectively. We start
with the following definition motivated by Papadimitriou’s
PPAD class [29].

Definition 2.4 (Generalized PPAD Graphs). A directed
graph G = (V, E) is a generalized PPAD graph if (1) there

5Here the length of S is unknown to the algorithm.
6The parameter n is not the length of S, but the size of the alphabet.

exist exactly one vertex vS ∈ V with ∆O(vS) = ∆I(vS) +
1, and exactly one vT ∈ V with ∆I(vT) = ∆O(vT)+1; (2)
all vertices in V − {vS , vT } satisfy Euler’s condition; and
(3) if (v1, v2) is a directed edge in E, then (v2, v1) �∈ E.

We refer to vS and vT as the starting and ending ver-
tices of G, respectively. G is a PPAD graph if in addition
∆I(v), ∆O(v) ≤ 1, for all v ∈ V .

Edges of a PPAD graph form a collection of disjoint di-
rected cycles and a directed path from vS to vT . In this
paper, we are interested in a special family of PPAD graphs
over Zd

n: A directed graph G = (Zd
n, E) is a generalized

grid-PPAD graph over Zd
n if it is a generalized PPAD graph

and the underlying undirected graph of G is a subgraph of
the grid graph defined over Zd

n. Moreover, if G is also a
PPAD graph, then we say G is a grid-PPAD graph. G∗

and G′ in Figure 1 are examples of generalized grid-PPAD
graph and grid-PPAD graph, respectively. We now define
the query model BG for accessing a grid-PPAD graph.

Definition 2.5. Given a grid-PPAD graph G = (Zd
n, E),

we define BG : Zd
n → ({“no”} ∪ Ed) × ({“no”} ∪ Ed) as

follows: for v ∈ Zd
n (1) BG(v) = (“no”,v1−v) if v is the

starting vertex of G and (v,v1) ∈ E; (2) BG(v) = (v −
v1, “no”) if v is the ending vertex of G and (v1,v) ∈ E;
(3) BG(v) = (v−v1,v2 −v) if (v1,v) and (v,v2) ∈ E);
and (4) BG(v) = (“no”, “no”), otherwise.

In other words, for each v ∈ Zd
n, BG(v) gives the pre-

decessor and successor of v in G. We will use the property
that if BG(v) = (s1, s2) and s1, s2 ∈ Ed, then s1 + s2 �= 0.

Let GPd be the search problem: Given a triple (G, n,u)
where G is a grid-PPAD graph over grid Zd

n accessible by
BG and u is the starting vertex of G satisfying ud = 1, find
its ending vertex. We use RQd

GP(n) to denote the random-
ized query complexity for solving this problem.

3 Reduction Among Search Problems

In this section, we reduce ESd−1 to ZPd by first reducing
ESd−1 to GPd and then reducing GPd to ZPd (Theorem 3.1
and 3.2 below). Theorem 2.1 then follows from Theorem
2.3. In this section, we will prove Theorem 3.1. A proof of
Theorem 3.2 can be found in the full version [10].

Theorem 3.1 (From ESd−1 to GPd). For all d ≥ 2,

RQd−1
ES (n) ≤ 4d · RQd

GP(8n + 1).

Theorem 3.2 (From GPd to ZPd). For all d ≥ 2,

RQd
GP(n) ≤ RQd

ZP(24n + 7).

Proof of Theorem 3.1. We define a map Fd from Zd−1 to
Zd: for d = 2, F2(a) = (a, a); and for d > 2, Fd(a) =
(a1, a1 + a2, ..., ad−2 + ad−1, ad−1). We will crucially use

127127

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 24, 2008 at 00:45 from IEEE Xplore. Restrictions apply.

the following nice property of Fd: For any k ∈ [1 : d − 1]
and for any a ∈ Zd−1, we can uniquely determine the first
k and the last k entries of a, respectively, from the first k
and the last k entries of Fd(a).

Let S be a (d−1)-non-repeating string over Zn of length
m(d−1) for some m ≥ 2, whose (d−1)st symbol is 1. We
view S as a sequence of m points a1, a2, ...,am in Zd−1

n ,
where ai = ai,1...ai,d−1, such that,

S = a1,1a1,2...a1,d−1...am,1am,2...am,d−1.

From S, we will construct a grid-PPAD graph G′ in two
stages. In the first stage, we construct a generalized grid-
PPAD graph G∗ over Zd

2n such that

(A.1) Its starting vertex is u∗ = Fd(a1) and its ending
vertex is w∗ = Fd(am); (A.2) For each directed edge
(u,v) with u − v ∈ Ed, at most one query to BS is
needed to determine whether (u,v) ∈ G∗ or not.

Suppose u and v ∈ Zd
2n are two vertices that differ in

only one coordinate, say the ith coordinate, and e = (v −
u)/|vi −ui| ∈ Ed. Let E(u,v) = {(u,u+ e), (u+ e,u+
2e)...(v− e,v)}. For n, m1, m2 ∈ Z and s ∈ {±1}, (n, s)
is consistent with (m1, m2) if either (1) m1 ≤ n < m2 and
s = 1; or (2) m2 < n ≤ m1 and s = −1. Recall a directed
path is simple if it contains each vertex at most once.

Now consider two consecutive points a = at and b =
at+1 in the (d − 1)-non-repeating string S = a1...am. We
know a �= b. We map them to u = Fd(a) and w = Fd(b)
in Zd

2n, and connect them with a path through a sequence
of (d − 1) vertices v0 = u,v1, ...,vd−1,vd = w, where
vi,j = uj if i < j and vi,j = wj if i ≥ j.

Note that vi−1 and vi differ only in the ith coordinate.
Let P (a,b) = ∪d−1

i=0 E (vi,vi+1), then P (a,b) is a simple
directed path from u = v0 to w = vd.

Construction of G∗ from S: G∗ = (Zd
2n,∪m−1

i=1 P (ai,
ai+1)). See Figure 1 for an example. By Lemma 3.4 below,
G∗ is a generalized grid-PPAD graph. Property (A.2) can
be derived from Proposition 3.3.

Proposition 3.3 (Local Characterization of P (a,b)). Let
a,b be two points in Zd−1

n . For v ∈ Zd
2n and s ∈ {±1}:

(1) (v,v + se1) ∈ P (a,b) iff (v1, s) is consistent with
(a1, b1), ad−1 = vd, and ad−i = vd−i+1 − ad−i+1 for all
i ∈ [2 : d − 1];

(2) (v,v + sed) ∈ P (a,b) iff (vd, s) is consistent with
(ad−1, bd−1), b1 = v1 and bi = vi − bi−1, ∀ i ∈ [2 : d− 1];

(3) When k ∈ [2 : d − 1], (v,v + sek) ∈ P (a,b) iff:
(3.0) (vk, s) is consistent with (ak−1 +ak, bk−1 +bk); (3.1)
ad−1 = vd and ad−i = vd−i+1 − ad−i+1, ∀ i ∈ [2 : d− k];
and (3.2) b1 = v1 and bi = vi − bi−1, ∀ i ∈ [2 : k − 1].

Lemma 3.4 (Structural Correctness). For all (d − 1)-non-
repeating string S = a1a2...am over Zn, if edge (u,v) ∈
P (ai, ai+1) then (u,v), (v,u) /∈ P (aj , aj+1) for all j �= i.

7

6

4321
1

2

3

4

5

5 6 7

27

23

151173
3

7

11

15

19

19 23 27

Figure 1. G∗ and G′ constructed from 1537

Proof. We only prove the case when e = v−u = sek with
1 < k < d and s ∈ {±1}. The other two cases are similar.

From Proposition 3.3, (u,v) ∈ P (ai, ai+1) implies that
ai and ai+1 satisfy conditions (3.1) and (3.2). If (u,v) or
(v,u) is in P (aj , aj+1), then aj and aj+1 also satisfy these
two conditions. Thus, ai,k...ai,d−1ai+1,1...ai+1,k−1 = aj,k

...aj,d−1aj+1,1...aj+1,k−1, which contradicts with the as-
sumption that S is (d − 1)-non-repeating.

In the second stage, we build a grid-PPAD graph G′ over
Zd

8n+1 from G∗. Let map Γ(v) = 4v − 1 for all v ∈ Zd
2n.

Our G′, see Figure 1 for an example, satisfies:

(B.1) Its starting vertex is u′ = Γ(u∗) − 2ed, and its
ending vertex w′ satisfies ‖w′ − Γ(w∗)‖ ≤ 1; (B.2)
For each v ∈ Zd

8n+1, one can determine BG′(v) from
the predecessors and successors of u in G∗, where u ∈
Zd

2n is the lexicographically smallest vertex such that
‖v − Γ(u) ≤ 2‖.

Every vertex in G∗ = (Zd
2n, E∗), other than the starting

and ending ones, satisfies Euler’s condition. Some vertices
may have in-degree and out-degree more than one. In this
stage, we systematically unknot high-degree intersections
of G∗ using a larger space Zd

8n+1.
Two subsets H1 and H2 of Ed, where d ≥ 2, form a

balanced-non-canceling pair if |H1| = |H2| and s1 + s2

�= 0 for all s1 ∈ H1 and s2 ∈ H2. Let HI(u) = {e ∈ Ed
∣∣

(u − e,u) ∈ E∗} be the vector differences of u and its
predecessors in G∗. Similarly, let HO(u) = {e ∈ Ed

∣∣ (u,
u+e) ∈ E∗} be the vector differences of the successors of
u and u. In the construction below, we will use the fact that
if u satisfies Euler’s condition then (HI , HO) is a balanced-
non-canceling pair.

Using the procedure of Figure 2, we define a directed
graph G[H1, H2] = ({−1, 0, +1}d, E[H1, H2]) for every
balanced-non-canceling pair H1 and H2. G[H1, H2] has the
following properties: (1) For every vertex u of G[H1, H2],
∆I(u), ∆O(u) ≤ 1; (2) A vertex u has ∆I(u) = 0 and
∆O(u) = 1 iff there exists an e ∈ H1 such that u = −e;
(3) A vertex u has ∆I(u) = 1 and ∆O(u) = 0 iff there
exists an e ∈ H2 such that u = +e.

Construction of G′ from G∗: Let u∗ be the starting
vertex and w∗ be the ending vertex of G∗. We build G′ =
(Zd

8n+1, E
′) by applying the procedure of Figure 2 locally

128128

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 24, 2008 at 00:45 from IEEE Xplore. Restrictions apply.

1 : set edge set E[H1, H2] = ∅
2 : while H1 �= ∅ do
3 : let s1 be the smallest vector in H1 and s2 be the

largest vector in H2 under the lexicographical ordering
4 : set H1 = H1 − {s1} and H2 = H2 − {s2}; insert

{(−s1,−s1 + s2), (−s1 + s2, s2)} into E[H1, H2]

Figure 2. Construction of Graph G[H1, H2]

to every vertex u ∈ Zd
2n of G∗. When u ∈ {u∗,w∗}, we

use a slight modification of (HI(u), HO(u)). Initially, the
edge set E′ = ∅. Recall Γ(u) = 4u − 1.

[local embedding of the starting vertex u∗]
As u∗

d = 1, ed /∈ HI(u∗) and −ed /∈ HO(u∗). Let
HI = HI(u∗) ∪ {ed}. Add directed edges (Γ(u∗) −
2ed, Γ(u∗)− ed) and (Γ(u∗) + s1, Γ(u∗) + s2) to E′

for all edges (s1, s2) in G[HI , HO(u∗)].
[local embedding of the ending vertex w∗]

As |HI(w∗)| = |HO(w∗)|+1, HI(w∗) �= ∅. Let e be
the smallest vector in HI(w∗), and HI = HI(w∗) −
{e}. Add edges (Γ(w∗) + s1, Γ(w∗) + s2) to E′ for
all edges (s1, s2) in G[HI , HO(w∗)].

[local embedding of other vertices u]
For each u ∈ G∗, add (Γ(u) + s1, Γ(u) + s2) to E′

for all edges (s1, s2) in G[HI(u), HO(u)].
[connecting local embeddings]

For each (u,v) ∈ G∗, letting e = v−u ∈ Ed, we add
(Γ(u)+ e, Γ(u)+ 2e), (Γ(u)+ 2e, Γ(u)+ 3e) to E′.

It is quite mechanical to check that G′ is a grid-PPAD graph
that satisfies (B.1) and (B.2). Theorem 3.1 follows directly
from Property (A.1), (A.2), (B.1) and (B.2).

4 Randomized Lower Bound for ESd

The technical objective of this section is to construct
a distribution S of d-non-repeating strings and show that,
for a random string S drawn according to S, every deter-
ministic algorithm for ESd needs expected (Ω(n))d queries
to BS . Thus, by Yao’s Minimax Principle [38], we have
RQd

ES(n) = (Ω(n))d. We will apply random permutations
hierarchically to define the distribution S, and ensure that a
random string from S has sufficient entropy that its search
problem is expected to be difficult.

4.1 Hierarchical Construction of Random
d-Non-Repeating Strings

Let Jn = [2 : 2n + 2], On = {3, 5, 7, ..., 2n + 1}, and
Fn = {4, 6, ..., 2n + 2}. Let strings S0 = 2, S1 = 3 ◦ 4 ...
Sn = (2n + 1) ◦ (2n + 2). Each permutation π : [1 : n] →

23456

2 3 4 5 6

25634

25634

2 3 4 5 6

23456

2 3 4 5 6

23456

2 3 4 5 6

25634

2 3 4 5 6

2 3 4 5 6

Figure 3. A valid (2, 2)-ToC T

[1 : n] defines a string C = S0 ◦ Sπ(1) ◦ ... ◦ Sπ(n) which
we refer to as a connector over Jn. Let r[C] = 2π(n) + 2,
the last symbol of C. We use φC(2) to denote the right
neighbor of 2. Each s ∈ Jn −{2, r[Cπ]} has two neighbors
in C. The left neighbor of an even s is s − 1, and we use
φC(s) to denote its right neighbor; the right neighbor of an
odd s is s + 1 and we use φC(s) to denote its left neighbor.
Clearly, if φC(s) = t then φC(t) = s.

Our hierarchical framework is built on Tn,d, the rooted
complete-(2n + 1)-nary tree of height d. In Tn,d, each in-
ternal node u is connected to its (2n + 1) children by edges
with distinct labels from Jn; if u is connected to v by an
edge labeled with j, then we call v the jth-successor of u.
Each node v of Tn,d has a natural name, name (v), the con-
catenation of labels along the path from the root of Tn,d to
v. Let height (v) and level (v) denote the height and level
of node v in the tree. For example, the height of the root is
d and the level of the root is 0.

Definition 4.1 (Tree-of-Connectors). An (n, d)-ToC T is a
tree Tn,d in which each internal node v is associated with
a connector Cv over Jn. The (r[Cv])th-successor of v is
referred to as the last successor of v. The tail of v, tail (v),
is the leaf reachable from v by last-successor relations. The
tail of a leaf is itself. The tail of T , tail (T), is the tail of
its root. The head of a leaf u, head (u), is the ancestor of
u with the largest height such that u is its tail; if no such
ancestor exists, then head (u) = u.

Definition 4.2 (Valid ToC). An (n, d)-ToC T is valid if
for every internal v and for each pair of s, t ∈ Jn with
φCv

(s) = t, name (us) and name (ut) share a common
suffix of length height (v)−1, where us and ut are the tails
of the sth-successor and tth-successor of v, respectively.

Definition 4.3 (BT for accessing T). Suppose T is a valid
(n, d)-ToC. The input to BT is a point q ∈ (Jn)d (defining
the name of a leaf u in T). Let h = height (head (u)). If u
is the tail of T , i.e., h = d, then BT (q) = T . Otherwise, let
v1 = head (u) and let v be the parent of v1. Note that v1

is the (qd−h)th-successor of v. Let T1 be the tree rooted at
v1. As u �= tail (v), φCv

(qd−h) is defined and let T2 be the
subtree rooted at the (φCv

(qd−h))th-successor of v. Then,
BT (q) = (h, φCv

(qd−h), T1, T2).

We define our final search problem Name-the-Tail, NTd

as: Given a valid (n, d)-ToC T ∗ accessible by BT ∗ , find the
name of its tail. Theorem 2.3 follows from the next two
theorems. We will prove Theorem 4.4 in Section 4.3.

129129

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 24, 2008 at 00:45 from IEEE Xplore. Restrictions apply.

Theorem 4.4 (Complexity of NTd). For all d ≥ 1 and su-
fficiently large n, RQd

NT(n) ≥ 2−(d+1)(24−dn)d.

Theorem 4.5 (From NTd to ESd). For all d ≥ 1, we have
RQd

NT(n) ≤ RQd
ES(4n + 4).

Proof of Theorem 4.5. For two strings S1 = a1...ak and
S2 = b1...bt, let S1 ◦ S2 = a1...ak b1...bt. For d ≥ 1,
if ak−d+i = bi for all i ∈ [1 : d], then let S1 ◦d S2 =
a1...ak bd+1...bt. Given a string S over Z of length k · d,
we write S as u1u2...uk with ui ∈ Zd. For t ∈ Z, let
insertd (S, t) = u1 ◦ t ◦ u2 ◦ t...uk−1 ◦ t ◦ uk.

We need to build a d-non-repeating string from a valid
(n, d)-ToC T . In fact, we will construct two strings S[T]
and Q[T] over Z4n+4. We define sd ∈ Zd to be sd = (2,
..., 2, 1) (s1 = 1), and F(p) = (2p1, ..., 2pd−1, 2pd − 1)
for p ∈ Zd. Then string S[T] starts with sd and ends with
F(name (tail (T))); Q[T] starts with F(name (tail (T)))
and ends with sd.

We use the following recursive procedure. Let r be the
root of T and Cr = a1...a2n+1 be the connector at r. When
d = 1, S[T] = 1b1b2...b2n+1 and Q[T] = b2n+1...b2b11,
where bi = 2ai − 1. When d ≥ 2,

1. let Ti be the subtree of T rooted at the (ai)th-successor
of r and let pi ∈ (Fn)d−1 be the name of the tail of Ti

given by Ti (not by T).
2. for every odd integer i ∈ [1 : 2n + 1], set string S′

i =
insertd−1 (S[Ti], 2ai) which starts with sd−1 and ends
with F(pi); for every even i ∈ [1 : 2n + 1], set string
S′

i = insertd−1 (Q[Ti], 2ai) which starts with F(pi)
and ends with sd−1; S[T] = sd ◦d−1 S′

1 ◦d−1 S′
2 ◦d−1

S′
3 ◦d−1 ... ◦d−1 S′

2n ◦d−1 S′
2n+1;

3. for every odd integer i ∈ [1 : 2n + 1], we set string
Q′

i = insertd−1 (Q[Ti], 2ai), which starts with F(pi)
and ends with sd−1; for every even i ∈ [1 : 2n + 1],
Q′

i = insertd−1 (S[Ti], 2ai), which starts with sd−1

and ends with F(pi); Q[T] = (2a2n+1)◦Q′
2n+1 ◦d−1

Q′
2n ◦d−1 ... ◦d−1 Q′

2 ◦d−1 Q′
1 ◦ sd.

The two strings for the example in Figure 3 are:

S[T] = 21434547494111091071051031011231291211

1251276561169636183858789811

Q[T] = 8118987858381636961165671251211129123

1211031051071091011494745434121

The correctness of our construction (and thus, Theorem
4.5) can be established using the next two lemmas [10].

Lemma 4.6 (Non-Repeating). If T is a valid (n, d)-ToC,
then both S[T] and Q[T] are d-non-repeating.

Lemma 4.7 (Asking BT). Suppose T is a valid (n, d)-ToC,
S = S[T] and Q = Q[T]. For any u ∈ Zd

4n+4, we can
compute BS(u) and BQ(u) by querying BT at most once.

4.2 Knowledge Representation in NTd

An algorithm for NTd tries to learn about the connectors
in T ∗ by repeatedly querying its leaves. To capture its in-
termediate knowledge about this T ∗, we introduce a notion
of partial connectors.

Let σ = [σ(1), ..., σ(k)] be an array of distinct elements
from {0, 1, ...n}. Then, σ defines a string Sσ(1) ◦ ...◦Sσ(k),
referred to as a connecting segment. Recall S0 = 2, S1 =
3◦ 4, ...Sn = (2n+1) ◦ (2n+2). A partial connector over
Jn is then a set C of connecting segments such that (1) each
j ∈ Jn is contained in exactly one segment in C; and (2) 2 is
the first element of the segment containing it. If C has n+1
segments, that is, C = {2, 3 ◦ 4, ..., (2n + 1) ◦ (2n + 2)},
then C is called an empty connector. We say a connector C
is consistent with a partial connector C if every segment in
C is a substring of C.

Let r[C] be the last symbol of the segment in C that starts
with 2. Let L[C] and R[C], respectively, be the set of first
and the last symbols of other segments in C. So, r[C] ∈ Fn∪
{2}, L[C] ⊂ On, and R[C] ⊂ Fn. Also, |L[C] | = |R[C] |.
If 2 �= r[C], we use φC(2) to denote its right neighbor. Note
that each s ∈ Jn−L[C]∪R[C]∪{r[C], 2} has two neighbors
in C. If s is even, we let φC(s) denote its right neighbor and
if s is odd, we let φC(s) denote its left neighbor.

Initially, the knowledge of an algorithm for NTd can be
viewed as a tree T of empty connectors. At each round, the
algorithm chooses a query point q (according to its knowl-
edge about T ∗) and asks for BT ∗(q), which may connect
some segments in the partial connectors, and T is updated.
The algorithm succeeds when T grows into T ∗.

At intermediate steps, the knowledge of the algorithm
can be expressed by a tree T of partial connectors. To sim-
plify our proof, we relax the oracle BT ∗ to sometime pro-
vide more information to the algorithm than being asked
(which will be explained in Section 4.3) so that T always
satisfies the conditions of the following definition:

Definition 4.8 (Valid Tree of Partial Connectors). C is a β-
partial connector for 0 < β < 1 if the number of segments
in C is at least (1 − β)n + 1.

T is a valid (n, d, β)-ToPC if the root of Tn,d is associ-
ated with a β-partial connector. Moreover, for each internal
node v ∈ Tn,d whose children are not leaves, if v has a β-
partial connector Cv , then: (1) The sth-successor of v, for
each s ∈ L[C] ∪ R[C] ∪ {r[C]}, has a β-partial connector;
(2) For all s, t ∈ Jn with φCv

(s) = t, the tree Ts rooted
at the sth-successor vs and the tree Tt rooted at the tth-
successor vt of v are both valid ToCs, and name (tail (vs))
in Ts is the same as name (tail (vt)) in Tt.

A valid (n, d)-ToC T ∗ is consistent with a valid (n, d,
β)-ToPC T , denoted by T |= T ∗, if for each internal node
of Tn,d, its connector in T ∗ is consistent with its (partial)
connector in T .

130130

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 24, 2008 at 00:45 from IEEE Xplore. Restrictions apply.

The definition implies: Given a valid (n, d, β)-ToPC T ,
for each internal node v of Tn,d, it is associated with either
a connector or a β-partial connector, and moreover, the sub-
tree of T rooted at v is either a valid (n, height (v))-ToC or
a valid (n, height (v) , β)-ToPC.

A key to our analysis is Lemma 4.9 below, stating that
every valid (n, d, β)-ToPC has a large number of consis-
tent valid (n, d)-ToCs. Moreover, the tails of these valid
ToCs are nearly-uniformly distributed. We let set F [T] =
{name (tail (T ∗))

∣∣ T |= T ∗}. Also, for each p ∈ (Fn)d,
let N [T ,p] = |{T ∗ ∣∣ T |= T ∗, name (tail (T ∗)) = p}|.

Lemma 4.9 (Key Lemma). For d ≥ 1 and β ∈ [0, 24−d],
|F [T]| ≥ ((1 − β)n)d for each valid (n, d, β)-ToPC T .
Moreover, for all p1,p2 ∈ F [T],

1
αd(β)

≤ N [T ,p1]
N [T ,p2]

≤ αd(β), where α1(β) = 1 (1)

and αd(β) =
(αd−1 (β))7

(2 (1 − β)d−1 − 1)3
, for d ≥ 2. (2)

Proof. When d = 1, let C be the only partial connector in
T . Clearly, F [T] = R[C]. Thus, in this case the lemma is
true. We will use this case as the base of the induction.

We will prove by induction on d that both (1) and (**)
|F [T]| ≥ ((1 − β)n)d are true for all d ≥ 1. When d ≥ 2,
let C = {Y0, Y1, Y2, ..., Ym } be the β-partial connector at
the root of T ; assume Y0 is the segment starting with 2. We
use ri and ti, respectively, to denote the ending and starting
symbols of Yi. For each k ∈ {r0, r1..., rm, t1, ..., tm }, let
Tk denote the (n, d−1, β)-ToPC at the kth-successor of the
root. For each (i, j) ∈ [0 : m] × [1 : m] with i �= j, we let

Ni,j =
∑

p∈F [Tri
]∩F [Ttj

]

(
N [Tri

,p] · N [Ttj
,p]

)
. (3)

Inductively, (1) and (**) hold for d− 1. Since β ≤ 24−d

< 24−(d−1), we have
∣∣F [Tri

] ∩ F [Ttj
]
∣∣ =

∣∣F [Tri
]
∣∣ +

∣∣F [Ttj
]
∣∣

−
∣∣F [Tri

] ∪ F [Ttj
]
∣∣ ≥ (2(1 − β)d−1 − 1)nd−1 > 0,

so Ni,j > 0 for all (i, j) ∈ [0 : m] × [1 : m] with i �= j.
To show (**), it suffices to prove F [T] = ∪k∈R[C](k ◦

F [Tk]). Clearly, for any p �∈ ∪k∈R[C](k ◦ F [Tk]), N [T ,p]
= 0. So, let us consider a point p ∈ ∪k∈R[C](k ◦ F [Tk]).
Since p1 ∈ R[C], WLOG, we assume p1 = rm. We let P
denote the set of permutations s0s1...sm−1 over [0 : m− 1]
with s0 = 0. Then

N [T ,p] =
∑

s0...sm−1∈P

((m−2∏
i=0

Nsi,si+1

)

·Nsm−1,m · N
[
Trm

, (p2, p3, ..., pd)
])

> 0, (4)

and thus, F [T] = ∪k∈R[C](k ◦ F [Tk]).

To prove (1), consider p1 and p2 ∈ F [T]. There are two
basic cases. When p1,1 = p2,1, Eqn. (1) follows directly
from (4) and the inductive hypothesis. When p1,1 �= p2,1,
WLOG, we assume p1,1 = rm and p2,1 = rm−1.

Let P1 denote the set of permutations over {0, 1, ..., m−
2, m − 1} with s0 = 0, and P2 denote the set of permu-
tations over {0, 1, ..., m − 2, m} with s0 = 0. For each
P = s0s1...sm−1 ∈ P1 , let Π(P) ∈ P2 be the permutation
obtained from P by replacing m − 1 by m. Clearly Π is a
bijection from P1 to P2.

Now by mimicking Eqn. (4), we can write N [T ,p1] and
N [T ,p2] as two summations: N [T ,p1] =

∑
P∈P1

N1(P),
and N [T ,p2] =

∑
P∈P1

N2(Π(P)), where N1(P) and
N2(Π(P)) are given by similar terms as in (4).

We prove for all P ∈ P1, (N1(P)/N2(Π(P)) ≤ αd(β),
from which Eqn. (1) follows. Let P = s0s1...sm−1 where
sk = m − 1 for some 1 ≤ k ≤ m − 1. For the case when
k < m − 1, after expanding N1(P) and N2(Π(P)), and
canceling out the common terms, we get

N1(P)
N2(Π(P))

=
Nsk−1,m−1 · Nm−1,sk+1

Nsk−1,m · Nm,sk+1

×
Nsm−1,m · N [Trm

, (p1,2, p1,3, ..., p1,d)]
Nsm−1,m−1 · N [Trm−1 , (p2,2, p2,3, ..., p2,d)]

.

We then expand each term Ni,j using the definition (Eqn.
(3)). It follows from the application of the inductive hypo-
thesis that N1(P)/N2(Π(P)) ≤ αd(β). Similarly, we can
establish the same bound for the case k = m − 1.

4.3 The Randomized Query Complexity

By querying every leaf, one can solve any instance of
NTd with nd queries. Below, we prove Theorem 4.4 by
showing RQd

NT(n) = (Ω(n))d. We first relax BT ∗ by ex-
tending its domain to (Jn)m, for all m ∈ [1 : d].

Definition 4.10 (Relaxation of BT ∗). Suppose T ∗ is a valid
(n, d)-ToC and q ∈ (Jn)m. Let v be the node such that
name (v) = q1...qm. Let q′ = name (tail (v)) ∈ (Jn)d (in
T ∗). Then, BT ∗(q) = BT ∗(q′).

Proof (of Theorem 4.4). We consider the distribution D in
which each valid (n, d)-ToC T ∗ is chosen with the same
probability. We will prove that the expected query com-
plexity of any deterministic algorithm A for NTd over D is
(Ω(n))d. Let βd = 24−d. To simplify the proof, we assume
n is a multiple of 2 · 24d so that βdn/2 ∈ Z.

Suppose, at a particular step, the knowledge of A can
be expressed by a valid (n, d, βd)-ToPC T |= T ∗, which is
clearly true initially, and A wants to query q ∈ (Jn)d. Let
u0 be the root of T and ui be the node with name (ui) =
q1...qi. Let Ci be the connector or βd-partial connector at
ui in T and Ti be the subtree of T rooted at ui. There are

131131

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 24, 2008 at 00:45 from IEEE Xplore. Restrictions apply.

Query-and-Update(T ,q), where q ∈ (Jn)d

1 : if ∃ 0 ≤ i ≤ d − 1 :
∣∣R[Ci]

∣∣ = (1 − βd)n then
2 : set m be the smallest of such i (m ∈ [0 : d − 1])
3 : else set m = d

4 : if m = 0 then set T = T ∗ { set I = 1}
5 : else Update (T , (q1, q2, ..., qm), m)

Update(T ,q, m), where q ∈ (Jn)m and 1 ≤ m ≤ d

6 : fetch BT ∗(q)
{ set Am = Am + 1, Bm[Am] = 0, Bm,k[Am] = 0}

7 : if BT ∗(q) = T ∗ then set T = T ∗ { set Bm[Am] = 1}
8 : else [let BT ∗(q) = (h, r, T ′, T ′′), m′ = d − h − 1]
9 : ∃ Y1, Y2 ∈ Cm′ such that, { the ending symbol

of Y1, the starting symbol of Y2 } = {qm′+1, r}
10 : replace Y1 and Y2 in Cm′ by the concatenation

of Y1 and Y2 { set Bm,m′ [Am] = 1 }
11 : replace the subtree of T rooted at um′+1 with T ′;
12 : replace the subtree of T rooted at the r-successor

of um′ with T ′′

Figure 4. The Query-and-Update procedure

two cases (1) ∀ i ∈ [0, d − 1], Ci is a βd-partial connector
and qi+1 ∈ L[Ci] ∪ R[Ci] ∪ {r[Ci]}; (2) otherwise. By the
definition of BT ∗ , we can show that in case (2), BT ∗(q)
can be answered based on T only. So, WLOG, we assume
A never asks queries of the second type.

In case (1), Ci is a βd-partial connector for all i ∈ [0 :
d − 1]. Let h = height (head (q)). If h = d, then A gets
T ∗. Otherwise, the knowledge gained by querying BT ∗(q)
connects two segments in Cd−h−1 and replaces the two in-
volved subtrees by the corresponding ones in the 4-tuple
BT ∗(q). The resulting tree T , however, may no longer be a
valid (n, d, βd)-ToPC, if |R[Cd−h−1]| = (1 − βd)n (or the
number of segments in Cd−h−1 is exactly (1 − βd)n + 1)
before the query. When this happens, we will relax BT ∗ to
provide A more information to ensure that the resulting T
remains a valid (n, d, βd)-ToPC.

To this end, we consider two subcases when A queries
q ∈ (Jn)d: Case (1.a) ∀ i ∈ [0 : d−1], |R[Ci]| > (1−βd)n,
then A receives BT ∗(q) as it requested; Case (1.b) ∃ i ∈
[0 : d − 1] such that |R[Ci]| = (1 − βd)n, then we assume
m = min{ i : |R[Ci]| = (1 − βd)n}. Let q′ = (q1, ..., qm).
Instead of getting BT ∗(q), A gets BT ∗(q′). In this way, the
resulting T remains a valid (n, d, βd)-ToPC (or grows into
T ∗ and A stops) after the query. Details of the query-and-
update procedure can be found in Figure 4.

We introduce some “analysis variables” to aid our anal-
ysis. These variables include: (1) I ∈ {0, 1}: Initially, I
= 0. (2) For each m ∈ [1 : d], Am ∈ Z, and a set of bi-

nary sequences Bm[...] and Bm,k[...] of length Am, ∀ k ∈
[0 : m − 1]. Initially, Am = 0, and Bm, Bm,k are empty.

In each step, the variables are updated as follows: (I) If
m = 0 in case (1.b), then we set I = 1; (II) Otherwise,
(to unify the discussion in this part, if we have case (1.a),
then set m = d and q′ = q) we increase Am by 1; (II.1) if
BT ∗(q′) = T ∗, we set Bm[Am] = 1 and Bm,k[Am] = 0,
∀ k ∈ [0 : m − 1]; (II.2) otherwise, if the first component
of BT ∗(q′) is d − l, for l ∈ [1 : m], then Bm,l−1[Am] = 1,
Bm[Am] = Bm,k[Am] = 0, ∀ k : 0 ≤ k �= l − 1 ≤ m − 1.
Details can also be found in Figure 4 (highlighted in {}).

Let Mi = (βdn/2)i, ∀ i ∈ [1 : d]. Given a valid (n, d)-
ToC T ∗, if A stops before making Md queries, then we
let {I, Am,Bm, Bm,k} be the variables assigned when A
stops; otherwise, {I, Am,Bm,Bm,k} is assigned after A
makes Md queries. Furthermore, we define a set of binary
strings {Bm[1...Mm],Bm,k[1...Mm], 1 ≤ m ≤ d, 0 ≤ k ≤
m−1} from {Bm,Bm,k }: for each 1 ≤ i ≤ Mm, Bm[i] =
Bm[i] and Bm,k[i] = Bm,k[i] when i ≤ min(Am, Mm);
Bm[i] = Bm,k[i] = 0 when Am < i ≤ Mm.

As T ∗ is chosen randomly from valid (n, d)-ToCs, {I,
Am,Bm,Bm,k} is a set of random variables defined by the
deterministic algorithm A. To assist the analysis, we intro-
duce the following definition. Lemma 4.12 is an important
step in our analysis.

Definition 4.11 (c-Biased Distributions). Suppose we have
a probabilistic distribution over strings {0, 1}m. For every
binary string S of length at most m, we define set US =
{S′ ∈ {0, 1}m

∣∣S is a prefix of S′ }. For 0 ≤ c ≤ 1, the
distribution is said to be c-biased if we have Pr[U1] ≤ c
and Pr[US◦1] ≤ c · Pr[US] for all S with 1 ≤ |S| ≤ m− 1.

Lemma 4.12. For all 1 ≤ m ≤ d, the distribution over Bm

is 2/nm-biased; For 2 ≤ m ≤ d and 0 ≤ k ≤ m − 2, the
distribution over Bm,k is 2/nm−k−1-biased.

The lemma follows directly from Corollary 4.13 below
of our Key Lemma (4.9).

Corollary 4.13. For d ≥ 1 and β ∈ [0, 24−d], let T be
a valid (n, d, β)-ToPC, and N =

∑
p∈F [T] N [T ,p] be the

number of consistent ToCs.
For q ∈ (Jn)m where m ∈ [1 : d], let u0 be the root

of T and ui be the node with name (ui) = q1...qi. Let Ci

be the connector or βd-partial connector at ui and Ti be
the subtree of T rooted at ui. If ∀ i ∈ [0, m − 1], Ci is a
βd-partial connector and qi+1 ∈ L[Ci] ∪ R[Ci] ∪ {r[Ci]},
then (1) (N∗/N) ≤ (2/nm) where N∗ = |{T ′ ∣∣ BT ′(q) =
T ′ and T |= T ′}|; and (2) (Nk/N) ≤ 2/nm−k−1 where
for 0 ≤ k ≤ m − 2, Nk is the number of consistent ToCs
T ′ such that the first component of BT ′(q) is d − k − 1.

Proof. For each k ∈ [0 : m − 1], let Wk = {p ∈ F [Tk] ⊂
(Fn)d−k such that pi = qk+i, ∀ i ∈ [1 : m − k]}. Clearly,
|Wk | ≤ nd−m. By Lemma 4.9, we have

132132

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 24, 2008 at 00:45 from IEEE Xplore. Restrictions apply.

N∗

N
=

∑
p∈W0

N [T ,p]∑
p∈F [T] N [T ,p]

≤ αd(β) · |W0|
|F [T]| ≤ 2

nm
.

The third inequality uses Proposition A.3 in Appendix A.
To prove the second statement, for k ∈ [0 : m − 2], we

consider any connector C∗ over Jn that is consistent with
Ck and satisfies φC∗(qk+1) �= “no” (that is, r[C∗] �= qk+1).
Assume φC∗(qk+1) = r. We let T ′ denote the subtree of
T rooted at the rth-successor of uk. Since qk+1 ∈ L[Ck] ∪
R[Ck] ∪ {r[Ck]}, both Tk+1 and T ′ are (n, d − k − 1, β)-
ToPCs. Therefore, we have

∑
p∈Wk+1∩F [Tk+1]∩F [T ′] N [Tk+1,p] · N [T ′,p]∑

p∈F [Tk+1]∩F [T ′] N [Tk+1,p] · N [T ′,p]

≤ (αd−k−1(β))2 · nd−m

(2(1 − β)d−k−1 − 1) · nd−k−1
≤ 2

nm−k−1
.

Let Bm, Bm,k, Bm and Bm,k denote the number of 1’s
in Bm, Bm,k, Bm and Bm,k, respectively. Then,

Lemma 4.14. For all m ∈ [1 : d] and k ∈ [0 : m − 2], we
have PrD[Bm > 0] < 1/(2d2) and

PrD[Bm,k >
16 · Mm

nm−k−1
] <

1
2d2

.

Proof. We will use the following fact: Let Dm
IND denote

the distribution over {0, 1}m where each bit of the string
is chosen independently and is equal to 1 with probability
c. For any c-biased distribution Dm over {0, 1}m and inte-
ger k ∈ [1 : m], we have PrS←Dm [S has at least k 1’s] ≤
PrS←Dm

IND
[S has at least k 1’s].

By Lemma 4.12, PrD[Bm > 0] ≤ 1−(1−2n−m)Mm ≤
4(βd/2)m ≤ 1/2d2. The second inequality uses Proposi-
tions A.2 and A.1, and the last inequality uses βd = 24−d

and the fact m ≥ 1. We can apply Lemma 4.12 and the
Chernoff bound [11] to prove the second statement.

Let [A] denote the event that A is true. Let NOT-YET-
FOUND(T ∗) denote the event that algorithm A has not
found the tail of T ∗ after making Md = (βdn/2)d queries.
Then [NOT-YET-FOUND (T ∗)] ⇐⇒ [I = 0 and Bm = 0,
∀m ∈ [1 : d]]. The theorem directly follows from Lemma
4.15 below.

Lemma 4.15. Let A denote the following event:
(
Bm = 0 and Bm,m−1 ≤ Mm and

Bm,k ≤ 16 · Mm

nm−k−1
, ∀m ∈ [1 : d], k ∈ [0, m − 2]

)
,

then we have (E.1) [A] implies [NOT-YET-FOUND (T ∗)]
and (E.2) PrD [A] ≥ 1/2.

Proof. To prove (E.1), we need the following inequalities
which follow from the definition of our analysis variables.

Am ≤ 1
βdn

∑d
i=m+1 Bi,m, ∀ 1 ≤ m ≤ d − 1; (5)

I = 1 =⇒
∑d

i=1 Bi,0 ≥ βdn. (6)

To prove (E.1), it suffices to show that [A] ⇒ [I = 0]
and [A] ⇒ [Bm = 0, ∀m ∈ [1 : d]]. Here we use [A] ⇒
[B] to denote if event A is true then event B is true. It
follows immediately from the definitions of Bm and Bm,
that if Am ≤ Mm, then Bm = Bm. So, we first inductively
prove that [A] ⇒ [Ad−m ≤ Md−m, ∀m ∈ [0 : d − 1]].

The base case when m = 0 is trivial, since Ad is at most
Md, the total number of queries. We now consider the case
when m ≥ 1, and assume inductively, that Ai ≤ Mi for all
i ∈ [d−m+1 : d]. Consequently, for all i ∈ [d−m+1 : d]
and j ∈ [0, i − 1], Bi = Bi and Bi,j = Bi,j . By Eqn. (5),

Ad−m ≤
d∑

i=d−m+1

Bi,d−m

βdn
=

d∑
i=d−m+1

Bi,d−m

βdn

≤ 1
βdn

(
Md−m+1 +

d∑
i=d−m+2

(16 · Mi

ni−d+m−1

))

≤ Md−m

(1
2

+ 8
d∑

i=d−m+2

(βd

2

)i−d+m−1)
< Md−m.

Thus, [A] ⇒ [Bm = 0, ∀m ∈ [1 : d]]. Now we prove [A]
implies [I = 0]. By Eqn. (5), it suffices to show [A] implies
[
∑d

m=1 Bm,0 < βdn]. Assume [A], then
d∑

i=m

Bm,0 = B1,0 +
d∑

m=2

Bm,0 ≤ M1 +
d∑

m=2

16 · Mm

nm−1

= βdn
(1

2
+ 8

d∑
m=2

(βd

2
)m−1

)
< βdn.

The first equation follows from [A] ⇒ [Ad−m ≤ Md−m,
∀m ∈ [0 : d − 1]] and the first inequality uses Bm,m−1 ≤
Mm for all m ∈ [1 : d]. Finally, by Lemma 4.14, we have

PrD [A] ≥ 1 −
(d∑

m=1

PrD
[
Bm > 0

]

+
d∑

m=1

m−2∑
k=1

PrD
[
Bm,k >

16 · Mm

nm−k−1

])
≥ 1

2
.

5 Open Problems

We conjecture that FPC is also strictly harder than local
search in the quantum query model over [1 : n]d.

Our current lower bound does not apply to the case when
n is small and d is large. For example, one can define the
END-OF-A-PATH problem over hypercubes {0, 1}n. Both
the randomized and quantum query complexity of this prob-
lem remains open.

We conclude this paper with the following conjecture: If
PPAD is in FP, then PLS is in FP.

133133

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 24, 2008 at 00:45 from IEEE Xplore. Restrictions apply.

6 Acknowledgments

We would like to thank Dan Spielman, Xiaoming Sun,
Xiaotie Deng, Kyle Burke and Stan Sclaroff for discussions
that are invaluable to this work.

References

[1] S. Aaronson. Lower bounds for local search by quantum
arguments. In STOC 2004, pages 465–474.

[2] D. Aldous. Minimization algorithms and random walk on
the d-cube. Annals of Probability, 11(2):403–413, 1983.

[3] K. Arrow and G. Debreu. Existence of an equilibrium for a
competitive economy. Econometrica, 22(3):265–290, 1954.

[4] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and
T. Pitassi. The relative complexity of NP search problems.
J. Comput. Syst. Sci., 57:3–19, 1998.

[5] L. Brouwer. Über abbildung von mannigfaltigkeiten. Math-
ematische Annalen, 71:97–115, 1910.

[6] X. Chen and X. Deng. On algorithms for discrete and ap-
proximate Brouwer fixed points. In STOC 2005.

[7] X. Chen and X. Deng. On the complexity of 2d discrete
fixed point problem. In ICALP 2006, pages 489–500.

[8] X. Chen and X. Deng. Settling the complexity of two-player
Nash equilibrium. In FOCS 2006.

[9] X. Chen, X. Deng, and S.-H. Teng. Computing Nash equi-
libria: Approximation and smoothed complexity. In FOCS
2006.

[10] X. Chen and S.-H. Teng. Paths beyond local search: A
nearly tight bound for randomized fixed-point computation.
arXiv:cs/0702088, 2007.

[11] H. Chernoff. Asymptotic efficiency for tests based on the
sum of observations. Ann. Math. Stat., 23:493–507, 1952.

[12] B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye. Leontief
economies encode nonzero sum two-player games. ECCC,
TR05-055, 2005.

[13] G. Dantzig. Maximization of linear function of variables
subject to linear inequalities. In T. Koopmans, editor, Activ-
ity Analysis of Production and Allocation, pages 339–347.

[14] C. Daskalakis, P. Goldberg, and C. Papadimitriou. The com-
plexity of computing a Nash equilibrium. In STOC 2006.

[15] X. Deng, C. Papadimitriou, and S. Safra. On the complexity
of price equilibria. Journal of Computer and System Sci-
ences, 67(2):311–324, 2003.

[16] H. Edelsbrunner. Algorithms in Combinatorial Geometry.
Springer-Verlag New York, Inc., 1987.

[17] K. Friedl, G. Ivanyos, M. Santha, and F. Verhoeven. On
the black-box complexity of Sperner’s lemma. In 15th FCT,
pages 245–257, 2005.

[18] M. Hirsch, C. Papadimitriou, and S. Vavasis. Exponential
lower bounds for finding Brouwer fixed points. Journal of
Complexity, 5:379–416, 1989.

[19] L.-S. Huang and S.-H. Teng. On the approximation and
smoothed complexity of Leontief market equilibria. ECCC,
TR06-031, 2006.

[20] T. Iimura, K. Murota, and A. Tamura. Discrete fixed point
theorem reconsidered. Journal of Mathematical Economics,
41:1030–1036, 2005.

[21] D. Johnson, C. Papadimtriou, and M. Yannakakis. How easy
is local search? J. Comput. Syst. Sci., 37(1):79–100, 1988.

[22] N. Karmarkar. A new polynomial time algorithm for linear
programming. Combinatorica, 4:373–395, 1984.

[23] V. Klee and G. Minty. How good is the simplex algorithm?
In O. Shisha, editor, Inequalities – III, pages 159–175. Aca-
demic Press, 1972.

[24] C. Lemke and J. J.T. Howson. Equilibrium points of bima-
trix games. J. Soc. Indust. Appl. Math., 12:413–423, 1964.

[25] J. Nash. Equilibrium point in n-person games. Porceedings
of the National Academy of the USA, 36(1):48–49, 1950.

[26] Y. Nesterov and A. Nemirovskii. Interior Point Polynomial
Algorithms in Convex Programming, volume 13 of Studies
in Applied Mathematics. SIAM, 1993.

[27] J. Orlin, A. Punnen, and A. Schulz. Approximate local
search in combinatorial optimization. In SODA 2004.

[28] C. Papadimitriou. On inefficient proofs of existence and
complexity classes. In Proceedings of the 4th Czechoslo-
vakian Symposium on Combinatorics, 1991.

[29] C. Papadimitriou. On the complexity of the parity argument
and other inefficient proofs of existence. Journal of Com-
puter and System Sciences, pages 498–532, 1994.

[30] M. Santha and M. Szegedy. Quantum and classical query
complexities of local search are polynomially related. In
STOC 2004, pages 494–501.

[31] R. Savani and B. von Stengel. Exponentially many steps for
finding a nash equilibrium in a bimatrix game. In FOCS
2004, pages 258–267.

[32] H. Scarf. The approximation of fixed points of a continuous
mapping. SIAM Journal on Applied Mathematics, 15:997–
1007, 1967.

[33] H. Scarf. On the computation of equilibrium prices. In
W. Fellner, editor, Ten Economic Studies in the Tradition of
Irving Fisher. New York: John Wiley & Sons, 1967.

[34] H. Scarf. The Computation of Economic Equilibria. Yale
University Press, 1973.

[35] E. Sperner. Neuer beweis fur die invarianz der dimension-
szahl und des gebietes. Abhandlungen aus dem Mathema-
tischen Seminar Universitat Hamburg, 6:265–272, 1928.

[36] D. Spielman and S.-H. Teng. Smoothed analysis of algo-
rithms: Why the simplex algorithm usually takes polyno-
mial time. Journal of ACM, 51(3):385–463, 2004.

[37] X. Sun and A.-C. Yao. On the quantum query complexity
of local search in two and three dimensions. In FOCS 2006,
pages 429–438.

[38] A.-C. Yao. Probabilistic computations: Towards a unified
measure of complexity. In FOCS 1977, pages 222–227.

[39] S. Zhang. New upper and lower bounds for randomized and
quantum local search. In STOC 2006, pages 634–643.

A Inequalities

Proposition A.1. For all β ≥ 0, 1 − β ≤ e−β .

Proposition A.2. For all 0 ≤ β ≤ 1/3, 1 − β ≥ e−2β .

Lemma A.3. For all d ≥ 1 and β ∈ [0, 24−d], αd(β) ≤
e2·24d−1β .

Proof. This lemma can be proved by induction on d.

134134

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 24, 2008 at 00:45 from IEEE Xplore. Restrictions apply.

