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Abstract—We improve the main result of Brody and
Verbin [6] from FOCS 2010 on the power of constant-
width branching programs to distinguish product dis-
tributions. Specifically, we show that a coin must have
bias at least Ω(1/ log(n)w−2) to be distinguishable from
a fair coin by a width w, length n read-once branching
program (for each constant w), which is a tight bound.
Our result introduces new techniques, in particular a
novel “interwoven hybrid” technique and a “program
randomization” technique, both of which play crucial roles
in our proof. Using the same techniques, we also succeed
in giving tight upper bounds on the maximum influence
of monotone functions computable by width w read-once
branching programs.

I. INTRODUCTION

In [6] Brody and Verbin studied the question of
distinguishing flips of a coin with a slight bias towards
heads from those of a coin with a slight bias towards
tails. More precisely, say that a coin is ε-biased if
Pr[Heads] = 1

2 + ε. Given n flips of a coin which
is either ε-biased or (−ε)-biased, the question is to
determine which type of bias is present. Since taking
a majority vote of the tosses constitutes an optimal
distinguishing strategy this question is uninteresting
when the distinguisher is powerful enough to count (in
which case a bias of ε = Ω(1/

√
n) is both necessary1

and sufficient to distinguish with constant advantage2).
However, the problem seems both natural and interest-
ing for space-bounded distinguishers, and in particular
for distinguishers having only a constant amount of
space.

As their main result, Brody and Verbin [6] give
bounds on the ability of constant width read-once
branching programs (ROBPs) to distinguish biased
coins. A read-once branching program is a model of

1A possible approach for proving necessity (since the relevant
statistical distance is not so obvious to upper bound from first
principles) is to use Hellinger distance. See for example [3].

2The advantage of a distinguisher D at distinguishing distributions
X and Y is |Pr[D(X) = 1] − Pr[D(Y ) = 1]|. See Section 2 for
more precise definitions.

(non-uniform) space bounded computation in which
each bit of input is accessed only once, in order.
(We give a formal definition of read-once branching
programs in Section 2. A glance at Figure 1, however,
should suffice to understand the model.) They show,
among others, that ROBPs of width w ≥ 3 can distin-
guish coins of suprisingly small bias: by computing a
recursive tribes function, a length n ROBP of width w
can distinguish an ε-biased coin from a (−ε)-biased coin
already for ε = 1/ log(n)w−2. (By “can distinguish”
we mean, here and later, “can distinguish with constant
(i.e. Ω(1)) advantage”.) In particular, a width 3 ROBP of
length n can distinguish a (1/ logn)-biased coin from a
(−1/ logn)-biased coin. (This last observation was also
made, essentially, by Braverman et al. [5].)

On the lower bound side, Brody and Verbin show
that, for constant w, a length n width w ROBP cannot
distinguish ±ε-biased coins unless ε = Ω(1/ log(n)w).
The lower bound is therefore off from the upper bound
by a factor log(n)2, which seems substantial for pro-
grams of small width (e.g., width 3, for which the upper
bound is ε = O(1/ log(n)) and the lower bound is
ε = Ω(1/ log(n)3)). In this paper we give an improved
lower bound that matches the upper bound of [6].
Namely, we show that, for constant3 w, the smallest
bias ε that can be distinguished by a width w length n
ROBP is Ω(1/ log(n)w−2). Our analysis is also shorter
than Brody and Verbin’s. More interestingly than simply
achieving a tight lower bound, however, is the fact that
our result introduces new proof techniques that could
be of independent interest for the study of ROBPs
and, more generally, for the problem of derandomiz-
ing space-bounded computations. These techniques are
described further below.

Note that a sequence of n independent tosses of a
biased coin is a special case of a product distribution.

3The fact that w is constant in particular implies that Ω(·)- and
O(·)- notation refers exclusively to function growth with respect to
n, and may hide constants that depend on w. In [6] the hidden constant
is 1000−w . Our hidden constant is 2−w .
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Figure 1: A width 3 read-once branching program
(computing a tribes function).

(A sequence of random variables X = (Xi)
n
i=1 is a

product distribution if and only the Xi’s are (totally)
independent.) One can consider, more generally, the
power of a length n read-once branching program
whose edges are labeled by elements of some finite
alphabet Σ at distinguishing two product distributions
X = (Xi)

n
i=1, Y = (Yi)

n
i=1 where Xi, Yi ∈ Σ for all

i.
Generalizing results on the distinguishability of bi-

ased coins to the distinguishability of arbitrary product
distributions presupposes some kind of metric for mea-
suring the closeness of two product distributions (i.e.,
requires generalizing the parameter ε). As explained in
[6], it makes more sense, in this context, to measure
closeness by probability ratios (bounding these to be
near 1) rather than by probability differences (bounding
these to be near 0). We say two product distributions
X = (Xi)

n
i=1 ∈ Σn, Y = (Yi)

n
i=1 ∈ Σn are ε-

close in ratio if for every 1 ≤ i ≤ n and for every
α ∈ Σ, either Pr[Xi = α] = Pr[Yi = α] = 0, or else
Pr[Xi = α] �= 0, Pr[Yi = α] �= 0 and

Pr[Xi = α]

Pr[Yi = α]
≥ 1− ε,

Pr[Yi = α]

Pr[Xi = α]
≥ 1− ε.

It is easy to see, for example, that an ε-biased coin is
4ε-close in ratio to a (−ε)-biased coin.

Our results are most easily phrased and proved in
the context of ε-close in ratio product distributions. Our
main result is that a length n ROBP of constant width w
cannot distinguish two ε-close in ratio product distribu-
tions unless ε = Ω(1/ log(n)w−2). This directly implies
our lower bound on the distinguishability of ε-biased
coins, and also matches the upper bounds of Brody and
Verbin (given by ε-biased coins). In fact, ε-close in ratio
product distributions were already considered by Brody
and Verbin themselves, who, by reducing to the case
of ε-biased coins, proved that ε = Ω(1/ log(|Σ|n)3w)
is necessary to distinguish two ε-close in ratio product
distributions over Σn, and that ε = Ω(1/ log(n)2w)
is necessary when |Σ| = 2. Our own lower bound

shows there is essentially no difference between the
cases |Σ| = 2 and |Σ| > 2: a larger alphabet size does
not help the distinguisher.

The techniques used in our proof are roughly three-
fold. We use, firstly, the collision lemma of Brody and
Verbin, which is a structural observation about ROBPs
that are optimal distinguishers, and which we strengthen
slightly for our purposes. A second component of the
proof is a hybrid argument whose two endpoints are
the product distributions (Xi)

n
i=1 and (Yi)

n
i=1. Here

the bits that change distribution from one hybrid to
the next form each time an arithmetic progression
(which is important for the argument). As these various
arithmetic progressions are parallel and interleaved, we
call our set of hybrids a set of interwoven hybrids
(we are not aware of a similar set of such hybrids
being used before). Our hybrid argument replaces a
more standard random restriction argument by Brody
and Verbin. Finally, the third main proof technique we
use is program randomization which, in a nutshell,
randomizes the distinguisher in order to compensate for
certain helpful initial modifications made to the input
distributions (Xi)

n
i=1 and (Yi)

n
i=1 (see Section IV for

more details). Program randomization is also an original
contribution of the paper. While it is crucial to the
final bounds, we consider it of secondary importance
compared to the collision lemma and to the interwoven
hybrid technique.

In this paper’s full version [12] we give a second
application of the same basic set of techniques (pro-
gram randomization excluded) to the upper bounding
of the maximum total influence of monotone functions
computable by width w ROBPs. Our main result is that
a ROBP of width w ≥ 2 and of length n ≥ 2 that
computes a monotone function has total influence at
most 4�1.5 log(n)�w−2. This bound is also tight, as can
be verified by considering a recursive tribes function.

II. DEFINITIONS

A branching program of width w and length n is a
directed acyclic graph with n layers of w nodes each
and a final layer with two nodes (accept and reject).
Each non-ouptut node is labeled by a coordinate (k, j) ∈
[n]× [w]; output nodes are labeled by coordinates {n+
1} × {1, 2}, with (n+ 1, 1) being the accept node and
(n+ 1, 2) being the reject node.

A node is in layer k, 1 ≤ k ≤ n + 1, if its label is
of the form (k, ·). The edges of the graph are labeled
by elements of the input alphabet Σ (a finite set). Each
node in every layer k ≤ n has one outgoing edge labeled
α for each element α ∈ Σ whose endpoint is a node in
layer k + 1. The branching program has a designated
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start node in the first layer, typically the node (1, 1). The
computation of a branching program of length n on a
string x = x1 · · ·xn ∈ Σn is defined the natural way,
by following the edge labeled xi at step i, starting from
the start node. We note the type of branching program
just described is read-once since each character of x is
examined at exactly one layer of the program.

Let f be a (read-once) branching program of length
n and width w. If α is an element of the input alphabet
Σ and k ∈ [n], the α-transition function of f at layer
k is the function τα : [w] → [w] such that τα(i) = z
iff the edge labeled α leaving node (k, i) has endpoint
(k + 1, z). We say τα contains a collision if τα is not
a permutation, i.e. if τα(i) = τα(j) for some i �= j.

The k-th layer of a ROBP f equals the j-th layer of a
ROBP g if f and g have the same width w, are defined
over the same input alphabet Σ, and if the α-transition
function of f at layer k is identical to the α-transition
function of g at layer j for every α ∈ Σ.

The statistical distance of two random variables X ,
Y of same range is written Δ(X,Y ). Namely, if X and
Y take values in a set S, then

Δ(X,Y ) =
1

2

∑
b∈S

|Pr[X = b]− Pr[Y = b]|.

If f is a ROBP of length n over the alphabet Σ
and if X,Y ∈ Σn are two random variables, then f ’s
advantage at distinguishing X and Y is defined as the
statistical distance

Δ(f(X), f(Y )).

(We note this is a statistical distance between two
probability distributions on the output nodes of f .) This
differs from the traditional definition of f ’s advantage
as |Pr[f(X) = 1]−Pr[f(Y ) = 1]|, but it is easy to see
the two definitions are equivalent.

We write X ∼ X ′ when X , X ′ induce identical
probability distributions over their (identical) ranges.

III. RESULTS

Our main result is an upper bound on the advantage
Δ(f(X), f(Y )) of a width w ROBP f at distinguishing
ε-close product distributions X,Y ∈ Σn for an arbitrary
finite alphabet Σ. While our original interest lies with
constant values of w, our main result, given by the
next theorem, is slightly more general, as it also allows
“small” non-constant w.

Theorem 1: There is a function4 λ(n) = o(1) such
that for any positive integers n,w with 2 ≤ w ≤

4I.e., limn→∞ λ(n) = 0.

logn/ loglogn, for any product distributions X , Y ∈
Σn that are ε-close in ratio, and for any read-once
branching program f over the alphabet Σ of width w
and length n,

Δ(f(X), f(Y )) ≤ ε(2 log(n))w−2(1 + λ(n)). (1)

In particular, if w is constant, ε needs to be at least
Ω(1/ log(n)w−2) in order for X and Y to be distin-
guishable with constant advantage, where the hidden
constant5 (depending on w but not on n) is 2−w. This
lower bound on ε is tight up to a constant factor: as
shown in [6], width w, length n ROBPs can distinguish
coins of bias ±ε already for ε = O(1/ log(n)w−2). (For
full disclosure, the hidden constant in the latter O(·)
is 3w; hence, there is still a gap between the upper
and lower bounds as far as the constant factors are
concerned.)

In the paper’s full version [12] we also prove an upper
bound on the maximum total influence of monotone
functions computable with w ROBPs, which constitutes
our second main result and reads as follows:

Theorem 2: Let f : {0, 1}n → {0, 1} be a monotone
boolean function computable by a ROBP of width w
and length n. Then

Inf(f) ≤ 4�1.5 log(n)�w−2.

For constant w this bound is also tight up to a multi-
plicative factor, as can be seen using a recursive tribes
function of depth w− 1 with the same tribe sizes as in
[6]. (See also [1].)

IV. PROOF OVERVIEW

This section gives a self-contained overview of the
proof of Theorem 1. For simplicity, we sketch the proof
for the case Σ = {0, 1} (which anyway captures the
full complexity of the problem). Moreover, we first
sketch the proof for the case of distinguishing ±ε-biased
coins and, later, discuss how to handle ε-close in ratio
distributions (which, indeed, require an additional idea).

Let X ∈ {0, 1}n be the product distribution of an
ε-biased coin, and let Y ∈ {0, 1}n be the product
distribution of a (−ε)-biased coin. Let Xj be the j-th
bit of X .

5In fact, for constant w, (1) can be replaced with
Δ(f(X), f(Y )) ≤ ε(δ log(n))w−2 + λδ(n) where δ > 1 is
any constant and where λδ(n) → 0 now depends on δ. Thus a
sharper statement would say that the hidden constant is really “δw

for any δ > 1”. We refer to the full version [12] for more details.
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Let Fw be the set of all (binary) ROBPs of length n
and width w (the parameter n is elided for simplicity).
Let

δw = max
f∈Fw

Δ(f(X), f(Y ))

be the maximum distinguishing advantage. The proof
bounds δw by establishing the recurrence

δw = O(log n)δw−1 + o(1) (2)

and by showing that δ2 ≤ ε. In fact the o(1) term is
1/poly(n), so that recursively “unfolding” the inequality
gives

δw ≤ O(log n)w−2ε+ o(1).

Tweaking the constants then yields Theorem 1. We now
sketch how (2) is established.

Let

Fmax
w = {f ∈ Fw : Δ(f(X), f(Y )) = δw}

be the set of “best distinguishers”. Note Fmax
w is

nonempty since Fw is finite. A crucial observation,
due to Brody and Verbin [6], is that Fmax

w contains
an element f0 in which every transition function is
either the identity from [w] to [w], or else is not a
permutation of [w] at all, but contains a collision. We
call an ROBP with this property a collision ROBP, or
cROBP for short. To upper bound δw it thus suffices to
upper bound Δ(f(X), f(Y )) for an arbitrary cROBP f
of length n and width w. (A nearly identical observation
is called the collision lemma in [6]. We maintain this
terminology, even while our own collision lemma is
slightly different. The difference is explained in Section
V.)

Let f , therefore, be a cROBP of length n and width
w. By dropping layers of f at which both transition
functions are the identity (these have no effect), one can
assume that every layer of f has at least one transition
function with a collision.

To upper bound Δ(f(X), f(Y )) we use a hybrid ar-
gument over distributions Z0, . . . , Zc log(n) on {0, 1}n,
such that Z0 = X and Zc log(n) = Y . Here c > 0 is a
constant we will set later (in fact, c = 2 will do). More
precisely, assuming c log(n) is an integer (otherwise
substitute �c log(n)� for c log(n) throughout), Zi is the
product distribution whose j-th coordinate Zi,j is given
by

Zi,j =

{
Yj if (j mod c log(n)) < i,

Xj otherwise.

For example, Z1 is the distribution such that

Z1,j =

{
Yj if j ≡ 0 mod c log(n),

Xj otherwise.

Clearly, then, Z0 = X and Zc log(n) = Y .
We note that Zi and Zi+1 differ on a set of bits

whose indices form an arithmetic progression of step
size c log(n). This is the key feature of these hybrids; in
fact any sequence of c log(n) hybrids with this property,
starting with X and ending with Y , would do as
well (there are (c log n)! possible such sequences). Let
Zi ⊆ [n] be the set of bits at which (the definitions of)
Zi and Zi+1 differ. We call Z0, . . . , Zc log(n) a sequence
of “interwoven hybrids” because Z0, . . . ,Zc log(n)−1 are
interwoven arithmetic progressions of equal step size.

By a standard argument, it suffices to bound the
distance Δ(f(Zi), f(Zi+1)) between two neighboring
hybrids. Let Z ∈ {0, 1}[n]\Zi be the value of Zi,
Zi+1 on the bits outside Zi. Fixing a value of Z
induces (in the natural way) a width w, length |Zi|
ROBP fZ : {0, 1}Zi → {0, 1} taking as input the
bits in Zi. Let X ′ ∈ {0, 1}Zi be an ε-biased coin,
and let Y ′ ∈ {0, 1}Zi be a (−ε)-biased coin. Then
f(Zi) is equidistributed to fZ(X

′), and f(Zi+1) is
equidistributed to fZ(Y

′), with randomness taken over
Z,X ′, Y ′. By elementary properties of statistical dis-
tance, one has

Δ(f(Zi), f(Zi+1)) ≤ EZΔ(fZ(X
′), fZ(Y

′)). (3)

The crucial observation is that, in fact, fZ is (equiva-
lent to) a width w−1 ROBP with high probability over
Z . This uses the fact that f is a cROBP. Consider the
transition functions τ0, τ1 at layer k of fZ . By definition
of fZ , these transition functions depend on c log(n)−1
consecutive bits of Z. Let these c log(n) − 1 bits have
indices j1, . . . , jc log(n)−1 in f . To picture how τ0, τ1
are induced by Z, consider w (distinguishable) pebbles
placed on the w nodes of f at layer j1. Then for a
fixed value of Z , we can assign in the natural way a
path to each pebble, starting at layer j1 and ending at
layer jc log(n)−1 + 1 = j1 + c log(n) − 1. Then τ0 is
the composition of the 0-transition τ ′0 at layer j1 − 1
of f with the function from [w] to [w] given by the
pebble paths, and likewise τ1 is the composition of the
1-transition τ ′1 at layer j1−1 of f with the same pebble
paths. Moreover, note that if two pebbles collide, they
cannot separate again; thus, if two pebbles collide, τ0
and τ1 have at most w − 1 nodes in the union of their
ranges.

Since f is a cROBP, there are values
b1, . . . , bc log(n)−1 ∈ {0, 1} such that the bi-transition
at layer ji of f has a collision. By the above
remarks, if the jh-th bit6 of Z is equal to bh for any
1 ≤ h ≤ c log(n) − 1, then τ0, τ1 have joint range

6We index the bits of Z by their original index in Zi, Zi+1.
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of size at most w − 1. But any coordinate of Z is
equal to a given binary value with probability at least
1
2 − ε, since each coordinate of Z is distributed either
according to X or according to Y ; namely,

Pr[Zjh = bh] ≥ 1

2
− ε (4)

for any 1 ≤ h ≤ c log(n)− 1. Thus the probability that
no collisions occur among the pebbles as they travel
from layer j1 to layer jc log(n)−1 + 1 is, in the worst
case, at most (1

2
+ ε

)c log(n)−1 ≈ 1

nc
.

(Where we use ε = o(1); we are being, here, a bit
informal for the sake of the proof sketch.) By a union
bound, the probability that any of the n/c log(n) pairs
of transition functions of fZ do not have joint range of
size at most w−1 is at most ≈ 1/nc−1 log(n). Thus, fZ
can be written as a width w− 1 ROBP with probability
at least ≈ 1 − 1

nc−1 log(n) , with the probability taken

over Z . This allows us to upper bound (3) by

EZΔ(fZ(X
′), fZ(Y

′)) ≤ O
( 1

nc−1 log(n)

)
+ δw−1.

(In fact, one could even replace δw−1 with the advantage
of the best distinguisher of length n/c log(n) and of
width w − 1, but such an optimization has little effect
for constant-width ROBPs.) Finally, summing together
the distances between the c log(n) pairs of neighborhing
hybrids, one thus obtains that

δw = Δ(f(X), f(Y ))

≤ c log(n)O
( 1

nc−1 log(n)

)
+ c log(n)δw−1

= O
( 1

nc−1

)
+ c log(n)δw−1,

establishing (2).
Finishing the proof also requires showing that δ2 ≤ ε.

This is not trivial and requires the collision lemma as
well as a coupling argument. We refer to Sections V for
more details.

When working with arbitrary product distributions
that are ε-close in ratio, the above analysis breaks down
in one crucial place: even when ε is very small, there
is no guarantee that Pr[Zjh = bh] will be near 1

2 , cf.
(4). Instead, Pr[Zjh = bh] could be arbtrirarily close
to 0. The probability that no collisions occur among
the pebbles could thus be arbitrarily close to 1, and,
therefore, fZ is no longer equivalent to a width w − 1
program with high probability.

In view of circumventing this (apparently complete)
breakdown of the argument, note first that we do not

care if Pr[Zjh = bh] is low if both the 0-transitions
and 1-transitions at layer jh contain collisions; in this
case, indeed, we obtain width reduction with probability
1. Assume, therefore, wlog, that the 0-transition at layer
jh contains a collision, whereas the 1-transition is the
identity function. Moreover assume that Pr[Zjh = 0] is
low. To be concrete, say

Pr[Xjh = 0] =
1

n
, Pr[Yjh = 0] =

0.9

n
. (5)

Such values would be compatible with ε = 0.1, and
would imply Pr[Zjh = 0] ≤ 1

n .
The intuition is that in the case above, Zjh is quite

likely to be equal to 1, which is an identity transition
function, and therefore it is quite likely the program
does nothing at all at layer jh. Namely, the program is,
with high probability, not reacting to input bit jh, and
layer jh is therefore “wasted with high probability” for
the program.

To leverage this intuition, let f⊥ be the ROBP
identical to f , but whose 0-transition function and 1-
transition function at layer jh are both the identity. Note
that with high probability over the input distributions X
and Y , f⊥ computes the same as f (assuming (5)). We
define a random ROBP f∗ to be

f∗ =

{
f⊥ w.p. 1− 1

γ ,

f w.p. 1
γ

(w.p. = with probability) where γ ≥ 1 is chosen as large
as possible such that the distributions X∗, Y ∗ defined
by

X∗
k =

⎧⎪⎨
⎪⎩
Xk if k �= jh

0 w.p. γ Pr[Xjh = 0] if k = jh

1 w.p. 1− γ Pr[Xjh = 0] if k = jh

(6)

Y ∗
k =

⎧⎪⎨
⎪⎩
Yk if k �= jh

0 w.p. γ Pr[Yjh = 0] if k = jh

1 w.p. 1− γ Pr[Yjh = 0] if k = jh

(7)

are ε-close in ratio. Note that f∗(X∗), f∗(Y ∗) are dis-
tributed identically to f(X), f(Y ), respectively, since
Pr[f∗ = f ∧ X∗

jh
= 0] = Pr[Xjh = 0] and

Pr[f∗ = f ∧ Y ∗
jh

= 0] = Pr[Yjh = 0]. (Note that
Xjh = 0 exactly when the non-identity transition is used
at layer jh in the computation of f on X , and that the
event f∗ = f ∧X∗

jh
= 0 occurs exactly when the non-

identity transition is used at layer jh in the computation
of f∗ on X∗.)

In the example above, in which ε = 0.1, this means
choosing γ as large as possible such that

1− γ 1
n

1− γ 0.9
n

≥ 1− ε = 0.9.
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A short computation shows the maximum value of γ is
γ = n/1.9. Thus, in this case,

Pr[X∗
jh

= 0] =
1

1.9
, Pr[Y ∗

jh
= 0] =

0.9

1.9
.

Note the difference with (5): both probabilities have
moved away from 0, and are now close to 1

2 .
In the proof, the above operation consisting of ran-

domizing the program at a transition (to be the original
program w.p. 1

γ , or to be the identity w.p. 1− 1
γ ) and of

simultaneously boosting by a factor γ in each distribu-
tion the probability of the input value giving a collision
at that layer, is carried out for all layers of the program
at once, with the value of γ individually computed for
each layer. The resulting randomized program f∗ is de-
fined by choosing each layer independently to be either
the identity or the original layer, with respect to the
relevant probabilities. Since f(X), f(Y ) are distributed
identically to f∗(X∗), f∗(Y ∗), with randomness taken
also over the choice of f∗, we have that

Δ(f(X), f(Y )) = Δ(f∗(X∗), f∗(Y ∗))
≤ Ef∗Δ(f∗(X∗), f∗(Y ∗)).

In the righmost expression, the statistical distance is
computed solely over the randomness induced by X∗

and Y ∗, for a fixed value of f∗. Because of the proba-
bility boosting, one can show that if the b-transition at
the k-th layer of f∗ has a collision while the (1 − b)-
transition does not (note this implies the same statement
holds in f ), then

min(Pr[X∗
k = b],Pr[Y ∗

k = b]) ≥ 1− ε

2− ε
.

Since the latter probability is near 1
2 , the same hybrid

method used for biased coins can be used to upper
bound Δ(f∗(X∗), f∗(Y ∗)) for any fixed value of f∗.

We note that the (central) idea of obtaining width
reduction of the program via collisions originates in [6].
There, random restrictions are used to obtain collisions
and width-reduction. Our paper swaps random restric-
tions for a hybrid argument, which has the advantage
that one can control the position of the restricted bits
(these being, in the hybrid argument, the bits common to
two neighboring hybrids). Having long intervals of con-
secutive restricted bits augments the chance of obtaining
at least one collision in each of these intervals, and thus
improves the chance of obtaining width-reduction. (On
the other hand, longer intervals means more hybrids,
implying a tradeoff.)

As another point of comparison, we note that [6]
eschews program randomization in favor of a (lossy)
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Figure 2: Width 2 branching program obtaining better
than 2ε advantage at distinguishing a (12 + ε, 12 − ε)-
biased coin from an (12 − ε, 1

2 + ε)-biased coin (n odd,
n ≥ 3).

reduction from the problem of distinguishing “well-
behaved” input distributions (with probabilities near 1

2 )
to the problem of distinguishing “troublesome” input
distributions (with probabilities near 0). It is partly this
reduction which causes the alphabet size |Σ| to appear
in the final bound of [6] (whereas our bounds are
independent of |Σ|).

V. SOME FURTHER PROOF DETAILS: WIDTH TWO

BRANCHING PROGRAMS AND THE COLLISION LEMMA

As explained, the proof of Theorem 1 relies on
an inductive argument whose base case is an upper
bound on the distinguishing power of width 2 branching
programs. Intuitively, a ROBP of width 2 (say, when
distinguishing a ±ε-biased coin) cannot do better than to
determine acceptance based on the outcome of a single
coin flip, given its limited memory—e.g., by ignoring
all coin flips except for the last. Note that such a ROBP
has advantage (12 + ε) − (12 − ε) = 2ε, the statistical
distance in a single coin flip.

However this intuition is incorrect. Indeed, a width 2
ROBP can distinguish a (±ε)-biased coin with advan-
tage approaching

2ε
(3
4
+ ε2

)−1

(8)

as the length n of the program goes to infinity, which
is close to 4

3 as large as 2ε for small ε. The program
whose distinguishing advantage approaches this value is
shown in Fig. 2. The program of Fig. 2 is, conjecturally,
the best width 2 distinguisher of length n = 2k+1 for
(±ε)-biased coins, but we do not have a proof. (Also
conjecturally, width two ROBPs of length n = 2k + 2
do no better at distinguishing (±ε)-biased coins than
length 2k + 1 ROBPs.) Our own bound shows that
width 2 ROBPs cannot distinguish (±ε)-biased coins
with advantage better than

1−
1
2 − ε
1
2 + ε

= 2ε
(1
2
+ ε

)−1

(9)
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regardless of their length. For small ε, this is roughly
1.5 times as large as the conjectured optimal advantage
(8), but this constant-factor discrepancy is unimportant
for our final bound.

The general theorem which we prove on width two
branching programs is the following:

Theorem 3: Let f be a width 2 ROBP of length n
and let X = (Xi)

n
i=1 ∈ Σn, Y = (Yi)

n
i=1 ∈ Σn

be two ε-close in ratio product distributions. Then
Δ(f(X), f(Y )) ≤ ε.

(We note that (9) is the direct application of Theorem
3.) The proof of Theorem 3 is in fact nontrivial and
uses many ideas from the inductive proof described in
Section IV, including (a strengthened version of) Brody
and Verbin’s collision lemma, program randomization,
and a coupling argument. It would be interesting to
know if an “easy” proof exists.

To state the collision lemma, which plays a key role
in our results, we start by giving the formal definition
of cROBPs.

Definition 1: A width w read-once branching pro-
gram f is called a collision read-once branching pro-
gram (cROBP) if every transition function τα of f is
either the identity from [w] to [w] or else is not injective
(i.e. is not a permutation).

Collision Lemma. (After [6].) Let X,Y ∈ Σn

be product distributions and let w ≥ 1. Then there
exists a cROBP f of length n and width w whose
distinguishing advantage Δ(f(X), f(Y )) is at least as
great as the distinguishing advantage Δ(g(X), g(Y ))
of any length n width w ROBP g.

The collision lemma found in [6] states that the optimal
distinguishing advantage can be achieved by a program
f with the following property: at every layer of f , either
all the transition functions are the identity, or else at
least one of the transition functions contains a collision.
This is weaker than our lemma, which implies that
all non-identity transition functions contain a collision
(i.e. are not permutations). While our version may seem
much stronger at first glance, its proof only requires a
minor modification of the proof of [6].

Acknowledgments. I would like to thank Kevin Mat-
ulef, Joshua Brody and Elad Verbin for helpful conver-
sations at all stages of this work. This was supported
by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National

Natural Science Foundation of China Grant 61033001,
61061130540, 61073174, and by NSF grant 0994380.

REFERENCES

[1] Kazuyuki Amano. Bounds on the size of small depth
circuits for approximating majority. In Proc. of the 36th
International Colloquium on Automata, Languages and
Programming, 2009.

[2] Anindya De. Improved pseudorandomness for regular
branching programs. In Conference on Computational
Complexity, 2011.

[3] Boaz Barak, Ishay Haviv, Moritz Hardt, Anup Rao, Oded
Regev, and David Steurer. Rounding parallel repetitions
of unique games. In Proc. of the 49th Annual ACM
Symposium on the Foundations of Computer Science,
2008.

[4] Andrej Bogdanov, Zeev Dvir, Elad Verbin, Amir Yehu-
dahoff. Pseudorandom generators for width two branch-
ing programs. ECCC, 2009.

[5] Mark Braverman, Anup Rao, Ran Raz, Amir Yehuda-
hoff. Pseudorandom generators for regular branching
programs. In Proc. of the 51st Annual ACM Symposium
on the Foundations of Computer Science, 2010.

[6] Joshua Brody, Elad Verbin. The coin problem and pseu-
dorandomness for branching programs. In Proc. of the
51st Annual ACM Symposium on the Foundations of
Computer Science, 2010.

[7] Bill Fefferman, Ronen Shaltiel, Christopher Umans,
Emanuele Viola. On beating the hybrid argument. ITCS
2012.

[8] Martin Hellman, Thomas Cover. Learning with finite
memory. Ann. of Math. Stat., 41, 1970.
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