
Computing Exact p-Value for Structured Motif

Jing Zhang1, Xi Chen1, and Ming Li2

1 Computer Science, Tsinghua University, Beijing, 100084, China
{mitjj00,xichen00}@mails.thu.edu.cn

2 School of Computer Science, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada

mli@uwaterloo.ca

Abstract. Extracting motifs from a set of DNA sequences is important
in computational biology. Occurrence probability is a common used sta-
tistics to evaluate the statistical significance of a motif. A main problem
is how to calculate the occurrence probability of the motif on the random
model of DNA sequence efficiently and accurately. In this paper, we are
interested in a particular motif model which is useful in transcription
process. This motif, which is called structured motif, is composed two
motif words on single nucleotide alphabet and with fixed spacers between
them. We present an efficient algorithm to calculate the exact occurrence
probability of a structured motif on a given sequence. It is the first non-
trivial algorithm to calculate the exact p-value for such kind of motifs.

Keywords: Pattern and motif discovery, exact p-value, structured motif,
dynamic programming.

1 Introduction

Transcription factors play a prominent role in gene regulation; identifying and
characterizing their binding sites is central to annotating genomic regulatory
regions and understanding gene-regulatory networks. More and more research
works focus on this field. An important aspect of this is determining the statis-
tical significance of the occurrences of transcription factor binding site (TFBS),
also called motifs, in a DNA sequence. Statistical measures used for evaluating
overabundance of patterns in sequences have been studied extensively, among
which the z-score and p-value are most popular. P-value is the occurrence prob-
ability of a motif on the random model of DNA sequences for at least observed
times.

A widely used random model of DNA sequences is Markov chain model which
considers DNA sequences as a sequence of variable indexed by a finite state
Markov chain. In our paper, we use 1-order markov chain to model DNA se-
quences. There are many different ways to model a motif and the p-value is
different under different models. The basic motif model is a word on single nu-
cleotide alphabet Σ = {A, C, G, T } or IUPAC alphabet which allows more than
one nucleotide to occupy a single position. To represent more complex motifs,

B. Ma and K. Zhang (Eds.): CPM 2007, LNCS 4580, pp. 162–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Computing Exact p-Value for Structured Motif 163

general models such like PWM(position weight matrix) and PSSM(position spe-
cific scoring matrix) are introduced. In this representation, the nucleotide on
each position of the motif is chosen from single nucleotide alphabet according
to certain probabilities. A very useful model called ”structured motif” is in-
troduced by Marsan and Sagot [1,2]. The structured motif may be composed
of two or more ordered of words, called ”boxes”. Each box is separated from
the next one by a certain number of spacers(”N”). The interval may be dif-
ferent for two pairs of consecutive boxes. We can find many motifs having the
structured property in biological data such like GAL4 which can be written as
”CGGNNNNNNNNNNCCG”.

The non-overlapped two boxes problem has been studied by van Helden et
al. [4] in which the structured motifs are not allowed to overlap each other when
they appear. Robin S. et al. gave an algorithm to calculate the approximation
probability of occurrence of a motif composed of two of more boxes separated
by variable number of spacers in [3]. However, there is no efficient algorithm to
calculate the exact probability for motif composed of exact two boxes separated
by a fixed number of spacers considering motif overlap. In this paper, we propose
the first non-trivial and efficient algorithm to solve such a problem. The time
complexity of the algorithm is polynomial when the ratio of the number of
spacers to the length of the second box is a constant.

We will give the notations and the formal description of the problem in section
2. The details of the algorithm are introduced in section 3 and we will give the
conclusion and future work in section 4. We will show the details of the time com-
plexity analysis in Appendix A. We also implement the algorithms and do some
computational experiments on yeast data. The results are shown in Appendix
B. The software and materials are available on our website http://bio.dlg.cn.

2 Preliminary

2.1 Basic Notations

For any string S, we use S[i] to denote the ith position of S, and S[i, j] to
denote the substring of S from S[i] to S[j] inclusive, i.e. S[i]S[i + 1] . . . S[j]. Let
Σ = {A, C, G, T } be the alphabet of nucleotides. The random model of DNA
sequence is Markov chain with length n on Σ, i.e. we assume that it has been
generated by a Markov chain. We denote by

m = m1(#N = t)m2 (1)

a structured motif composed of two words separated by t spacers which means
that there can be any nucleotide between them. The lengths of m, m1 and m2 are
l, l1 and l2 where l = l1 + l2 + t. A motif is considered to hit a string if the string
contains the motif as a substring. That is, there ∃i, such that m1 = R[i, i+l1−1]
and m2 = [i + l1 + t, i + l − 1]. Ai represents an event that m hits at position i.
The number of hits is the number of such different i, regardless of overlaps.

164 J. Zhang, X. Chen, and M. Li

2.2 Problem Description

From a theoretical point of view, regulatory regions can be divided into two parts:
the binding sites which play an important role in regulating gene expression, and
the background which is not bound by transcription factors of interest. The key
point for discriminating the signals from the background is to estimate if the
motif is over-represented under the null hypothesis. To evaluate the statistical
significance of the motif, we have to calculate the probability of a structured
motif m hits a Markov region at least k times, where k is the appearance times
of the motif on the given sequence. We give the formal description as following:

Input: A structured motif m = m1(#N = t)m2 where m1 and m2 are motif
words over alphabet Σ = {A, C, G, T }, an integer k > 0 and a Markov Region
R with length n
Output: Pr(m hits region R at least k times)

3 Algorithm

To sketch the idea of the algorithm and make the description clean, we first
give the algorithm for an independent and identically distributed (i.i.d) model
and we will extend it to Markov model later. The main technic used here is
dynamic programming. But if we use dynamic programming directly, the number
of terms to calculate will expand too larger. To avoid such a problem, first we
do transformations to the target probability and decompose the probability into
terms which can be calculated using dynamic programming and the number of
terms is constrained.

We will present the details of our algorithm for case k = 1, i.e the motif hits
the region at least one times and extend it to general k later. When a motif m
hits a region R, it can appear on any position of R, so the target probability
equals to Pr(A1

⋃
A2

⋃
. . .

⋃
An) where Ai represents an event that m hits at

position i. We can use the principle of inclusion and exclusion to decompose the
target probability. Each term in the equation is the sum of probability that the
motif hits at some positions simultaneously, for example, motif m hits region at
b, b + 2 in Figure 2 at the same time. We further decompose the term by the
first hit position and second hit position. After decomposition, the term is the
probability that the motif hits a shorter region with a well-defined prefix for
fewer times and we can use dynamic programming to calculate it.

3.1 Decomposition and Transformation

First, We use the principle of inclusion and exclusion to decompose the target
probability and classify the hit events by the first hit position.

Pr(m hits R) = Pr(A1

⋃
A2

⋃
. . .

⋃
An)

=
n∑

a=1

(−1)a−1
∑

1≤i1<i2<...<ia≤n

Pr(
a⋂

v=1

Aiv) (2)

Computing Exact p-Value for Structured Motif 165

=
n∑

a=1

(−1)a−1
n∑

b=1

∑

i1=b<i2<...<ia≤n

Pr(
a⋂

v=1

Aiv) (3)

The equation (2) is from the principle of inclusion and exclusion . We classify
the events according to different value of i1 to get the equation (3). Let

P (a, b) =
∑

i1=b<i2<...<ia≤n

Pr(
a⋂

v=1

Aiv) (4)

The key problem is how to calculate P (a, b) for all a and b from 1 to n.

A A A A C A

A A A A C A

bi =1

2i

m

m

A A A A C Am

2i

case1:

case2:

lii +< 12

112 +> lii

Fig. 1. Two cases of i2

We do further decomposition to P (a, b). When i1 decided, there are two kinds
of relation between i1 and i2, one is that the motif starting from i1 does not
overlap that starting from i2 and the other is overlap case. We classify the
events by different value of i2 in equation (5):

P (a, b) = Pr(Ab) ×
n∑

b1=b+l

P (a − 1, b1) (5)

+
b+l−1∑

b2=b+1

∑

i1=b<i2=b2<...<ia<n

Pr(
a⋂

v=1

Aiv)

Let

P1(a, b) =
b+l−1∑

b2=b+1

∑

i1=b<i2=b2<...<ia<n

Pr(
a⋂

v=1

Aiv) (6)

P2(a, b) = Pr(Ab) ×
n∑

b1=b+l

P (a − 1, b1)

166 J. Zhang, X. Chen, and M. Li

We can see that P1 corresponds to the overlap case and P2 the non-overlap
case. P2 can be calculated by P (a − 1, b1) which is already known in dynamic
programming, but we can not calculate P1 using dynamic programming directly
and we keep on doing transformations to P1.

In fact, the events Ai1 and Ai2 can not hold simultaneously for many choices
of i2. For two given motif m′ and m′′, we define the compatible position set.

Definition 1. For given motif m′ and m′′ with length l on alphabet {A, C, G, T,
N}. Let Q(m′, m′′) denote the compatible position set of m′ and m′′. For any
i that 0 < i ≤ l, i ∈ Q(m′, m′′) ⇐⇒ ∀1 ≤ j < i, m′[j] = m′′[l − i + j] or
m′[j] = N or m′′[l − i + j] = N .

In another word, Q(m′, m′′) are all the possible positions for m′′ to appear in
when there is already a motif m′ appears. We constrain the choices of i2 in
equation (6) and rewrite it.

P1(a, b) =
∑

d∈Q(m,m)

∑

i1=b<i2=b+d<...<ia≤n

Pr(
a⋂

v=1

Aiv)

=
∑

d∈Q(m,m)

Pr(m[1, d] = R[b, b + d − 1]) ×
∑

b+d<i3<...<ia≤n

Pr(sd is the prefix of R[b + d, n],
a⋂

v=3

Aiv) (7)

in which Pr(m[1, d] = R[b, b + d − 1]) can be calculated using the parameters
of i.i.d model directly. We show the meaning of sd in Figure 2 for case d = 9.
The basic idea of equation (7) is to divide the region R[b, n] into two parts at i2.
A suffix of the motif m which starts from i1 = b locates in region R[b+d, n]. The
combination of the suffix and the motif m which starts from i2 = b + d forms
the prefix sd.

A A A A C A

A A A A

A A A A C A

A C

A CA A

s d

b n

R

m2

m

db +

Fig. 2. Cut the region from b + d and form the prefix sd

Computing Exact p-Value for Structured Motif 167

Till now, we keep on doing transformations to the target probability and try
to find some variants which are easy to calculate using dynamic programming
and the number of variants does not expand too fast during the recursion. We
will define another probability in subsection 3.2 and show that P (a, b) and the
well-defined probability can be calculated by dynamic programming together.

3.2 Dynamic Programming

The probability I(x, y, z) is defined to be:

I(x, y, z) =
∑

y≤i1<i2<...<ix≤n

Pr(z is a prefix of R[y, n],
x⋂

v=1

Aiv) (8)

in which 1 ≤ x, y ≤ n and s ∈ SP (m). SP (m) is the structured prefix set of m
which is defined as following:

Definition 2. A string s with length l belongs to the structured prefix set of
a given motif m = m1(#N = t)m2 when it satisfies the three constraints:
Constraint 1: s[1, l1] = m1 and s[l − l2 + 1, l] = m2
Constraint 2: s[l − d − l2 + 1, l − d] = m2, where d ∈ Q(m, m).
Constraint 3: Other positions are covered by spacers or several overlapped m2.

We can see that when the other positions are only covered by spacers, it is exactly
the prefix sd. Assume the number of m2 used to do covering is r, we illustrate
all the possible structured prefixes when m = AAA(#N = 5)ACA and d = 9
in Figure 3. We can regard it as using several m2 to cover a string with length
t and filling the rests with spacers. It is possible that several m2 overlap each
other and overlap s[1, l1] or s[l− l2 +1, l]. The constraint 3 is meant to make the
prefix set complete in dynamic programming.

Then we prove that P (a, b) and I(x, y, z) can be calculated by dynamic pro-
gramming. Since the complexity is related to the size of SP (m), we just use
|SP (m)| to represent the size of SP (m) in the time complexity analysis and the
details of the estimation to |SP (m)| are given in Appendix A.

Lemma 1. For 1 ≤ x, y ≤ n and z ∈ SP (m), 1 ≤ a, b ≤ n, all I(x, y, z) and
P (a, b) can be calculated using Dynamic Programming. If the size of SP (m) is
|SP (m)|, the total time complexity is O(n3|SP (m)|).

Proof. It is easy to see that P1(a, b) =
∑

d∈Q(m,m) Pr(m[1, d] = R[b, b + d −
1]) × I(a − 2, b + d, zd), so P (a, b) can be calculated by P (a′, b′) and I(x, y, z)
already known in dynamic programming. We calculate I(x, y, z) for y from n to
1, x from 1 to n − y and z in the structured prefix set of m in arbitrary order.
When x = 0, I(x, y, z) = Pr(z is a prefix of R[y, n]) is easy to calculate. Assume
we have got the value of I(x′, y′, z) for all y′ > y, x′ < x, any z ∈ SP (m). We
do decomposition to I(x, y, z) according to the first hit position:

168 J. Zhang, X. Chen, and M. Li

I(x, y, z) =
n∑

b=y

∑

i1=b<i2<...<ix<n

Pr(z is a prefix of R[y, n],
x⋂

v=1

Aiv) (9)

=
n∑

b1=y+l

(Pr(z is a prefix of R[y, n]) × P (x, b1)) (10)

+
∑

b2−y∈Q(z,m)

(Pr(z[1, b2 − y + 1] = R[y, b2]) × I(x − 1, b2, z
′)

Since z′ is a string covered by the prefix m and z[b2 − y, l], it is still in SP (m).
The number of different I(x, y, z) is n2|SP (m)| and the time to calculate each
I(x, y, z) is O(n), so the total complexity is O(n3|SP (m)|).

We conclude the recursion formula for I(x, y, z) and P (a, b) as following:

P (a, b) = Pr(Ab) ×
n∑

b1=b+l

P (a − 1, b1)

+
∑

d∈Q(m,m)

Pr(m[1, d] = R[b, b + d − 1]) × I(a − 2, b + d, zd)

I(x, y, z) =
n∑

b1=y+l

(Pr(z is a prefix of R[y, n]) × P (x, b1))

+
∑

b2−y∈Q(z,m)

(Pr(z[1, b2 − y + 1] = R[y, b2]) × I(x − 1, b2, z
′)

We can see that the DP algorithms to calculate P (a, b) and I(x, y, z) get involved
with each other. �

A A A A C A

A A A C A C A

m

m

s 9(r = 0)

A A A C A C As 9(r = 1) C A

A A A C A C As 9(r = 1) A C A

A A A C A C As 9(r = 1) A C

A A A C A C As 9(r = 2) C A C

m2

m2

m2

m2 m2

A A A A C A

A

A

A

A

A

Fig. 3. all the prefixes in the structured prefix set when m = AAA(#N = 5)ACA and
d = 9. r is the number of m2 to do covering in constraint 3

Computing Exact p-Value for Structured Motif 169

Given all P (a, b) for 1 ≤ a, b ≤ n, we can calculate the target probability by

Pr(m hits region R at least k times) =
n∑

a=k

(−1)(a−k)%2
n∑

b=1

P (a, b) (11)

In Appendix A, we prove that the size of the structured prefix set of a structured
motif m = m1(#N = t)m2 is O((2l2 + 2)2t/l2+2). When t/l2 is a constant, it is
O(lc2) for some constant c. We have the following theorem:

Theorem 1. Given a structured motif m = m1(#N = t)m2 on alphabet Σ =
{A, C, G, T } and an i.i.d region R of length n, we can calculate Pr(m hits region
R at least k times) in O(n3 × smax + tmax × rmax) where smax = (2l2 +2)2t/l2+2

and rmax = 2 × l2+t
l2+1 . When t/l2 is some constant c, the time complexity is

O(n3 × lc2).

3.3 Sketch of Algorithm on Markov Model

The algorithm on markov model is quite similar to that on i.i.d model. The
key idea for the extension is to maintain the last char before the region. We can
rewrite the Subsection 3.1 and 3.2 using this idea and the frame of the algorithm
and time complexity analysis remains the same.

We take equation (4)∼(7) in decomposition and transformation as an example
do show the extension. We rewrite equation (4) as

PM (a, b, c) =
∑

c∈Σ

∑

i1=b<i2<...<ia≤n

Pr(
a⋂

v=1

Aiv |R[b − 1] = c)

which is the sum over conditional probabilities with different char before region
R[b, n]. We can also classify the events by different value of i2 similar to equation
(5) as following:

PM (a, b, c) =
∑

c∈Σ

(Pr(Ab|R[b − 1] = c)
∑

d∈Σ

n∑

b1=b+l

(P (a − 1, b1, d) × Pr(R[b1 − 1]

= d|Ab)) +
b+l−1∑

b2=b+1

∑

i1=b<i2=b2<...<ia<n

Pr(
a⋂

v=1

Aiv |R[b − 1] = c))

The conditional probability in the non-overlap part PM2 can be calculated us-
ing the transition probabilities of markov model. For the overlap part PM1 , we
rewrite it like equation (7):

PM1 =
∑

c∈Σ

(
∑

d∈Q(m,m)

Pr(m[1, d] = R[b, b + d − 1]|R[b − 1] = c) ×
∑

b+d<i3<...<ia≤n

Pr(sd is the prefix of R[b + d, n],
a⋂

v=3

Aiv |R[b + d − 1] = m[d]))

The extension in Dynamic Programming is quite similar to that of decompo-
sition and transformation part.

170 J. Zhang, X. Chen, and M. Li

4 Conclusion and Future Work

In this paper, we present a non-trivial and efficient algorithm to calculate the
probability of the occurrence of a structured motif m = m1(#N = t)m2 where
m1 and m2 are motif words on basic alphabet Σ = {A, C, G, T } with t spacers.
We do transformations to the target probability and define two variants which
can be calculated by DP algorithm. The time complexity of the algorithm is
O(n3 × lc2) for some constant c when t/l2 is a constant where l1 and l2 are the
length of m1 and m2.

The algorithm can be used to evaluate the statistical significance of motif
candidates with structured property. This kind of motifs are often with larger
length in real biological data and it is harder to calculate the occurrence prob-
ability. Our algorithm is the first non-trivial and efficient algorithm to calculate
the exact p-value of such kind of motifs.

One problem is that the algorithm is still an exponential time algorithm in
worst case. Finding a polynomial time algorithm or proving that it is NP-hard
are two main directions in the future work.

Acknowledgement

ZJ’ and CX’s work is supported by the National Natural Science Foundation of
China Grant 60553001 and the National Basic Research Program of China Grant
2007CB807900, 2007CB807901.ML’s work was partially supported by the Chang
Jiang Scholarship Program, NSERC, and Canada Research Chair program.

References

1. Marsan, L., Sagot, M.F.: Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification. J.
Comp. Biol. 7, 345–362

2. Marsan, L., Sagot, M.F: Extracting structured motifs using a suffix tree-algorithm
and application to promoter consensus identification. In: RECOMB’00 Proceedings
of Fourth Annual International Conference on Computational Molecular Biology,
pp. 210–219. ACM Press, New York (2000)

3. Robin, S., Daudin, J.-J., Richard, H., Sagot, M.-F., Schbath, S.: Occurrence proba-
bility of structured motifs in random sequences. J. Comp. Biol. 9, 761–773 (2002)

4. Van Helden, J., Rios, A.F., Collado-Vides, J.: Discovering and Regulatory elements
in non-coding sequences by analysis of spaced dyads. Nucl. Acids Res. 28, 1808–1818

5. Zhu, J., Zhang, M.Q.: SCPD: A promoter database of yearst saccharomyces cere-
visiae. Bioinformatics 15, 607–611 (1999)

A Estimation of the Size of Structured Prefix Set

The following lemma is about the size of the structured prefix set of m.
Lemma 2. The size of the structured prefix set of a structured motif m =
m1(#N = t)m2 is O((2l2 + 2)2t/l2+2). When t/l2 is a constant, it is O(lc2)
for some constant c.

Computing Exact p-Value for Structured Motif 171

Proof. According to definition 2, for any string s in SP (m), the contents of the
first l1 and the last l2 length of s are fixed. Although there must be a m appeared
at some position in constraint 2, this constraint is just for the convenience to
define sd from SP (m) and it has been contained in constraint 3. We can omit
it when estimating the size of SP (m). The number of different s[l1 + 1, l1 + t] is
exact the size of SP (m), so we prove that the number of different s∗ is at most
O((2l2 + 2)2t/l2+2) where s∗ = s[l1 + 1, l1 + t].

First, we give the upper bound of the needed number of m2 to cover the whole
s∗. Assume we use m

(1)
2 , m

(2)
2 , . . . , m

(t)
2 to cover s∗. m

(j1)
2 appears before m

(j2)
2 if

j1 < j2. Make sure that every m
(j)
2 is needed. Here, the needed means that there

exists a substring of s∗ which is only covered by m
(j)
2 . We have the following to

facts:

Fact 1. ∀1 ≤ j ≤ r, m
(j)
2 covers at a substring of s∗ with length at least 1.

Fact 2. m
(j)
2 can not overlap m

(j+2)
2 .

Fact 2 is right because if they overlap each other, m
(j+1)
2 is not needed. Combine

the two facts, we have an upper bound of r,

r ≤ 2 × l2 + t

l2 + 1
= rmax

The number of different s∗ is bounded by the number of choosing r positions
from l2 + t possible start positions for m2 in which r is ranging from 0 to rmax.

number of different s∗ ≤
rmax∑

r=0

(
l2 + t

r

)

≤
(

l2 + t

rmax

)rmax

= (2l2 + 2)2×
l2+t
l2+1 ≤ (2l2 + 2)2t/l2+2

Let smax denote (2l2 +2)2v/l2+2. We can construct the structured prefix set just
by trying all the possible choices of r from 0 to rmax increasingly and the total
construction time complexity is bounded by O(rmax × smax).

B Computational Experiment

We implement the algorithm in C++ and do computational experiment on yeast
data. GAL4 is a family of transcription activator of genes. It has a typical Zn-
binding region and is reported to bind to a 17 base-pair palindromic site. The
consensus binding motif is ”CGGNNNNNNNNNNNCCG” which can be regarded
as a structured motif of two boxes with length 3 and 11 spacers between them.

In Saccharomyces crevisiae Promoter Database (SCPD) [5], transcription fac-
tor GAL4 is reported to bind to 7 Genes: GAL1, GAL2, GAL4, GAL7, GAL10,
GAL80 and GCY1. We extract upstream sequence, of length 1000 bp, for these 7
genes and estimate the occurrence probabilities of {A, C, G, T } on each sequence.

172 J. Zhang, X. Chen, and M. Li

We calculate the exact p-value of motif GAL4 to appear on each sequence for
observed times. The p-value and consumed time1 are shown in Table 1. If we use
α = 0.05 in hypothesis test to decide whether motif GAL4 is over-represented
in the promoter region, we can see that all the p-values are significant below
α except GAL80. The result shows the power of the algorithm to discriminate
the transcription signals from the background. The average time is 12.6s which
is acceptable in application. We also enumerate all the structured motifs with

Table 1. The p-value of motif GAL4 on corresponding Genes

Gene Name P-value of motif GAL4 Time
GAL1 9.61361E-06 12813ms
GAL2 2.16228E-09 12734ms
GAL4 0.006578594 12609ms
GAL7 0.034349462 12532ms
GAL10 9.61361E-06 12641ms
GAL80 0.092351709 12282ms
GCY1 0.045182862 12640ms

l1 = l2 = 3 and t = 11. The number of such motifs is 46 = 4096. We calculate
the exact p-value of all such motifs on Gene GAL4 and rank them according to
p-value increasingly. The top 20 p-values are shown in Table 2. We can see that
the rank of ”CGG(#N=11)CCG” is the 11-th of all 4096 structured motifs of
similar structure, that is in the top 0.2%.

Table 2. The top 20 p-value of structured motif on Genes GAL4

Structured Moitf P-value Structured Moitf P-value
TTT(#N=11)TTT 0.00135 CGG(#N=11)CCG 0.00658
ACA(#N=11)AGG 0.00141 AAA(#N=11)CTT 0.00689
AGA(#N=11)CAG 0.00151 ATT(#N=11)ACA 0.00704
GTG(#N=11)AGA 0.00163 GGA(#N=11)GGC 0.00858
AGC(#N=11)TCA 0.00182 CGG(#N=11)AGG 0.00858
GAC(#N=11)CTA 0.00183 TTA(#N=11)TTC 0.00963
TTT(#N=11)CGC 0.00273 GGT(#N=11)CGG 0.01004
ATT(#N=11)GTG 0.00393 GGG(#N=11)TCC 0.01020
TTT(#N=11)GAG 0.00430 GTC(#N=11)CGG 0.01037
CAC(#N=11)TTT 0.00516 TTT(#N=11)CTT 0.01238

1 The compiler is Microsoft VC 6.0 and The test PC is equipped with a Pentium 4
running at 2.8GHz and 512MB of RAM.

	Introduction
	Preliminary
	Basic Notations
	Problem Description

	Algorithm
	Decomposition and Transformation
	Dynamic Programming
	Sketch of Algorithm on Markov Model

	Conclusion and Future Work
	Estimation of the Size of Structured Prefix Set
	Computational Experiment

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

